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Canonical Variate Analysis with Longitudinal Data

Michael Beaghen

(ABSTRACT)

Canonical variate analysis (CVA) is a widely used method for analyzing group structure in

multivariate data.  It is mathematically equivalent to a one-way multivariate analysis of

variance and often goes by the name of canonical discriminant analysis.  Change over time

is a central feature of many phenomena of interest to researchers.  This dissertation

extends CVA to longitudinal data.  It develops models whose purpose is to determine

what is changing and what is not changing in the group structure.  Three approaches are

taken:  a maximum likelihood approach, a least squares approach, and a covariance

structure analysis approach.  All methods have in common that they hypothesize canonical

variates which are stable over time.

The maximum likelihood approach models the positions of the group means in the

subspace of the canonical variates.  It also requires modeling the structure of the

within-groups covariance matrix, which is assumed to be constant or proportional over

time.  In addition to hypothesizing stable variates over time, one can also hypothesize

canonical variates that change over time.  Hypothesis tests and confidence intervals are

developed.

The least squares methods are exploratory.  They are based on three-mode PCA methods

such as the Tucker2 and parallel factor analysis.  Graphical methods are developed to

display the relationships between the variables over time.

Stable variates over time imply a particular structure for the between-groups covariance

matrix.  This structure is modeled using covariance structure analysis, which is available in

the SAS package Proc Calis.

Methods related to CVA are also discussed.  First, the least squares methods are extended

to canonical correlation analysis, redundancy analysis, Procrustes rotation and

correspondence analysis with longitudinal data.  These least squares methods lend

themselves equally well to data from multiple datasets.  Lastly, a least squares method for

the common principal components model is developed.
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bold and small lettered.  Matrices are bold and large lettered.  Scalars are small lettered

and not bold.  A constant is italicized, an index is not.
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CHAPTER ONE

INTRODUCTION

Change over time is a central feature of many phenomena of interest to researchers.

Analysis of data measured over time is well developed for univariate analysis (Hand & Crowder

1989, Diggle, Liang & Zeger 1994), but not as well developed for multivariate analysis.  In this

dissertation I extend certain multivariate methods to longitudinal data so that one can investigate

the change over time in the underlying structures in the data.

The main interest of the dissertation is extending canonical variate analysis (CVA) to

longitudinal data.  However, other related multivariate methods which I extend to longitudinal

data are canonical correlation analysis (CCA), redundancy analysis (RA) and Procrustes rotation

(PR).  These are kindred methods which relate two sets of variables, which I shall designate

X-variables and the Y-variables.  In the case of CVA the X-variables are group indicators, while

for CCA, RA and PR the variables may be either continuous or categorical.  Of these four

methods, I give particular attention to canonical variate analysis because of its obvious usefulness

and because it is the most mathematically tractable when extended to data taken over time.

In addition to change over time I investigate change that occurs over different datasets or

groups.  Although not a primary interest of this dissertation, the problem of modeling canonical

correlation analysis, canonical variate analysis, redundancy analysis and Procrustes rotation with

data from multiple datasets is closely related to the problem of modeling these analyses with

longitudinal data.  I also devote a chapter to common principal components analysis (Flury 1988),

which models principal components with data from multiple datasets and shares conceptual

similarities to the other models I discuss.
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Several multivariate models for data over time have already been developed.  Related to

some of the approaches to be taken in this dissertation, Kiers (1991) gives an overview of using

three-mode principal components to model principal components over time.  Three-mode

principal components decomposes three-mode data, that is, data which is in the form of a

three-way array. Swaminathan (1984) has developed models for factor analysis with longitudinal

data.  Modeling the relationship between two sets of variables over time, however, has not been

well developed.  Regression can be viewed as a model relating two sets of variables, where one

set consists of the response.  Regression over time has been modeled by different methods.  W are

(1985) describes random effects models, autoregressive models and multivariate models.  Liang

and Zeger (1986) discuss using generalized linear models for longitudinal regression.  Akin to

factor analysis and multiple regression is LISREL (LInear Structural RELations, Jöreskog 1989),

which relates variables in a structural model.  Jöreskog (1979) describes how LISREL can be

approached with longitudinal data, although the results are limited.

In addition to multivariate models for longitudinal data, a few multivariate methods for

data from multiple datasets or groups have also been developed.  A method for performing

principal components analysis on data from multiple datasets is common principal components

(see Chapter Four).  Closely related to one method developed in this dissertation is a method for

performing canonical variate analysis on data from multiple datasets (Campbell and Tomenson

1983).

W hat is shared by the models mentioned above is that they hypothesize common or stable

variates across the multiple occasions or datasets.  I shall take the same approach to modeling

change.  The common component or variate shall be the leitmotiv of this dissertation.  The nature

of change shall be investigated by asking the question:  W hat remains stable over time, and what

changes?  In particular, I ask if it is useful to model variates as constant or stable over time.  If the

common variate approach is deemed useful, then the nature of the change is indicated by the

strength of the relationship, i.e., the orrelation or covariance, between the pairs of variates at each

occasion.

Having outlined the problem and the nature of the attempted solution, I will now lay out

the organization of the dissertation.  Chapter Two provides the reader with the background

material necessary to frame the problem and approach the solutions attempted in the rest of the

dissertation.  Chapter Two first discusses canonical correlation analysis, followed by canonical

variate analysis, which is a special case of canonical correlation analysis.  Then it discusses

redundancy analysis and Procrustes rotation, two methods closely related to canonical correlation

analysis.  Next three-mode methods are discussed.  Lastly, Campbell and Tomenson’s model for

canonical variate analysis for multiple datasets is discussed.

W hile the material presented in Chapter Two is strictly a review, the chapters which

follow present mostly new material.  Background material appears in Chapters Four, Six, Seven

and Nine.  These chapters are self-contained;  they have both new material and the related

background.

In Chapter Three I show the partitioning of sums of squares and prove the nestedness of

the solutions for the PARAFAC (orth.) model.  These results are important for the developments

of Chapters Four and Five.
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Chapter Four compares the maximum likelihood and least squares approaches to common

principal components (CPC).  It starts with background on Flury’s (1984) maximum likelihood

approach, then outlines how CPC can be approached by three-mode PCA.  This chapter is the one

least organically connected to the rest of the dissertation.  Besides interest in the CPC model for

its own sake, it relates to the main thesis in two ways.  First, it is a clear exposition of a common

variate model.  Second, it shows how maximum likelihood and least squares methods complement

each other.  In this sense it suggests possible developments of common variate models for

canonical variate analysis, canonical correlation analysis and redundancy analysis over time which

could be approached by both maximum likelihood and least squares.

Chapters Five and Six present least squares methods.  Chapter Five models canonical

variate analysis, canonical correlation analysis, redundancy analysis and Procrustes rotation over

multiple occasions and over multiple datasets with three-mode principal components.  In Chapter

Six graphical techniques are developed to be used in conjunction with the least squares methods

of Chapter Five.  I do not develop hypothesis tests for the least squares methods.  Hence the least

squares methods are not as powerful as the maximum likelihood method.  However, they are

more flexible.  They can be applied to data where the X-variables are continuous.  They can be

applied to data where Y-variables are categorical, such as correspondence analysis.  Furthermore,

they are well suited for exploratory analysis.

In Chapter Seven canonical variate analysis over time is approached by the analysis of

covariance structures or COSAN (COvariance Structure ANalysis, McDonald 1978), which is

related to LISREL modeling.

In Chapter Eight I develop a model for canonical variates over time which is estimated by

maximum likelihood.  Like Campbell and Tomenson’s approach (see Section 2.5), it models

group means.  This is the only maximum likelihood method that I develop fully in the dissertation.

I develop hypothesis tests based on the likelihood ratio principal and confidence intervals based on

the inverse of the information matrix.

In Chapter Nine I discuss the important issue of the scaling of the variables.  Chapter Ten

concludes the dissertation and suggests further research.
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CHAPTER TWO

BACKGROUND

In this dissertation I develop methods for certain multivariate applications when one has

three-mode data;  that is, data taken over multiple occasions or datasets.  In this chapter I present

background material that is central to the development of these methods.  Section 2.1 details the

singular value decomposition (SVD).  The SVD is important to this dissertation for several

reasons.  First, it unifies the methods for relating two sets of variables, as they can be put into the

framework of a SVD.  Second, the three-mode PCA models are generalizations of the SVD.

Lastly, the SVD is the basis for the biplot, a fundamental graphical technique.  Section 2.2

describes canonical correlation analysis, canonical variate analysis, redundancy analysis and

Procrustes rotation.  These are kindred methods for relating two sets of variables which I will

generalize to longitudinal and multiple group data.  Section 2.3 delves into three-mode principal

components, which is one of the approaches I take to generalizing the aforementioned

multivariate methods.  An advantage of three-mode  PCA is that it lends itself readily to graphical

displays.  Lastly, Section 2.4 discusses the Campbell and Tomenson model for canonical variate

analysis for data from multiple datasets.  To the best of my knowledge it is the only model that
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accomplishes something similar to that which the models in this dissertation will accomplish.  In

particular, the model I develop in Chapter Eight can be viewed as an extension of Campbell and

Tomenson’s model.

2.1  THE SINGULAR VALUE DECOM POSITION

An m n×  matrix X can be decomposed as follows (Kshirsagar 1972):

X = ′ΠΣΠΣΩΩ
where ΠΠ  is an m m×  orthogonal matrix, ΩΩ is an n n×  orthogonal matrix, and ΣΣ  is an m n×
matrix with elements σ ij , where the singular values are σ σjj j= , and σ ij = 0 for i j≠ .  Such a

decomposition is called the singular value decomposition (SVD).  An equivalent form of the SVD

(assume m n≥ ) specifies that ΠΠ be an m n×  matrix with orthonormal columns and ΣΣ  an n n×
diagonal matrix with σ σjj j= .  W hich form is being referred to will be clear from the context.

The SVD has the optimality property (Eckart and Young 1936) that it yields the best low

rank approximation to a matrix in a least squares sense.  If X has rank r and one wants a rank s

approximation to X, s < r , then the optimal approximation is $X = ′ΠΠ ΣΣ ΩΩs s s , where ΣΣ s  is an

s s×  diagonal matrix whose diagonal elements are the s largest singular values of X, and ΠΠ s  and

ΩΩ s  contain the columns of ΠΠ  and ΩΩ  corresponding to those s singular values.  It is this

optimality property that allows the SVD to be used as the basis for biplots.  For a discussion of

some other uses of the SVD in statistics see Good (1969).

If X is a symmetric matrix then the singular value decomposition is equivalent to a spectral

decomposition. ΠΠ ΩΩs s= =  the matrix of eigenvectors of X, while ΣΣ s  is a diagonal matrix of

eigenvalues of X.

2.2  CANONICAL CORRELATION AND RELATED M ODELS

Canonical correlation analysis (CCA) is the most widely known of the multivariate

methods that relate two sets of variables.  CCA relates p X-variables to q Y-variables.  The

assignment of variables into the X-set and the Y-set is always performed before the analysis and is

based on the nature and purpose of the study.  For example, a medical researcher may want to

relate lifestyle variables, X-variables, such as daily caloric intake and exercise, with cardiovascular

variables, Y-variables, such as cholesterol level and blood pressure.  Canonical correlation

analysis (CCA), redundancy analysis (RA) and Procrustes rotation (PR) all require this a priori

division of the variables.

As a preliminary, define the covariance matrix S:

S
Y Y Y X

X Y X X

S S

S S
=

−






′ ′
′ ′









 =











1

1n

YY YX

XY XX

,

where X is an n p×  matrix of measurements of p variables on n units, and Y is an n q×  matrix

of measurements of q variables on n units.  I shall assume throughout the discussion that X and Y

are centered by variable.  If the variables are also scaled to unit variance S  is a correlation matrix.
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2.2.1  Canonical Correlation

Hotelling (1935) proposed canonical correlation analysis as a model to relate two sets of

variables measured on the same units.  He derived linear combinations of the X-variables and

linear combinations the Y-variables that were maximally correlated, subject to the constraints that

each derived variate was uncorrelated with the other variates in its set and that each variate had a

variance of one.  Denote the vector of X-variables by x, and the vector of Y-variables by y.  CCA

finds linear compounds of x and y, a i  and b i :

a bi i= ′ = ′w x v yi i, ,

choosing w i  and v i  to maximize the correlation between a i  and b i , subject to the constraints:

′ = ′ = ∀ ≠w S w v S vi XX i YYj j i j0 0,

and

′ = ′ =w S w v S vi XX i YYi i1 1, .

The canonical coefficients, w i  and vi , can be obtained by a spectral analysis.  The w i  are

eigenvectors of the matrix S S S SXX XY YY YX

− −1 1  and the vi  are eigenvectors of S S S SYY

1

YX XX

1

XY

− − .  The

eigenvalues of these two matrices are equal, and they are the canonical correlations between the

pairs of canonical variates, w i  and vi .

Let W represent the matrix whose columns consist of w i  and V the matrix whose

columns consist of vi .  For a positive definite matrix M define the unique symmetric positive

definite square root matrix M
1

2  such that M M M= 1
2

1
2 .  Clearly, M L L

1
2

1
2= ′ΛΛ , where

M L L= ′ΛΛ  is the spectral decomposition of M.  Then it is also possible to get the canonical

coefficients from a singular value decomposition of the matrix S S S
XX

− −1
2

1
2

XY YY  (Gittins 1985) as

follows:

S S S W EVXX

− − = ′∗ ∗1
2

1
2

XY YY ,

where W S W∗ = XX

1
2 , V S V∗ = YY

1
2 , E is a diagonal matrix with the canonical correlations as its

elements.

Canonical correlation has the appealing property of biorthogonality. Biorthogonality is

the property that each canonical variate in the X-domain is uncorrelated with the canonical

variates in the Y-domain except the corresponding Y-variate.  This is equivalent to requiring that

W and V diagonalize SXY , that is;

′ =W S V EXY .

where E is a diagonal matrix. Biorthogonality implies that the relationship between the

X-variables and Y-variables can be partitioned by the pairs of canonical variates, enhancing the

interpretability of the analysis.

As an aid to interpreting the canonical variates, researchers often examine structure

coefficients (Meredith 1964).  The structure coefficients for the X-variables are the correlations

between the X-variables and the canonical variates for the X-domain.  The matrix of these terms

is S WXX .  Similarly, the structure coefficients for the Y-variables are the correlations between
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the Y-variables and the canonical variates of the Y-domain, and the matrix of these terms is

S VYY .

2.2.2  Canonical Variate Analysis

Canonical variate analysis (CVA) is a widely used method for analyzing group structure in

multivariate data.  It is mathematically equivalent to a one-way multivariate analysis of variance

(MANOVA) and often goes by the name canonical discriminant analysis.  CVA can be interpreted

as a special case of canonical correlation analysis where one set of variables consists of group

indicators (Gittins 1985).  This formulation of CVA as a canonical correlation analysis will be

exploited in Chapters Five and Six.  A geometrical formulation of CVA given by Campbell and

Atchley (1981) will be exploited in Chapter Eight.

To start, however, it is useful to review the traditional formulation of CVA. Krzanowski

(1988, page 291) summarizes that the objective of CVA is to, “provide a low-dimensional

representation of the data that highlights as accurately as possible the true differences existing

between the m subsets of points in the full configuration”.  One finds a weighted sum of the

variables whose between-groups variation is maximized with respect to its within-groups

variation.  That is, find the p × 1 vector v1  maximizing 
′
′

v Bv

v Cv

1 1

1 1

, subject to ′ =v Cv1 1 1, where

B = − − ′
=

∑ n
m

g g g)(
g 1

( )x x x x , C = − − ′
==
∑∑ ( )x x x xgi g gi g)(

g

ig 11

nm

, xg  is vector of sample means for

the g th  group and x  is the vector means for the entire dataset.  C is referred to as the

within-groups covariance matrix and B as the between-groups covariance matrix.  Find further

v i , i = 2, ,K r , which maximize 
v `Bv

v `Cv

i i

i i

 subject to ′ =V CV I , where v i  is the i
th

 canonical

variate, and V  is a p r×  matrix whose i
th

 column is v i .  Note that r m p≤ min( , )  and that

B C S+ = XX .

The matrix of canonical variates is obtained by finding the eigenvectors of C B
−1

.

However, it is easier to take the eigenvectors of C BC
− −1

2
1

2 .  Denote the matrix of eigenvectors of

C BC
− −1

2
1

2  by U.  Then V C U= −1
2 .  There are two hypothesis tests of interest.  The first is the test

that the vectors of group means are equal.  The second is the test of dimensionality;  i.e., how

many canonical variates are statistically significant.  For details on these tests see Kshirsagar

(1972).

To put CVA in the framework of canonical correlation analysis, create m - 1 binary

variables, x x1 , ,K
m-1 .  If a subject belongs to the s

th
 group, then xs = 1 , otherwise x s = 0 .  Now

one can obtain canonical variates as described in Section 2.2.1.

Campbell and Atchley (1981) give a geometrical formulation of CVA.  They model the

group means to lie in the subspace defined by the canonical variates, in particular, by ΣΣV , as seen

below:
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µµ µµg = +0 ΣΣVeg , (2.1)

for g = 1, ,K m , where m is the number of groups, p is number of variables, µµ g  is a p × 1 vector

of means for the g th  group, µµ 0  is a p × 1 vector of overall means, ΣΣ  is a p p×  within-groups

covariance matrix, and eg  is an f × 1  vector of scores of group means on each canonical variate,

i.e., e X Vg = ′ .  When one assumes multivariate normality and estimates by maximum likelihood,

the solution to V is the same as given in Section 2.2.1.

Campbell and Atchley argue that one can view CVA as a principal components analysis

performed on the group means in the space obtained by transforming the variables by the

Mahalanobis transformation;  that is, x S x∗ = −

XX

1
2 .  In this space Euclidean distance equals

Mahalanobis distance, where the Mahalanobis distance between two group means µµ i  and µµ j  is

defined as ( ) ( )µµ µµ µµ µµi j i j− ′ −−ΣΣ 1 .  Further, in this space S I
X X∗ ∗ = .  The principal components of

the group means in this transformed space correspond to the canonical variates.  To illustrate

these points, consider Figure 2.1, which shows a scatterplot of the data from two groups for two

variables.  Compare Figure 2.1 to Figure 2.2, which shows a scatterplot for the same data in the

space of the transformed variables.

To see that this view of CVA leads to (2.1) consider that the positions of the group means

in the transformed space is ΣΣ −1
2 µµ g , for g = 1, ,K m .  A principal components analysis of the

positions of these group means leads to the spectral decomposition of

ΣΣ ΣΣ ΣΣ ΣΣ− − − −− − ′ = −
1

2
1

2
1

2
1

2

0 0 1
( )( )µµ µµ µµ µµg g g

n B .

The matrix principal components is U, where U V= ΣΣ 1
2 .  Now reverse the transformation by

multiplying U by ΣΣ 1
2 , and one has the group means in the space defined by ΣΣV .
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Figure 2.1 Scatterplots in the Untransformed Space

Figure 2.2 Scatterplots in the Transformed Space

2.2.3  Correspondence Analysis

Another method which can be viewed as a special case of CCA is correspondence

analysis.  Correspondence analysis can be interpreted as a canonical correlation analysis on data

where both sets of variables are group indicators; that is, the data are in the form of a two-way
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contingency table.  Correspondence analysis is an alternative to loglinear models that lends itself

well to graphical displays (Greenacre 1984).  Some of the methods developed for CCA will be

applicable to correspondence analysis, providing a method for generalizing correspondence

analysis to longitudinal or multiple group data.

2.2.4  Redundancy Analysis

CCA sometimes finds variates that are correlated but not of practical interest to the

researcher because they explain little variance.  Redundancy analysis (RA) was devised by Van

den Wollenberg (1978) as an alternative to CCA that avoids this problem.  RA derives

uncorrelated compounds of the X-variables, called redundancy variates, which maximize the

variance explained of the Y-variables. Rao (1964) had earlier proposed the same method.

The weights for the redundancy variates, w i , are determined by the following eigenvalue

equation:

( )S S S wXY YX i XX i− =λ 0 ,

where λ i  is the variance explained by the i
th

 variate.

In Van den Wollenberg’s original development of RA, only redundancy variates for the

X-variables are found.  Johansson (1981) extended redundancy analysis by deriving variates in the

Y-set that correspond to the redundancy variates in the X-set.  Linear combinations of the

Y-variables, ′v yi ,  are extracted such that the absolute value of ′w S vi XY i  is maximized subject to

the constraints ′ =v vi i 1 and ′ =v vi j 0  for i j≠ .  The resulting solution is:

v S wi i YX i= −λ 1
2

where λ i i XY XY i= ′ ′w S S w  (Tyler 1982).  An alternate solution is to perform a singular value

decomposition on S SXX

−1
2

XY ,

S S W EVXX

− = ′∗1
2

XY (2.2)

where W S W∗ = XX

1
2 , V is the matrix of variates for the Y-variables and E is the diagonal matrix

whose elements are the square roots of λ i .

RA has the property of biorthogonality, which was defined in Section 2.2.1 for CCA.

However, Tyler (1982) showed that RA has an even stronger property.  The pairs of redundancy

variates additively partition the total variation of the Y-variables that is explained by the

X-variables.  In other words, all of the variance explained by a redundancy variate ′w xi  is

associated with one vector in the Y-set, ′v yi .  This property also holds for CCA.  However, the

redundancy variates partition the variance in an optimal way, as they successively maximize the

variance explained in the Y-variables.

Redundancy analysis (RA) has analogues to canonical variate analysis.  When the

X-variables are dummy variables indicating group membership, as in canonical variate analysis,

RA yields a procedure similar to canonical variate analysis.  However, it differs in that RA

determines pairs of variates that maximize the between-group variance, whereas CCA determines

pairs of variates that maximize the ratio of the between-group variance to the within-group

variance.  One can also look at RA with this kind of data as a principal components analysis on
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the group means in the untransformed space, with the principal components corresponding to the

redundancy variates.

2.2.5  Procrustes Rotation

Procrustes analysis (Gower 1975) is an analysis where two sets of variables measured on

the same units are translated, dilated and rotated such that the point configurations are as similar

as possible in a least squares sense.  The interest in this section is in the rotation part of the

Procrustes analysis, which shall be referred to simply as Procrustes rotation (PR).  PR is closely

related to CCA and RA.  In later chapters it will be seen to be more suitable than CCA or RA for

particular kinds of data when extended to a three-mode model.

A Procrustes analysis usually starts with a translation of the data.  But that is obviated in

this discussion by the centering of both sets of variables.  Since PR can be performed

independently of the dilation, as will be shown shortly, I start with the rotation.  If X and Y are

mean centered, Procrustes rotation finds the orthogonal matrix Q such that m is minimized,

where: ( )m x yij ij

ji

= − ∗∑∑ 2

 and [ ]Y YQ
∗ ∗= =y ij . Q can be shown to be: Q VW= ′ , where

one derives W and V by performing a SVD on SXY , so that

S WEVXY = ′ .

Now one sees that if one performs a dilation on either x or y by multiplying by a scalar c, one

obtains the same W and V as c is factored into the matrix of singular values, E.

Like CCA and RA, Procrustes rotation can be viewed as a method which finds pairs of

variates that relate two sets of variables.  These pairs of variates are orthogonal and maximize the

covariance.  To see this, note that the SVD of SXY  is equivalent to successively finding pairs of

w i  and v i  such that ′w vi XYS i  is maximized;  but ′w vi XYS i  is just the covariance of ′w i x  and

′v i y .  Thus E is a diagonal matrix with the covariances of ′w i x  and ′v i y  in the i
th

 diagonal

position.  For the rest of the dissertation when Procrustes rotation is referred to it shall be in the

sense of finding orthogonal variate pairs such that the covariance of the pairs is maximized.

At this point it is worth emphasizing the unity of form of CCA, RA and PR.  All are

derived from a SVD of a transformation of S XY .  In CCA both the X-variables and Y-variables

are transformed by their respective Mahalanobis transformations and S S SXX

− −1
2

1
2

XY YY  is decomposed.

In RA only the X-variables are transformed and S SXX

−1
2

XY  is decomposed.  In PR neither the

X-variables nor the Y-variables are transformed before decomposition.  This unity of form will be

exploited in the generalizations of CCA, RA and PR to three-mode data in Chapter Four.

2.3  THREE-MODE PRINCIPAL COMPONENT ANALYSIS

Three-mode  PCA is a method which I will use to generalize CCA, RA and PR to

three-mode data.  The discussion on three-mode PCA in this section is derived from Kroonenberg

(1983).  A mode is an index for the data.  Traditional PCA has two modes, typically the subject

and variable modes.  Each measurement is indexed by subject and variable (the units shall be
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referred to as subjects, as is the convention in three-mode  PCA).  A third mode is a third index

for the data, such as conditions or occasions.  An example of a three-mode observation would be

to measure a subject on a variable on a given occasion (or under a given condition).

2.3.1  The Tucker3 Model

Tucker (1966) generalized the SVD to three-mode data with his Tucker3 and Tucker2

models.  The more general of the two models is the Tucker3, which decomposes a three-way

array into a set of orthonormal vectors (components) for each mode and a three-dimensional core

matrix (“box”) of values relating these components.  The components are a weighted sum of

subjects, variables or occasions, and are interpreted the same way as are principal components,

that is, as summaries of variation.  The core box is analogous to the matrix of eigenvalues in a

SVD, although the core box is generally not diagonal.  Let the modes be indexed by i, j, k.

Typically, x ijk
 could stand for the value of variable j on condition (or time) k for subject i;  hence

X = [ ]x ijk
.  Let n indicate the number of measurements in the i-mode, i.e. the number of subjects;

let m indicate the number of measurements in the j-mode, i.e. the number of variables;  and let l

indicate the number measurements in the k-mode, i.e. the number of conditions or occasions.

Further, let s indicate the number of components for the i-mode, t the number of components for

the j-mode, and u the number of components for the k-mode.  Let G denote the n s×  matrix of

components for the i-mode, H the m t×  matrix of components for the j-mode, E the l u×  matrix

of components for the k-mode, and C the s t u× ×  core box.  Without loss of generality the

matrices G, H and E are specified to be columnwise orthonormal to identify the solution.

The Tucker3 model is expressed in terms of a single observation as follows:

x g h e cijk
p q r

ip jq kr pqr= ∑ ∑ ∑
= = =1 1 1

s t u

.

To express the three-mode decomposition in matrix form it is necessary to reformulate X and C.

Let X be the n lm×  matrix formed by laying out the l n m×  subject × variable data matrices side

by side.  Let C be the s ut× matrix formed by laying out the u s t×  core matrices side by side.

Then

X GC(H E= ′ ⊗ ′) ,

where ⊗  is the Kronecker product (see Appendix One).

2.3.2  Special Cases of Three-Mode Principal Components

A special case of the Tucker3 model is the Tucker2 model (Kroonenberg 1983), which

restricts E to be the identity matrix.  One can specify the Tucker2 model in terms of matrices as

follows:

X GC Hk k k= ′ =, , ,1K l.

If one makes the further restriction that the Ck  matrices be diagonal, one has the PARAFAC

(PARAllel FACtor analysis, Harshman 1970) or Candecomp (CANonical DECOMPosition,

Carroll and Chang 1970) model, henceforth referred to simply as PARAFAC.  The PARAFAC

model does not assume orthonormal columns for the components matrices G and H, and, in
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contrast to the Tucker2 and Tucker3 models, to require such results in a loss in generality.

However, the PARAFAC model with the restriction of orthonormality on the two sets of

components will play an important role in future chapters.  It shall be henceforth referred to as the

PARAFAC (orth.) model.

Three-mode PCA models were envisaged for the situation where one wants to perform a

PCA or factor analysis on data that was not only multivariate but had measurements taken over

multiple occasions or conditions.  However, they can also model data from multiple datasets or

groups.  One way to accomplish this is to model the crossproduct matrices, typically the

covariance matrices, for each dataset (Kiers 1991).  This is the approach taken in Chapter Three

on common principal components.  Modeling covariances implies symmetry between the G and H

components.  If the PARAFAC model is restrained so that G H=  one has the INDSCAL

(INDividual SCALing, Carroll and Chang 1970) model.

2.4  THE CAMPBELL AND TOMENSON MODEL

Campbell and Tomenson (1983) hypothesize common canonical variates over multiple

datasets.  Their model is both a competitor of some of the models to be presented later and a

starting point for them.  In Campbell and Tomenson’s formulation the common canonical variates

build a reduced space in which the group means for each dataset are located.  They present a

hierarchy of models from most general to most specific.  Briefly outlined, the most general model

is that the canonical variates differ in each dataset.  The next most general model is that the

canonical variates are common in each dataset, but the location of the group means on them

differ.  The most specific model is that the variates are the same and the group means have

common coordinates on them.  A more detailed statement of these models follows.

The model in general form is:

µµ µµgk k k gk= +0 ΣΣV e

where p indicates the number of variables, µµ gk  is the p × 1 vector of means for the g th  group in

the k
th

dataset, µµ 0k  is the p × 1 vector of overall group means for the k
th

dataset, ΣΣ  is the

p p×  within-group covariance matrix assumed common over group and dataset, Vk  is the p r×
matrix whose r columns are the canonical variates for dataset t, and e gk  is an r × 1 vector

specifying the coordinates on the r canonical variates for the g th  group mean in the k
th

dataset.

The three models described above are:

1. V Vi j≠  and e egi gj≠  for i j≠ ;  the canonical variates differ over dataset.

2. V Vi j=  but e egi gj≠   for i j≠ ;  the canonical variates are common to each dataset,

but the coordinates of the group means on the variates differ.

3. V Vi j=  and e egi gj= , but µµ µµ0 0i j≠  for i j≠ ;  the canonical variates are common to

each dataset, the coordinates of the group means on the variates are the same, but

the overall center of the means is different.
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Campbell and Tomenson assume that the data are normally distributed, then derive

maximum likelihood estimates of the parameters and hypothesis tests based on likelihood ratios.

2.5  SUMMARY

This chapter provides the starting point for the rest of the dissertation.  It presents those

multivariate methods I want to extend to longitudinal data, which are CCA, CVA, RA and PR.  It

presents two models that I will build on to achieve this:  three-mode PCA, which is a flexible least

squares method which is suitable for graphical displays such as joint plots:  and Campbell and

Tomenson’s model, which is based on maximum likelihood methods.
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CHAPTER THREE

PRELIM INARY RESULTS FOR PARAFAC W ITH

ORTHOGONALITY CONSTRAINTS

3.1  INTRODUCTION

In this chapter I discuss some preliminary results pertaining to the PARAFAC model with

orthogonality constraints, which will be henceforth referred to as PARAFAC (orth.).  These

results shall be important for both Chapter Four, which is on Common Principal Components, and

Chapter Six, which is on using three-mode methods for CCA, CVA, RA and PR over time.  In

Section 3.2 I show certain properties of the PARAFAC (orth.) model related to the sums of

squares of fit and error.  These properties will allow me in Chapter Six to show that the CVA,

CCA, RA and PR/time models are optimal in maximizing sums of squared correlations, variance

explained, or sums of squared covariances, depending on the method.  In Section 3.3 I prove that

the PARAFAC (orth.) solutions are nested.
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3.2 OPTIMALITY PROPERTIES OF THE PARAFAC MODEL WITH 

ORTHOGONALITY CONSTRAINTS

Kroonenberg (1983) shows that the least squares solutions to the Tucker2 and Tucker3

models have certain useful properties with respect to the sums of squares.  He shows that the total

sums of squares can be partitioned into sums of squares fit and sums of squares residuals.  He also

shows that the sums of the squared elements of the core matrices equal the sums of squares fit.  In

particular, the square of the i
th

, jth , k
th

 core element is the fit contributed by the combination of

the i
th

 element of the first (subject) mode, the jth  element of the second (variable) mode and the

k
th

 element of the third (occasion) mode.  An important consequence is that minimizing the sums

of squares lack of fit is equivalent to maximizing the sums of squares fit, and thus equivalent to

maximizing the sums of squares of the elements of the core matrix.  In this section I show that

these properties hold true for the PARAFAC (orth.) model.  Of particular importance to future

developments is Proposition3.2.

I start with some necessary definitions.  Define C  to be an m n p× ×  three-way array,

C Ck k= [, , ] , k = 1, ,K p , to be the p m n×  slices of C , F to be an m m×  orthogonal matrix, G

to be an n n×  orthogonal matrix, and D k  to be the m n×  matrix D F C Gk k= ′ .  Further define

D k i j[ , ]  to be the element in the i
th

 row and jth  column of D k , f i  to be the i
th

 column of F, and

g j  to be the jth  column of G.

I proceed with two identities.  First, one has the following decomposition of Ck :

C g f Dk i j k

i

i j= ′∑∑
=

[ , ]
j=1

nm

1

.

Second, the total sums of squares of D k  equals the total sums of squares of Ck :

C Dk

j

n

i

m

k

j

n

i

m

i j i j2

11

2

11

[ , ] [ , ]
== ==

∑∑ ∑∑= , (3.1)

since

trace trace tracek k k k k k( ( ) (′ = ′ ′ ′ = ′C C ) G C FF C G D D ) .

Define a rank-one approximation to Ck  as $C f gk i j ijh= ′ .  Note that by a theorem by

Penrose (1955) for given normal f i  (i.e., f i

2
1= ) and g j , the optimal h ij  is

h i jij i k j k= ′ =f C g D [ , ] .  Let T be a non-zero set of combinations of i,j, 1≤ ≤i m , and 1≤ ≤j n .

Then the sum of the rank-one approximations to Ck  defined by f i  and g j , ( , )i j T∈ , and

h i jij k= D [ , ] , is itself an approximation to Ck .  Define this as $ [ , ]
( , )

C f g Dk

T

i j k

i j T

i j= ′
∈

∑ .
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Proposition 3.1.  For the modeling of Ck  by $Ck
T , the sums of squares total is additively

partitioned into the sums of squares fit and sums of squares lack of fit.

Proof:  The sums of squares fit is

( $ [ , ]) ( $ $ )
( , )

C C Ck
T

i j T
k
T

k
Ti j trace

∈
∑ = ′2 = ′











′
′











∈ ∈
∑ ∑trace i j i ji j k
i j T

i j k
i j T

f g D f g D[ , ] [ , ]
( , ) ( , )

( )= ′
′

′
∈

∑D f g f gk i j i j
i j T

i j trace2 [ , ]
( , )

=
∈

∑D k
i j T

i j2 [ , ]
( , )

. (3.2)

The sums of squares lack of fit is:
= − ′ ′ − ′

∈ ∈
∑ ∑trace i j i jk i j k
i j T

k i j k
i j T

( [ , ] [ , ])
( , ) ( , )

C f g D ) (C f g D

= ′ + ′ ′ − ′ ′
∈ ∈

∑ ∑trace trace i j trace i jk k i j j i k
i j T

k i j k
i j T

( ) ( [ , ]) ( [ , ])
( , ) ( , )

C C f g g f D C f g D2 2

= ′ + − ′ ′
∈ ∈

∑ ∑trace i j i j tracek k k
i j T

k k i j
i j T

( ) [ , ] [ , ] ( )
( , ) ( , )

C C D D GD F f g2 2

= ′ + − ′ ′
∈ ∈

∑ ∑trace i j i j trace ik k k
i j T

k j k
i j T

( ) [ , ] [ , ] ( [ , ])
( , ) ( , )

C C D D g GD2 2

= ′ −
∈

∑trace i jk k k
i j T

( ) [ , ]
( , )

C C D2 .

Clearly, the sums of squares fit and sums of squares lack of fit equal the sums of squares total.  Ž

For a given F, G and Ck , k = 1, ,K p , one can consider the class of $Ck
T , ( , )i j T∈ , as a

class of models.  I shall refer to these as orthogonal models.  Thus by Proposition 3.1 for an
orthogonal model the sums of squares total can be partitioned into a sums of squares fit and a
sums of squares error.

W ith Proposition 3.1 in place I move to Proposition 3.2.  Denote the rank-r PARAFAC
(orth.) solution to Ck  as F

∗ , G
∗  and H

∗ , where F
∗  is an m r×  columnwise orthonormal

matrix, G
∗  is an n r×  columnwise orthonormal matrix and H

∗  a p r×  diagonal matrix,

r m n,p≤ , . H
∗  can also be expressed as p r r×  diagonal matrices H k , where k = 1, ,K p .  This

is the form of H
∗  which will be used below.  Recall it is known (Kroonenberg 1983) that

H F C Gk kdiag= ′∗( )* .
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Proposition 3.2.  The least squares estimates of PARAFAC (orth.) are F
*  and G

∗  such that

( )trace k
k

H
2

1=
∑
g

 is maximized.

Proof:  By definition PARAFAC (orth.) minimizes the total sums of squares lack of fit.  Since the
PARAFAC (orth.) is in the class of orthogonal models as defined above, by Proposition 3.1 this

is equivalent to maximizing the sums of squares fit.  Further, by (3.2) ( )trace k
k

H
2

1=
∑
g

 represents

that sums of squares fit.  Ž

3.3 THE NESTEDNESS PROPERTY OF PARAFAC SOLUTIONS WITH 

ORTHOGONALITY CONSTRAINTS

A solution is called nested if the rank- ( f − 1)  solution is a subset of the rank-f solution,
for any realizable f.  This implies that one can find any rank-f solution recursively by finding f
rank-one solutions.  An example of the nestedness of solutions is the singular value decomposition
(Eckart & Young) of a real matrix.  A property of real matrices is that the least squares rank-p
approximation to a matrix can be found by determining p rank-one approximations.  For example,
the best rank-two approximation of a matrix is the sum of its rank-one approximation plus the
rank-one approximation to the matrix obtained by subtracting the first rank-one approximation
from the original matrix.

The nestedness property is important to modeling with PARAFAC (orth.) because it
allows for straightforward comparisons between solutions of different ranks, enabling one to
examine the fit attributable to each component.  For example, without the nestedness property the
component of a rank-one solution may bear no relation to the components of a rank-two solution.

A limited result pertaining to the nestedness of PARAFAC solutions has already been
achieved by Leurgans and Ross (1992).  They show that a necessary condition for the existence of
the nestedness property for a PARAFAC model with an exact rank-two solution is that at least
two of the three pairs of components be orthonormal.  The following result goes further in that it
states that a sufficient condition for the existence of the nestedness property for a PARAFAC
model of any rank and of imperfect fit is that two of the three matrices of components be
orthonormal.

The subsequent proof will take advantage of conditional linearity.  The property of
conditional linearity is said to exist if the set of all parameters can be divided into subsets such that
in the model each subset is linear in terms of the rest.  In the case of the PARAFAC (orth.) model
one such division would be the matrices of parameters F, G and H.  Because any given subset of
parameters is part of the optimal least squares solution, the estimates for those parameters must
be the solution to the regression problem where the estimates for the rest of the parameters are
treated as fixed.  For example, the estimate for G must be the solution to the regression problem
where X  is the response, and H and C are fixed in the model.  This fact is called conditional
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linearity.  Conditional linearity is the basis for the alternating least squares algorithms that are used
to obtain least squares estimates for the three-mode models.

As a preliminary I will define trilinear notation that will simplify the presentation.  Let a, b

and c be vectors.  Then the trilinear multiplication of a, b and c, denoted as a b c× × , is the outer
product of a, b and c and generates a three-way array, U , such that U[ ]i, j, k = a b ci j k , where

a i , b j , and c k  are the i th , j th  and k th  elements of a, b and c.  Another way to think of

a b c× ×  is that the k th  slice of U  is ab′  multiplied by c k : U ab[, , ]k = ′c k .

Theorem 3.1:  Let X  be a p q m× ×  array.  Assume A, B and C represent a rank-f PARAFAC
solution to X  with A and B constrained to be columnwise orthonormal and the columns of A, B

and C ordered by the norm of ck .  That is: $X a b c a b c a b c= × × + × × + + × ×1 1 1 2 2 2 K f f f ,

where a Ag g= [, ] , b Bg g= [, ] , and c Cg g= [, ]  for g = 1, ,K f , and c ck k

2 2≤ ′  for

1≤ < ′ ≤k k f .  Then the best rank-d solution, 1≤ ≤d f , is
a b c a b c a b c1 1 1 2 2 2× × + × × + + × ×K d d d .

Proof:  Let $ $ $ $ $ $ $ $ $a b c a b c a b c1 1 1 2 2 2× × + × × + + × ×K d d d  be the rank-d estimates.  Start with the
conditional linearity of these estimates.  The estimate for any $a e , 1≤ ≤e d , must be the solution

to the regression problem where X  is the response and $a h , h = 1, ,K d , h e≠ , and $b h  and $c h ,

h = 1, ,K d , are fixed.  This is seen below in (3.3), where $a ei  denotes the i th  element of the
vector $a e .  This regression yields the normal equations given in (3.4) or (3.5).  Likewise one can

consider $a e  and $b e  to be fixed and solve for $ce  (3.6), and one can consider $a e  and $ce  to be

fixed and solve for $b e  (3.7).  The least squares solution must simultaneously solve these three
regressions.
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











=





























−





























≠

∑

X

X

X

X

11

1

1

. (3.3)

The normal equations for solving for $a ei , for i 1, ,= K p , are:

( )X[ , ] $ $ $ $ $ $ $ $i j, k a b c a b c b cei ej ek
j,k

− − − =∑ 1 1 1 0i j k ej ekK (3.4)

or in vector form:
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( )X a a 0[, ] $ $ $ $ $ $ $ $j, k b c b c b ce ej ek
j,k

− − − =∑ 1 1 1j k ej ekK . (3.5)

Likewise, one has normal equations for solving for $b e  conditioned on $a e  and $ce  being fixed:

( )X b b 0[ , ] $ $ $ $ $ $ $ $i i k ei ek, k a c a c a cei e ek
i,k

− − − =∑ 1 1 1 K (3.6)

and one has normal equations for solving for $ce  conditioned on $a e  and $b e  being fixed:

( )X c c 0[ , ] $ $ $ $ $ $ $ $i j i j ei ej, a b a b a b1 1 1 ei ej e
i, j

− − − =∑ K . (3.7)

Let E X X= − $ .  Then the normal equations for $a e , $b e  and $ce  can be written as

( [, , ] $ $ $ $ $ $ ) $ $

,j k
j k j k j k j k ej ekb c b c b c j k∑ + + + + − − − =a a a E a a 01 2 e ej ekb c b c b c1 1 2 2 1 1 1L Kf f f ,

( [ , , ] $ $ $ $ $ $ )$ $

,i k
k k k i k ei ekc c c i k∑ + + + − − − =a + a a a c a c a c1i 2i i ei e ekb b b E b b 01 1 2 2 1 1 1L Kf f f ,

( [ , , ] $ $ $ $ $ $ ) $ $

,i j
j j j i j ei ejb b b i j∑ + + + − − − =a + a a a b a b a b1i 2i i 1 1 1 ei ej e1 1 2 2c c c E c c 0L Kf f f .

Collecting terms in j and k allows these normal equations to be written as follows:

a a1 1 1b b c c b b c cj
j

ej k ek
k

f j
j

ej k ek
k

∑ ∑ ∑ ∑













+ +















$ $ $ $L f f

−













− −















+ =∑ ∑ ∑ ∑ ∑$ $ $ $ $ $ $ $ $ $ [, , ]$ $

,

a a E 01 1 1b b c c b b c c j k b cj
j

ej k ek
k

e ej
j

ej ek ek
k

ej ek
j k

K (3.8)

b b1 1 1a a c c a a c cj
i

ei k ek
k

f i
i

ei k ek
k

∑ ∑ ∑ ∑









+ +












$ $ $ $L f f

−










− −












+ =∑ ∑ ∑ ∑ ∑$ $ $ $ $ $ $ $ $ $ [ , , ]$ $

,

b b E 01 1 1a a c c a a c c i k a ci
i

ei k ek
k

e ei
i

ei ek ek
k

ei ek
i k

K (3.9)

c c1 1 1a a b b a a b bi
i

ei j ej
j

f i
i

ei j ej
j

∑ ∑ ∑ ∑












+ + 












$ $ $ $L f f

− 












− − 












 + =∑ ∑ ∑ ∑ ∑$ $ $ $ $ $ $ $ $ $ [ , , ]$ $

,

c c E 01 1 1a a b b a a b b i j a bi
i

ei j ej
j

e ei
i

ei ej ej
j

ei ej
i j

K . (3.10)

Several of the terms in equations 3.8, 3.9 and 3.10 drop out.  By the definition of the

normal equations E E E 0[, , ]$ $ [ , , ]$ $ [ , , ]$ $

, , ,

j k b c i k a c i j a bej ek
j k

ej ek
i k

ei ek
i j

∑ ∑ ∑= = = .  Because of the

orthonormality of $a g  and of $b g , g = 1, ,K d , one has $ $ $ $a a b bgi
i

ei gj
j

ej∑ ∑





=








 = 0  if g e≠  or 1

if g e= .
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Consider that a a inemi
i

ni∑ =$ cos ( )α mn , where α mn  is the angle subtended between a m

and $a n , and b b inemj
j

nj∑ =$ cos ( )β mn , where β mn  is the angle subtended between b m  and $b n .

Then from (3.10) $ce  is seen to be a weighted sum of c c1 , ,K f :

$ cos ( ) cos ( ) cos ( ) cos ( ) cos ( ) cos ( )c c c ce e e e e e e= + + +1 1 1 2 2 2ine ine ine ine ine ineα β α β α βK f f f . (3.11)

Now, the relation in (3.11) is true for e = 1, ,K d , thus one has
$ cos ( ) cos ( ) cos ( ) cos ( ) cos ( ) cos ( )c c c c1 1 11 11 2 21 21= + + +ine ine ine ine ine ineα β α β α βK f f f1 1

$ cos ( ) cos ( ) cos ( ) cos ( ) cos ( ) cos ( )c c c c2 1 12 12 2 22 22= + + +ine ine ine ine ine ineα β α β α βK f f f2 2

M

$ cos ( ) cos ( ) cos ( ) cos ( ) cos ( ) cos ( )c c c cd d d d d f fd fd= + + +1 1 1 2 2 2ine ine ine ine ine ineα β α β α βK .

Clearly the upper bound for $c k
k

2

1=
∑
d

 is c k
k

2

1=
∑
d

, and this is achieved when

cos ( ) cos ( )ine ineα β11 11 1= = , cos ( ) cos ( ) ,ine ineα β22 22 1= = K, and

cos ( ) cos ( )ine ineee eeα β= = 1 , or when $a a1 1= , $b b1 1= , $a a2 2= , $b b2 2= ,..., $a ad d= , and
$b bd d= .  Note this solution satisfies the normal equations, as a agi

i
ei∑ = 0  and b bgj

j
ej∑ = 0 for

e g≠ .  Now by Proposition 3.2, the PARAFAC (orth.) solution is A and B such that the sums of

squares of $c k
k

2

1=
∑
d

 is maximized.  Since the solution $a a1 1= , $b b1 1= , $a a2 2= , $b b2 2= ,...,

$a ad d= , $b bd d= , and $c c1 1= , $c c2 2= ,..., $c cd d= , maximizes this sums of squares and satisfies

the least squares normal equations, it is the rank-d solution. �
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CHAPTER FOUR

COM M ON PRINCIPAL COM PONENTS

The common principal components (CPC) model hypothesizes that the same principal

components exist in multiple datasets, although the associated eigenvalues may vary.  It shares

with the methods developed in later chapters the concept of the common component. Flury

(1988) developed the maximum likelihood approach to CPC.  In this chapter I show how CPC

can be approached by least squares methods.  W hile an exposition on CPC is not strictly

necessary to develop the concepts of CVA, CC and RA over time, what I do in this chapter is

closely related to what I do in later chapters.  The CPC model introduces in a clear way the idea

of a common variate.  The use of three-mode principal components for CPC presages its use for

generalizing CVA, CC, RA and PR.  Also of interest is the relationship between maximum

likelihood and least squares methodologies.

Section4.1 presents background material, defining common principal components and two

related models, partial common principal components and common space analysis.  Section 4.2

shows how to achieve the common principal components model using three-mode principal

components.  In Section 4.3 it is shown how to approach the partial common principal

components and common space analysis with least squares.  Section 4.4 has a comparison of the
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maximum likelihood and least squares approaches to CPC.  Lastly, in Section 4.5 an alternative

formulation of common principal components is proposed.

4.1  COMMON PRINCIPAL COMPONENTS

The common principal components (Flury 1988) model hypothesizes that multiple datasets

share common components, though each dataset has different eigenvalues associated with those

components.  The CPC hypothesis for k p p×  covariance matrices, ΣΣ ΣΣ ΣΣ1 2, , ,K k , is:

ΣΣ ΛΛi i= ′B B , i = 1, ,K k ,

where B  is an orthogonal p p× matrix, and ΛΛ i i ipdiag= ( ,..., )λ λ1 .  Note that a component may

have a large eigenvalue associated with one dataset, but a small eigenvalue associated with

another dataset.  Hence there is no canonical ordering of the components by ordering them

according to the size of their eigenvalues as in principal components analysis.

The common principal components model is equivalent to postulating that the covariance

matrices for the datasets are simultaneously diagonalizable by the same orthogonal matrices, i.e.,

the matrix of common components.  The elements of the resulting diagonal matrices contain the

respective eigenvalues.  Thus:

′ =B BΣΣ ΛΛi i

i = 1, ,K k , where B and ΛΛ i  are defined as above.  Note that a necessary and sufficient condition

for the existence of B is that ΣΣ ΣΣ ΣΣ1 2, , ,K k  are commutable, that is, ΣΣ ΣΣ ΣΣ ΣΣi j j i=  for all i,j.

The sample covariance matrices are modeled as

S B B Ui i= ′ +ΛΛ i

where S i  is the i
th

 (unbiased) sample covariance matrix and U i  is the i
th

 matrix of error terms.

I assume that the original measurements follow a multivariate normal distribution and

consequently that ( )ni − 1 S i  follows a Wishart distribution.  By maximizing the likelihood subject

to the constraint of orthogonality on B, estimating equations are derived, the solutions of which

include the maximum likelihood solution for B.  The F-G algorithm (Flury & Gautschi 1986)

solves these equations, though without guaranty of globally optimality.  The estimating equations

are, for m r m, ,...,= ≠1 p, r .

( )′ −
′ − ′
′ ′

















 =

=
∑ββ

ββ ββ ββ ββ
ββ ββ ββ ββ

ββm i
m i m r i r

i

i 1

k

rn 1 0
S S

S S
S

m i m r i r

with ′ =ββ ββj j 1 and ′ =ββ ββj w 0  for j w≠ , where ββ j  is the jth  column of B.  Further, a likelihood

ratio statistic is derived to test for the significance of deviations from the model.

Flury extends the CPC model by developing a partial common principal components model.

The partial CPC model hypothesizes that there are only q of p eigenvectors common to all ΣΣ i .

The remaining p q−  are specific to each dataset.  That is

′ =B Bi i iΣΣ ΛΛi ,
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where B i  are orthogonal matrices such that B B Bi i= [ : ]1 2 , B1  is a p q× orthonormal matrix of

q common eigenvectors, and B 2i  are p p q× −( )  matrices with p q− eigenvectors specific to

the i
th

dataset.

Flury indicates that  the maximum likelihood equations solving this model are extremely

laborious to implement.  He recommends instead an approximate solution using the CPC

estimates.  The approximation is based on the observation that if the partial CPC model holds

exactly, then the q common components are estimated correctly in the CPC model, regardless of

the specific components.  The method involves first obtaining approximate maximum likelihood

estimates of the common components, B1 , from the CPC estimates.  Then the B 2i  are obtained

by finding B 2i  that diagonalize S i  subject to B 2i  being orthogonal to B1 .

Related to the partial CPC model is common space analysis, which hypothesizes that q

eigenvectors of each covariance matrix span the same subspace.  Analogous to the partial CPC

model, Flury describes the maximum likelihood equations as extremely laborious to implement

and recommends instead an approximation using the solution to the CPC model.  The

approximation is based on the observation that if q eigenvectors span the same subspace, then the

CPC solution will contain q columns which span that subspace.

To illustrate the method of CPC I present Example 4.1, which is taken from Flury (1984).

A CPC analysis is performed on Fisher’s (1936) well known iris data.  The four variables are sepal

length, sepal width, petal length and petal width.  They are measured on three species of iris:

versicolor, virginica and setosa.  The sample sizes are 50 for each species.  (a) shows the sample

covariance matrices, with the variables ordered as listed above.  (b) shows the coefficients of the

common principal components.  The columns list the components, the rows are the weights for

the variables.  (c) shows the estimates for the eigenvalues associated with each common

component in each dataset.  In this example null hypothesis of common principal components is

rejected, the chi-square test statistic being 63.9 with 12 degrees of freedom. Flury (1984)

indicates that the common principal components have no obvious interpretation.

Example 4.1:

(a)  Sample Covariance Matrices

Versicolor Virginica

S1 =



















26.6433 8.5184 18.2898 5.5780

8.5184 9.8469 8.2653  4.1204

18.2898 8.2653 22.0816 7.3102

5.5780 4.1204 7.3102 3.9106

S2 =



















40.4343 9.3763 30.3290 4.9094

9.3763 10.4004 7.1380  4.7629

30.3290 7.1380 30.4588 4.8824

4.9094  4.7629 4.8824 7.5433

Setosa

S3 =



















12.4249 9.9216 1.6355 1.0331

9.9216 14.3690 1.1698  0.9298

1.6355 1.1698 3.0159  0.6069

 1.0331 0.9298 0.6069 1.1106
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(b)  Coefficients of Common Principal Components

B =



















 0.7367 -0.6471 -0.1640 0.1084

0.2468 0.4655 -0.8346 -0.1607

0.6047 0.5002 0.5221 -0.3338

0.1753 0.3382 0.0628 0.9225

(c)  Estimated Eigenvalues Associated with the Common Principal Components

Versicolor

Virginica

Setosa

48 46 7.47 554 101

69.22 6 71 7.54 5 36

14.64 2.75 12.51 102

. . .

. .

.

4.2  THE LEAST SQUARES APPROACH TO COMMON PRINCIPAL 

COMPONENTS

An alternative approach to estimating common principal components is possible through

decompositions of covariance matrices.  This approach uses three-mode principal components

analysis and is based on a least squares solution.

I refer back to the PARAFAC model with orthogonality constraints (orth.) of Section 2.3.2,

X GC Hi i i= =, , ,1 K k.

Let X i  be k positive definite matrices, S i .  Then modeling S i  by the PARAFAC (orth.) model is

equivalent to a least squares form of the CPC model

S B B Ei i= ′ +ΛΛ i , (4.1)

where I restrict B to be p p×  orthogonal matrices and note that B D= .  The notation is

changed to indicate diagonal Ci  as ΛΛ i , and E i  is defined to be the i
th

 matrix of lack of fit terms.

There is a second procedure equivalent to least squares CPC which arises in the context of

analyzing three-mode principal components.  In order to diagonalize the core matrices, Ci , of the

Tucker2 model, Kroonenberg and DeLeeuw (Kroonenberg 1983) present a least squares method

for finding orthogonal transformation matrices that diagonalize multiple square matrices.  Given

multiple p p×  matrices, Q Q Q1 2, , ,K k , their method finds orthogonal p p×  matrices G and H

such that one minimizes

( ) ( )trace Diag Diagi i

i

k

i i′ − ′ ′ ′ − ′
=
∑ G Q H G Q H G Q H G Q H( ) ( )

1

,

where Diag(J) is defined as the diagonal matrix whose diagonal elements are the diagonal

elements of J.

This procedure is equivalent to least squares CPC when it is applied to multiple positive

definite matrices.  To see this, notice that the least squares solution to (4.1) is also the least

squares solution to (4.2) below

′ = + ∗B S B Ei iΛΛ i , (4.2)
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since B which minimizes ( )trace i i

i

k

′
=
∑ E E

1

 also minimizes ( )trace i i

i

k

′∗ ∗

=
∑ E E

1

, where E B E Bi i

∗ = ′  as

trace tracei i i i( ) ( )′ = ′∗ ∗E E E E . Kroonenberg and DeLeeuw’s algorithm is equivalent to Harshman

and Lundy’s (1994) when B is restricted to be orthogonal.

I have shown above that CPC can be modeled as a special case of three-mode models based

on a least squares solution.  Next I derive estimating equations for the least squares estimates

which are analogous for those of the maximum likelihood estimates given in Section 4.1.  The

comparison of these equations shall bring into focus the similarities and differences of the two

modes of estimation.  A preliminary is necessary.  Up to this point I have only discussed modeling

the S i  matrices.  However, if the sample sizes are unequal it is reasonable that covariance

matrices calculated from larger samples should be given more weight in the estimation.  This is

accomplished by modeling (ni i− 1)S  instead of S i .  I shall choose to model these crossproduct

matrices instead of the unweighted covariance matrices as this reveals how different sample sizes

in the k groups affect the least squares estimates.

As pointed out earlier (4.2), finding the solution to least squares CPC is equivalent to

finding a rotation matrix B that minimizes the sums of squares lack of fit to the model of

simultaneous diagonalizability.  I denote this sum of squares lack of fit by f ( )B .  Then

( )f tracei

i

k

i i i( ) ) ) ( )B B S B= − ′ − ′ ′ −
=
∑ ( ( in 1

2

1

ΛΛ ΛΛB S B . (4.3)

It is apparent from (4.3) that the least squares solution for ΛΛ i  is ΛΛ i iDiag= ′( )B S B .  This result

is also true for the maximum likelihood estimation of CPC (Flury 1984).  Thus

( )f trace Diag Diagi

i

k

i i i( ) ) ( ( )) ( ( ))B B S B= − ′ − ′ ′ ′ − ′
=
∑ (n 1

2

1

i B S B B S B B S B .

Expanding yields

f trace trace Diagi

i

k

i i i( ) ) ( ) ( ) ( ) ( ( ))B = − ′ ′ ′ + − ′
=
∑( in n1 1

2

1

2 2
B S B B S B B S B

( )− − ′ ′2 1 2( ) ( )( )ni i itrace Diag B S B B S B .

Since the first term in the sum is constant, minimizing the above reduces to maximizing

g trace Diag i

i

k

i j

j

p

i

k

i j( ) ) ( ( )) ) ( )B = − ′ = − ′
= ==
∑ ∑∑( (in n1 12 2

1

2

11

2B S B Sββ ββ . (4.4)

From this point the problem is equivalent to maximizing

G i j

j

p

i

k

i j hj

h

j

h j

j

p

h

h

p

h h( ) ) ( ) ( )B = − ′ − ′ − ′ −
== =

−

= =
∑∑ ∑∑ ∑(n 1 2 12

11

2

1

1

2 1

ββ ββ ββ ββ ββ ββS l l

where lhj ( )1 h j≤ < ≤ p  and lh ( )1 h≤ ≤ p  are p p( + 1 2) / Lagrange multipliers.  The vector of

partial derivatives of G(B) with respect to ββ r , set equal to zero, yields

δ
δββ r

G (B)= 2 1
1

( (
2

r

i

k

i rni i r− ′ −
=
∑ ) )ββ ββ ββS S 2 2

1

l lrh h
h

h r

p

r rββ ββ
=
≠

∑ − = 0 (4.5)
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where I put l lrh hr=  if r > h .  Multiplying (4.5) from the left by ( )1
2 ′ββ r  gives

(ni r

i

k

i r r
h

h r

p

h rh r r r− ′ − ′ − ′ =
= =

≠

∑ ∑1 0
2

1

2

1

) ( )ββ ββ ββ ββ ββ ββS l l

implying l r i r

i

k

i r= − ′
=
∑ (n 1

2

1

2
) ( )ββ ββS .  Substituting for l r  back into (4.5) one has

( (n ni r

i

k

i r i r rh
h

h r

p

h i r

i

k

i r r− ′ − − − ′ =
= =

≠
=

∑ ∑ ∑1 1
2

1 1

2

1

2
) ( ) ) ( )ββ ββ ββ ββ ββ ββ ββS S S 0l .

Multiplying the above from the left by ′ ≠ββ m m r( )  implies

( ( 0n ni r

i

k

i r m i r rh
h

h r

p

m h i r

i

k

i r m r− ′ ′ − ′ − − ′ ′ =
= =

≠
=

∑ ∑ ∑1 1
2

1 1

2

1

2
) ( ) ) ( )ββ ββ ββ ββ ββ ββ ββ ββ ββ ββS S Sl .

Thus for m r≠

l rm i r

i

k

i r m i r= − ′ ′
=
∑ (n 1

2

1

) ( )( )ββ ββ ββ ββS S .

Interchanging the indices r and m and noting that ′ = ′ββ ββ ββ ββr i m m i rS S  and l lrm mr= , it follows that

l rm i m

i

k

i m m i r= − ′ ′
=
∑ (n 1

2

1

) ( )( )ββ ββ ββ ββS S .

Hence

( (n ni m

i

k

i m m i r i r

i

k

i r m i r− ′ ′ = − ′ ′
= =
∑ ∑1 1

2

1

2

1

) ( )( ) ) ( )( )ββ ββ ββ ββ ββ ββ ββ ββS S S S ,

which implies

′ − ′ − ′






=
=
∑ββ ββ ββ ββ ββ ββm i i

i 1

k

r(n 1 0
2

) ( )m m r i r iS S S (4.6)

for m r m, ,...,= ≠1 p r .

Equations (4.6) are the estimating equations for the least squares solution to CPC.  With the

exception of a different term involving sample sizes and the lack of the denominator term, they are

the same as the estimating equations for the maximum likelihood estimates.  As mentioned earlier

in this section, the least squares estimates can be obtained by an alternating least squares

algorithm (Kroonenberg 1983, Harshman & Lundy 1994).  However, as an alternative, Flury’s

and Gautschi’s F-G algorithm is easily adapted to solve equations (4.6).  SAS programs for both

the alternating least squares algorithm and the F-G algorithm are found in Appendix Two.

Example 4.2 illustrates the application of least squares common principal components to Fisher’s

iris data.  Note how close these estimates are to the maximum likelihood estimates presented in

Example 4.1.
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Example 4.2

         Estimated Coefficients                           Estimated Eigenvalues

B =



















0.7274 -0.6145 -0.1998 0.2310

0.2385 0.4519 -0.8199 -0.2581

0.6245 0.4215 0.5346 -0.3828

0.1548 0.4904 0.0457 0.8564

Versicolor

Virginica

Setosa

48.37 7.36 5.59 1.16

69.38 7.59 7.45 4.41

14.29 2.56 12.83 124.

The comparison of the estimates in examples 4.1 and 4.2 leads to the question of when the

least squares and maximum likelihood estimates will be similar and when they will differ.  To

answer this one must compare closely the least squares estimating equations with the maximum

likelihood estimating equations.  With equal sample sizes, the ( )ni − 1 2  and ( )ni − 1  terms cancel

out of both sets of equations.  With unequal sample sizes, both least squares and maximum

likelihood estimating equations put greater weight on the samples with larger sizes.  However, the

least squares equations weight the larger samples more heavily than the maximum likelihood

equations do.

The difference in the denominators of the estimating equations also has implications. Flury

views the k terms (ni m i m r i r m i m r i r− ′ − ′ ′ ′1)( ) / ( )ββ ββ ββ ββ ββ ββ ββ ββS S S S  as weights for S i  in the m r th,

estimating equation.  The closer ′ββ ββm i mS  and ′ββ ββr i rS  are to each other, the smaller the weight on

S i  is.  When ′ = ′ββ ββ ββ ββm i m r i rS S  there is sphericity in the plane spanned by ββ m  and ββ r  for the ith

dataset and the influence of S i  in the m r th,  equation vanishes.  The same property is apparent for

the least squares equations.  However, unlike the least squares estimating equations, the weights

for S i  in the maximum likelihood equations also include the product ′ ′ββ ββ ββ ββm i m r i rS S  in the

denominator.  Thus when ′ − ′ββ ββ ββ ββm i m r rS S i  is small in absolute magnitude, but large in

comparison to ( )( )′ ′ββ ββ ββ ββm i m r rS S i , maximum likelihood estimation gives more weight to that S i

in the m r th,  estimating equations.  Except for this circumstance the two estimators yield similar

transformations given equal sample sizes.

The following example shows two matrices for which the estimated transformations differ

substantially despite equal sample sizes because of the condition described in the previous

paragraph.  Both S1  and S2  are the product of diagonal matrices pre-multiplied and

post-multiplied by an orthogonal matrix and its transpose.

Example 4.3:

S1

1000 0 0

0 1 0

0 0 0 01

=














.

S2

82320 16928 27373

16928 46771 10909

27373 10909 20909

08704 03714 03233

03482 09285 01293

03482 00000 09374

1000 0 0

0 400 0

0 0 100

08704 03482 03482

03714 09285 00000

03233 01293 09374

=
























































−
−

− −
=

−

−

−
−

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
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Assuming n n1 2= , the transformations estimated by maximum likelihood and least squares are

                                 Maximum Likelihood                             Least Squares

B =














−

−

10000 0 0002 0 0000

0 0002 10000 0 0029

0 0000 0 0029 10000

. . .

. . .

. . .

B =














−

− −

0 9890 0 0893 01180

0 0607 0 9721 0 2266

01350 0 2169 0 9668

. . .

. . .

. . .

Next I modify the above example so that the least squares and the maximum likelihood

estimates will differ less substantially.  I only change S1 .

S1

1000 0 0

0 100 0

0 0 100

=














Maximum Likelihood                         Least Squares

B =














−

− −

0 9957 0 0186 0 0909

0 0122 0 9974 0 0703

0 0919 0 0689 0 9934

. . .

. . .

. . .

B =














−

− −

0 9939 0 0612 0 0918

0 0560 0 9967 0 0587

0 0950 0 0532 0 9940

. . .

. . .

. . .

I have made clear under what circumstances the maximum likelihood and least squares

solutions are different or similar.  The following theorem strengthens the comparison of the two

approaches by showing that their solutions are asymptotically equivalent as the sample sizes

become large.

Theorem 4.1.  Let Si  be k covariance matrices with sample sizes ni  such that S B B Ei i= ′ +ΛΛ i ,

where B and ΛΛ i  are defined as for (4.1), and E i  is an error matrix whose elements have zero

expectation and finite covariances.  Then as ni →∞ for i k= 1, ,K , B solves both the maximum

likelihood and the least squares estimating equations.

Proof: Both sets of estimating equations can be written in the form

a amr m r mrk m k r1 1 0′ + + ′ =ββ ββ ββ ββS SK , (4.7)

1 ≤ < ≤m r p .  For the least squares estimating equations, a mri i m i m r i r= − ′ − ′( )( )n 1 ββ ββ ββ ββS S ,

since

′ − ′ − ′






= − ′ − ′




= =

∑ ∑ββ ββ ββ ββ ββ ββ ββ ββ ββ ββ ββ ββm i i

i 1

k

r i i(n n1 1
1

)( ) ( )( )( ) .m m r i r i i m m r r m i r

i

k

S S S S S S

For the maximum likelihood estimation the scalar terms are a mri i

m i m r i r

m i m r i r

= − ′ − ′
′ ′

( )n 1
ββ ββ ββ ββ

ββ ββ ββ ββ
S S

S S
.

From (4.7) it is clear that when S B Bi i i= = ′ΣΣ ΛΛ , i = 1, ,K k , that B is a solution for both the
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maximum likelihood and least squares estimating equations.  Since as ni →∞, S i i→ ΣΣ  (Anderson

1984), B asymptotically solves both sets of equations.  •

What Theorem 4.1 says is simply that as the sample size is become larger the S i i = 1, ,K k

approach simultaneous diagonizability, assuming the hypothesis of common principal components

is true.

4.3  LEAST SQUARES APPROACHES TO PARTIAL COMMON 

PRINCIPAL COMPONENTS AND COMMON SPACE ANALYSIS

In this section I show first how the partial common principal components model and then

how common space analysis (Flury 1987) can be approached with least squares methods.

An exact least squares solution to partial CPC is not attempted due to its complexity.

However, an approximate solution is readily available by using the least squares estimate of the

full CPC model.  Analogous to Flury’s approximation for estimating partial CPC, this

approximation is based on the observation that if there are q eigenvectors common to each

dataset, then the full least squares CPC correctly estimates these common eigenvectors.  This

observation is formally stated in the following theorem:

Theorem 4.2.  Assume that the p p×  positive definite matrices S i  have q p<  common

eigenvectors.  Denote these by ββ ββ1 , ,K q , and let them comprise the columns of B1 .  Hence

S B B B Bi 1 1i 1 2i 2i 2i= ′ + ′ΛΛ ΛΛ , where ΛΛ 1i  is a q q×  diagonal matrix and ΛΛ 2i  is a ( ) ( )p - q p - q×
diagonal matrix.  Then the p p×  orthogonal matrix $B  that maximizes the function g( $ )B  (4.4)

has ββ ββ1 , ,K q  among its columns, or can be chosen to if $B is not uniquely defined.

Proof:  The main part of the proof is to show that $ [ : ]B B B A= 1 21 , where A is orthogonal and of

the form A
A

A
=











1

2

0

0
, with A1 q q×  and A 2 ( ) ( )p - q p - q× .  To achieve this I will

determine $B  one column vector at a time.  The $ββ j  can be estimated successively because by

Theorem 4.1 the least squares solutions to PARAFAC with orthogonality constraints are nested.

That is, if the $ββ j  are ordered by the sums of squares fitted, then the u
th

 vector of any optimal

m-vector solution equals the u
th

 vector of any n-vector solution, u ≤ ≤m,n p .  The first column

vector that I will determine is the one that yields the largest value of g j( $ )ββ .  I denote this vector

by $ββ d .  Define a B Bd d= ′[ : ] $
1 21 ββ , h g( ) ( $ )a d d= ββ  and J B B B Bi i i i= ′ ′21 2 2 2 21ΛΛ .  Then

g hd d

i

i

d

i

k

( $ ) ( ) ( )ββ = = − ′


















=
∑a d in 1

0

0

2 1

2

1

a
J

a
ΛΛ

.
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Since a d

2
1=  I can partition a d  as a d =















c

f

d

d

a

a

1

2

L , where a1d  is a q × 1 vector, a 2d  is a

( ) 1p - q ×  vector, c and f are scalars, and a a1

2

1

2 2 2 1d d c f= = + = .  Let t id d i d= ′a a1 1 1ΛΛ  and

u id d i d= ′a J a2 2 .  Then

h c t c f t u f ud i id
i

k

id id
i

k

id
i

k

( ) ( )a = − + +




= = =

∑ ∑ ∑n 1 2 4 2

1

2 2

1

4 2

1

.

Define $t  as the maximum attainable value of t id
i

k
2

1=
∑  and $a1d  as the vector that attains it.

Likewise define $u  as the maximum value attainable for u id
i

k
2

1=
∑  and $a 2d  as the vector that attains

it.  If either $a1d  or $a 2d  is not uniquely defined one can define $a1d  or $a 2d  as any vector of that

attains $t  or $u .  Since a d  is the vector such that h d( )a  is at a maximum, if $ $t u>  then c = 1 and

a d =














$a

0

1d

L ;  if $ $t u<  then f = 1  and a d =














0

a

L

$ 2d

;  if $ $t u=  then one can arbitrarily choose

between c = 1 or f = 1 .  Thus I have determined a d  and $ββ d .

Further vectors, $ββ ′d , ′ ≠d d , are determined in a manner analogous to how $ββ d  was
determined, subject to the constraint of orthogonality to the previously derived vectors.  Because
there exist $a1 ′d  and $a 2 ′d  that are orthogonal to previously derived $a1d  and $a 2d , there also exist

a ′d  and hence $ββ ′d  that satisfy the orthogonality constraints.  Successively finding the remaining

p − 1 $ββ ′d  to determine $B  yields further a ′d  of the form a
a

a
′

′

′

=






d

d

d

c

f
1

2

 with c = 1 or f = 1 .  Let

[ ]A = a j , putting the columns corresponding to c = 1 first.  Then A is of the form

A
A

A
=











1

2

0

0
.

The conclusion of the proof is to note that the ΛΛ1i  are diagonal.  Hence a1  through a q  can

be chosen to be the first q unit vectors and $B  has ββ1  through ββ q  as columns.  Ž

Related to the partial CPC model is common space analysis, which hypothesizes that q
eigenvectors of each covariance matrix span the same subspace.  As with partial CPC, an exact
least squares solution is not attempted due to its complexity.  However, an approximate solution
is likewise available by using the least squares estimate of the full CPC model.  Analogous to
Flury’s approximation for estimating common space analysis, this approximation is based on the
observation that if there are q eigenvectors spanning the same subspace in all the datasets, then



32

the least squares estimate of the full CPC solution will contain q columns which span that
subspace. This observation is stated in Theorem 4.3.

Theorem 4.3.  Assume that the positive definite symmetric matrices S i  of dimension p p×  have
q p< eigenvectors each that span the same q-dimensional subspace as B1 .  Then the p p×
orthogonal matrix $B  that maximizes g( $ )B  from equation (4.4) has q columns which span B1 .

Proof:  Refer to the main part of the proof of Theorem 4.2, substituting D i  for ΛΛ 1i , where D i  is
positive definite.  •

4.4  COMPARING THE LEAST SQUARES AND MAXIMUM 

LIKELIHOOD APPROACHES

The results of the previous sections suggest a straightforward exploratory approach to
modeling CPC, partial CPC and common space analysis.  One performs a least squares CPC and
examines the ′B S Bi , the covariance matrices of the estimated common principal components B

for each dataset.  To determine if the full CPC model is appropriate, one examines the
off-diagonal elements of the ′B S Bi .  If they are small in comparison to the diagonal elements
then the CPC model is appropriate.  If off-diagonal elements are small compared to diagonal
elements only for a subset of components, then the partial CPC model is indicated, with that
subset of components as the common components.  The common space model is appropriate if
the ordering of the components can be arranged so that the ′B S Bi  matrices take the form of two
block diagonal matrices, where the elements off the diagonal blocks are small compared to those
on the block diagonals.  An attractive feature of this exploratory approach is that the squares of

the off-diagonal elements (or off-block diagonal elements) of the ′B S Bi , ( )′ββ ββm i rS
2
, represent

the model lack of fit of the m r th,  components for the i th dataset.
Ultimately, the choice whether to use maximum likelihood or least squares estimation is not

obvious and perhaps not necessary as they yield similar results given equal sample sizes.
Maximum likelihood estimation has the advantage of allowing the user to perform hypothesis
tests.  However, the value of tests in this situation may be questionable as the datasets one would
analyze are typically large enough so that small deviations from the model would reject the
hypothesis of common principal components.  Further, CPC is exploratory in spirit and strict tests
of preformulated research hypothesis may not be appropriate in such a context.  The least squares
approach has the advantage that no distributional assumptions are made, and that the model lack
of fit is readily related to deviations from diagonalizability.  Hence the least squares approach may
have the advantage as an exploratory technique.

In conclusion, three-mode principal components presents a rich class of models of which
common principal components is a special case.  There exist other three-mode models related to
CPC which may be of interest.  For example, least squares estimation can be extended to include
different weightings for the S i .  Or one can perform common principal components analysis on
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multiple covariance matrices derived from a data set measuring the same subjects on multiple
occasions.  Another possibility for data over time is to analyze the subject by measurements data
and model common subject components in addition to modeling common principal components.

4.5  COMMON COMPONENTS WHICH MAXIMIZE VARIANCE

The previous sections of this chapter compare the maximum likelihood and the least squares
approaches to CPC.  In those sections the CPC model was presented as a common variate model
that extended a principal components type analysis to multiple datasets.  However, there are other
possible common variate models that also achieve this.  This section discusses one such
alternative that turns out to be equivalent to an approximation to CPC given by Krzanowski
(1984).  It is also of interest because it shows that when one generalizes PCA to multiple datasets
one is required to define the model of interest more carefully.  It will be seen that several models
for multiple datasets which reduce to standard PCA with just one dataset differ subtly in meaning
when applied to multiple datasets.

In particular, CPC makes certain hypotheses about the nature of the variates.  CPC, whether
estimated by least squares or maximum likelihood, hypothesizes that the components should be
orthogonal and that they should diagonalize the covariance matrices.  The latter is equivalent to
the components being uncorrelated.  This model derives its justification from the definition of
principal components that they be orthogonal in their weights and uncorrelated.  However, this is
only one of several criteria that characterize principal components.  Another is that the
components be orthogonal in their weights while maximizing the variance accounted for
(Krzanowski 1988).  I present in this section a method which finds common orthogonal
components which maximize the total variance over the datasets.  I shall refer to these estimates
as the maximum variance estimates.  I show that they are derived simply by performing a singular
value decomposition on the sum of the covariance matrices, or of the crossproducts matrices if
one wants to weight by sample size.  The derivation of the latter result follows.

The objective is to choose orthogonal B to maximize w(B), where

w i j
j

p

i

k

i j( ) )B = − ′
==

∑∑ (n 1
11

ββ ββS .  This is equivalent to maximizing

W i j
j

p

i

k

i j hj
h

j

h j
j

p

h
h

p

h h( ) ) ( )B = − ′ − ′ − ′ −
== =

−

= =
∑∑ ∑∑ ∑(n 1 2 1

11 1

1

2 1

ββ ββ ββ ββ ββ ββS l l

where the l hj ( )1 ≤ < ≤h j p  and lh ( )1 h≤ ≤ p  are p p( + 1 2) / Lagrange multipliers.  The

vector of partial derivatives of W( )B  with respect to ββ r , set equal to zero, yields

δ
δββ r

W ( )B = 2 1
1

( i
i

k

n − −
=
∑ )S i rββ 2 2

1

l lrh h
h

h r

p

r rββ ββ
=
≠

∑ − = 0 (4.8)

where I put l lrh hr=  if r > h .  Multiplying the above from the left by ( )1
2 ′ββ r  gives
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(ni r
i

k

i r r
h

h r

p

h rh r r r− ′ − ′ − ′ =
= =

≠

∑ ∑1 0
1 1

)ββ ββ ββ ββ ββ ββS l l

implying l r i r
i

k

i r= − ′
=
∑ (n 1

1

)ββ ββS .  Substituting for l r  into (4.8) and factoring out a two I have

( (n ni
i

k

i r rh
h

h r

p

h i r
i

k

i r r− − − − ′ =
= =

≠
=

∑ ∑ ∑1 1
1 1 1

) )( )S S 0ββ ββ ββ ββ ββl .

Multiplying the above from the left by ′ββ m (m r)≠  implies

( ( 0n ni
i

k

m i r rh
h

h r

p

m h i r
i

k

i r m r
= =

≠
=

∑ ∑ ∑− ′ − ′ − − ′ ′ =
1 1 1

1 1) )( )ββ ββ ββ ββ ββ ββ ββ ββS Sl .

Thus for m r≠

l rm i
i

k

m i r= − ′
=
∑ (n 1

1

)( )ββ ββS .

Substituting for l r  and l rm  into (4.8) and factoring out a two gives

( (i in n ni
i

k

i r
i

k

m r
h

h r

p

h i r
i

k

i r r
= ==

≠
=

∑ ∑∑ ∑− − − ′






− − ′ =
1 11 1

1 1 1) ( )( ) )( )S S 0ββ ββ ββ ββ ββ ββ ββS .

Differentiating with respect to ′ββ s , s r,m≠  yields

′ −






=
=
∑ββ ββm i
i

k

r( )n 1
1

S i 0. (4.9)

Equation (4.9) and the orthogonality constraints on B imply that B is obtained by the singular

value decomposition of (ni
i

k

i−
=
∑ 1

1

)S .  If one prefers not to weight by sample size the maximum

variance estimate is obtained by a singular value decomposition of S i
i

k

=
∑

1

, which is shown using

the above argument leaving out the (ni − 1)  terms.
These maximum variance common principal components estimates are identical to estimates

obtained by an approximation to the maximum likelihood estimates to CPC detailed by
Krzanowski (1984).  It is easily shown that if the S i  follow the CPC model exactly, then the
maximum variance estimates for B equal the maximum likelihood estimates for B.

Like the CPC methods, the maximal variance method is illustrated by its application to
Fisher’s iris data.  The coefficients for these components and their corresponding variances bear
similarity to those for the least squares and maximum likelihood CPC estimates, however this set
of estimates is clearly the most different of the three.  This should not be surprising, as these
estimates are for parameters of a different model.
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Example 4.4:

Estimated Coefficients                                       Variances

B =



















0.7378 -0.6324 0.0561 0.2295

0.3206 0.1806 -0.8732 -0.3195

0.5729 0.5818 0.4588 -0.3504

0.1575 0.4785 -0.1543 0.8500

Versicolor

Virginia

Setosa

48.41 7.09 580 119

58 45 616 10 08 4.15

16 20 3 36 9.98 137

. .

. . .

. . .

In conclusion, this section shows that there is more than one model that extends principal
components to multiple datasets via a common variate model.  Note that the CPC model,
estimated by least squares or by maximum likelihood, and the maximal variance model reduce to
standard PCA when the data is taken at only one occasion.
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CHAPTER FIVE

RELATING TW O SETS OF VARIABLES OVER A THIRD

M ODE

5.1  INTRODUCTION

In this chapter I present least squares methods for modeling CCA, CVA, RA and PR over

a third mode.  The term third mode refers to either multiple datasets or multiple occasions.  These

methods are generalizations of CCA, CVA, RA or PR in that they maintain some of their

distinguishing features while reducing to the standard method when the number of occasions is

one.  The methods developed will be put in the framework of the PARAFAC (orth.) and the

Tucker2 models.  Like the PARAFAC (orth.) and Tucker2 models these methods are not

inferential but exploratory.  They can be used well in conjunction with graphical methods,

although this topic is deferred until Chapter Six.  The methods are flexible.  One can model

categorical data as well.  Hence one has a generalization of correspondence analysis.

Let the variables be divided into two sets, X-variables and Y-variables.  The motif running

through all the models is that there are two sets of variates which model the linear relationship
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between the two sets of variables.  These two sets of variates are hypothesized to be common

over the third mode, though the strength of the relationships is allowed to change.

Now, these models can be put in the framework of the PARAFAC (orth.) or Tucker2

models.  In PARAFAC (orth.) based methods, the variates form pairs, one from each set, and the

linear relationship is modeled as occurring strictly between the members of these pairs.  The

Tucker2 based methods model the linear relationship between all possible pairings of the members

of the two sets of variates.

The chapter is organized as follows.  Section 5.2 introduces the three-mode models, which

I will call CCA/third, CVA/third, RA/third and PR/third.  It is shown that they maximize sums of

squares regression, sums of squares separation, sums of squared correlations or sums of squared

covariances between the two sets of variates.  Section 5.3 discusses how to evaluate the fit of a

model and how to choose between the PARAFAC (orth.) model and the Tucker2.  Section 5.4

presents an example based on the data from the study “Sensitivity of Stream Basins in

Shenandoah National Park to Acid Deposition” (Lynch & Dise 1985).  Lastly, Section 5.5

discusses several considerations of the methods presented in this chapter.  These include

autocorrelation, the covariances between observations at different occasions, and the invariance of

solutions to different choices of transformation of the X-variables and Y-variables.

5.2  RELATING TWO SETS OF VARIABLES OVER A THIRD MODE

In this section I develop the three-mode models for extending CCA, RA and PR to

three-mode data.  Consider that CCA, RA and PR are defined in Section 2.2 as singular value

decompositions on the transformed matrices of covariances between the X-variables and

Y-variables, that is S S SXX XY YY

− −1
2

1
2 , S SXX XY

−1
2 , or SXY .  But three-mode models such as the Tucker2

and the PARAFAC (orth.) are generalizations of the SVD to three-mode data.  As such they

suggest a framework for modeling CCA, RA and PR for three-mode data by modeling the

decomposition of S S SXX XY YY

− −1
2

1
2 , S SXX XY

−1
2 , or SXY  over a third mode.  This is the approach that

shall be taken in this chapter.

Define X k  and Yk  as the n mk ×  and n pk ×  data matrices of the X-variables and

Y-variables over the third mode, k = 1, ,K g .  Then, in the most general sense what is modeled

will be X Yk k

+ +′
, where X k

+  and Yk

+  are X k  and Yk  multiplied by the appropriate

transformations;  i.e., SXX

−1
2 , SYY

−1
2  or I.  The relationship between the two sets of variables is

harbored in these X Yk k

+ +′
 terms.  On the other hand, SXX  and SYY  are viewed as suggesting the

metric in which to perform the model fitting through transformations of X k  and Yk .

It is important to make the proper choice of which transformations to apply to ′X Yk k .

W hen relating two sets of variables at just one occasion, one has the choice of using CCA, RA or

PR.  The choice one makes depends on what the researcher wants to emphasize in his analysis

(van de Geer 1984).  However, when relating two sets of variables over a third mode, there will

usually be just one appropriate three-mode analog method.  The choice of transformations defines



38

the metric in which one wants to maximize fit and minimize lack of fit, and it defines CCA/third,

CVA/third, RA/third or PR/third.  This topic will be discussed in more detail in Section 5.2.5.

5.2.1  Redundancy Analysis over a Third Mode

The first three-mode method I will discuss will be redundancy analysis over a third mode,

or RA/third.  RA/third directly generalizes RA to three-mode data.  The RA/third model

hypothesizes that there are redundancy variates which are constant or stable over occasion or

group.  However, the root variance explained between each pair of X-variates and Y-variates

varies over occasion.  To model RA/third a necessary assumption is that SXX  is common over a

third mode.  If SXX  is not derived from constant X over the third mode then it must be estimated

from the data.

The RA/third model is

1

1nk −
′ = ′X Y WH Vk k k , (5.1)

for k = 1, ,K g , where W is the m q×  matrix of uncorrelated common canonical variates for the

X-variables, V is an p r×  orthonormal matrix of redundancy variates for the Y-variates, and Hk

is q r×  matrix whose elements are root of the variance explained of the Y-variates, ′V y , by the

X-variates, ′W x  (y and x represent vectors of random variables).  If the X-variables are constant

over the third mode, such as may be the case with longitudinal data, replace X k  by X.

Note the choice of weight for ′X Yk k  in (5.1) of 
1

1nk −
.  This weighting implies one is

modeling SXY .  If one is modeling data from multiple datasets with different sample sizes this

gives each dataset the same weight in the analysis.  However, one may just as easily model ′X Yk k

instead, yielding an analysis that effectively weights by sample size.  All of the results in this

chapter and in Chapter Six apply with minor modifications to this alternative weighting.  Also, if

one has longitudinal data nk  may be replaced by a constant n.

Finding V and W such that the total variance explained of ′V y  when regressed on ′W x

is maximized is equivalent to modeling the following in the Tucker2 or PARAFAC (orth.)

framework:

1

1nk −
′ = ′ +∗ ∗X Y W H Vk k k kError , (5.2)

where W
∗
 is the m r×  orthonormal matrix W S W∗ = XX

1
2 , X X Sk k XX

∗ = −1
2 , and V and Hk  are

defined as for (5.1).  To see that minimizing the sums of squares of the error term in (5.2)

maximizes the sum of the variances explained of the Y-variables, recognize first that H k i j[ , ]  is

indeed the root of the variation of the j th  Y-variate, ′v yj  explained by the i
th

 X-variate, ′w xi .
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This is so because for the Tucker2 solution H W C Vk k= ′∗ , and for the PARAFAC (orth.)

solution H W C Vk kdiag= ′





∗
 (Kroonenberg 1983), where C X Yk k k=

−
′∗1

1nk

.  Thus

H w X Y v w X Y vk i k k j i k k ji j[ , ] =
−

′ ′ =
−

′ ′∗ ∗1

1

1

1n nk k

.

But the variance of ′v yj  explained in a regression against ′w xi  is

( )1

1

1

1

2
2

n nk

j i i i

1

i j

k−
′ ′ ′ ′ ′ ′ =

−






 ′ ′−v Y X w (w X X w ) w X Y v w X Y vk k k k k k i k k j ,

noting that (w X X w )′ ′ =
−

−
i i

1

k

k k

1

1n
.  Next, by Proposition 3.2 the sums of squares of the H k  is

maximized.  Since the sums of squares of the 
1

1nk −
′∗X Yk k  terms represent the total sums of

squares of the Y-variables explainable by the X-variables, the lack of fit being minimized in (5.2)

is just these sums of squares explainable by the relationship that are not being fit by the model

over the third mode.

5.2.2  Canonical Variate Analysis over a Third Mode

CVA/third is a direct generalization of CVA.  It is appropriate in the following situation;

when the data have unchanging group structure, that is, the X-variables are group indicators;  and

the within-groups covariance matrix, SYY WITHIN( ) , is stable over the third mode ( SYY WITHIN( )  is

distinguished from SYY TOTAL( ) ).  Note that SYY WITHIN( )  has to be estimated from the data.  The

CVA/third scenario outlined here could also be approached by Campbell and Tomenson’s (1983)

model if the data are from multiple datasets or groups, or by the CVA/time model of Chapter

Eight if the data are longitudinal.

Recall from Section 2.2.2 that CVA is equivalent to modeling the group means in the

space of the variables transformed by the Mahalanobis transformation.  CVA/third extends this

conception of CVA to finding planes (components) that maximize the total dispersion over the

third mode in the transformed space of the transformed variables.

The arguments for CVA/third are analogous to those of RA/third, except here one

maximizes the variance explained in the transformed space of the Y-variables, i.e., the dispersion.

The CVA/third model is

1

1nk −
′ = ′X Y WH Vk k k ,

where W is the m q×  matrix of uncorrelated common canonical variates for the X-variables, V is

an p r×  matrix of uncorrelated variates for the Y-variates, ( ′ =V S V IYY WITHIN( ) ) and Hk  is a
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q r×  matrix of root transformed variances of the Y-variates, ′V y , explained by the X-variates,

′W x .  If the X-variables are constant over the third mode, replace X k  with X.

Finding W and V that maximize the sum of the transformed variance explained of the

Y-variables by the X-variables is equivalent to modeling the following in a Tucker2 or PARAFAC

(orth.) framework:

1

1nk −
′ = ′ +∗ ∗ ∗X Y W H Vk k k kError* , (5.3)

where W
∗
 is an m r×  orthonormal matrix such that W S W∗ = XX

1
2 , V

∗
 an n r×  orthonormal

matrix such that V S V
∗ = YY WITHIN( )

1
2 , Hk  is a q r×  matrix, X X Sk k XX

∗ = −1
2  and Y Y Sk k YY

∗ = −1
2 .

To see that minimizing the sums of squares error term of (5.3) maximizes the sum of the

explained of the transformed variance, note first that H k i j[ , ]  is indeed the root of the

transformed variation of the j th  Y-variate, ′v yj , explained by the i
th

 X-variate, ′w xi .  This is so

because for the Tucker2 solution H W C Vk k= ′ , and for the PARAFAC (orth.) solution

( )H W C Vk kdiag= ′  (Kroonenberg 1983), where C X Yk k k=
−

′∗ ∗1

1 nk

.  Thus

H w X Y v w X Y vk i k k j i k k ji j[ , ] = ′ ′ = ′ ′∗ ∗ ∗ ∗ ∗ .

Now the variance (in the transformed space) of ′v yj  explained by ′w xi  is

1

1

1

1

2
2

−
′

′
′ ′ ′ ′ =

−






 ′ ′





∗ − ∗ ∗

n nk

j i i i

1

i j

k

v Y X w (w X X w ) w X Y v w X Y vk k k k k k i k k j ,

noting that (w X X w )′ ′ =
−

−
i i

1

k

k k

1

1n
.  Next, by Proposition 3.2 the sums of squares of the H k

are being maximized.  Hence the error being minimized is the sums of squares explainable by the

relationship that is not being fit by the model over a third mode.

5.2.3  Canonical Correlation Analysis over a Third Mode

This section defines two generalizations of CCA, based on two different distinguishing

features of CCA.  CCA generates variates V, which are both uncorrelated with respect to the total

covariance of the Y-variables, and with respect to the matrix of error terms, where the error is the

total variation less the sums of squares explained by a multivariate regression.  That is:

′ =V S V IYY  and ′ − ′ = −−V S S S S V I D( )YY XY XX XY

1 , where D is a diagonal matrix with the

squared canonical correlations.  Thus one can generalize CCA to the third mode by defining

Y-variates which are uncorrelated with respect to a stable total variation, or by defining

Y-variates which are uncorrelated with respect to a stable error term.  On the other hand, taking

the former approach leads to a method which can be shown to maximize the sums of the squared

correlations between the variates.  However it requires the awkward assumption that both SXX

and SYY  are stable over the third mode.  Taking the latter approach leads to a method which has
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the identical form of that of CVA/third (5.3) in Section 5.2.2, except that the X-variables are no

longer restricted to be indicators, and the error is defined as above.  This method requires one to

assume a stable error matrix and maximizes the sum of a weighted variance explained.

5.2.4  Procrustes Rotation over a Third Mode

Procrustes rotation is traditionally defined as a method that finds an orthogonal

transformation Q such the point configuration of YQ is similar to that of X (see Section 2.2.4).

However, Procrustes rotation can also be defined as a method that finds orthogonal X-variates

and orthogonal Y-variates such that the sum of the squared covariances between the pairs of

corresponding X-variates and Y-variates is maximized (see Section 2.2.4).  In this section I

generalize PR to three-mode data along the lines of the former definition.  Putting PR/third in the

PARAFAC and Tucker2 frameworks allows me to maximize the sum of the squared covariances

over the third mode.  Note that one can also define Procrustes rotation as a method that finds

pairs of X-variates and Y-variates such that sum (not squared) of the covariances is maximized.

However, this definition has the disadvantage that covariances of differing signs would cancel

each other out in a summation, so that a strong relationship that changed in sign would receive

less weight.  The attractive feature about PR/time is that it is not necessary to assume either SXX

or SYY  is constant.

The PR/third model is

1

1nk −
′ = ′ +X Y WH VK k k kError

where W is a m q×  orthonormal matrix of X-variates and V is a n r×  orthonormal matrices and

H k  is a q r×  matrix.

To see that PR/third maximizes the sums of the squared covariances, note that H k i j[ , ]  is

indeed the root of the covariance of the j th  Y-variate, ′v yj , and the i
th

 X-variate, ′w xi .  This is

so because for the Tucker2 solution, H W C Vk k= ′ , and for the PARAFAC (orth.) solution

( )H W C Vk kdiag= ′  (Kroonenberg 1983), where C X Yk k k=
−

′1

1 nk

.  Thus

H w X Y vk i k k ji j[ , ] = ′ ′ .  Now by Proposition 3.2 trace k

k

g

( )H
2

1=
∑  is maximized.

For comparison’s sake, if one wanted to generalize Procrustes rotation in the sense of

maximizing the sum of the covariances, then it is simple to show that one obtains W and V by

performing a singular value decomposition on the sum of the X Yk k

′
 matrices.  That is,

WJV X Y′ = ′
=

∑ k k

k 1

g

.  Further, say one wanted to generalize PR less in the spirit of finding

common variates, but more in the spirit of finding an orthogonal rotation Q by which to rotate Yk
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to maximum similarity to X k .  That is, one wished to find Q that minimizes the following

expression:

trace k k k k

k

( )QY X ) (QY X− ′ −
=

∑
1

g

.

Then again it is easy to show that one performs a singular value decomposition on the sum of the

X Yk k

′
 matrices.

5.2.5  Which Transformations to Use

The decision of whether to transform the X-variables by SXX

− 1
2  and/or to transform the

Y-variables by SYY

− 1
2  is a central one.  It determines the metric in which the fit is being maximized

and the lack of fit minimized.  In the standard case it is equivalent to choosing between CCA, RA

and PR.  With three-mode data it is equivalent to choosing between CVA/third, CCA/third,

RA/third and PR/third.  This choice is determined by several factors;  whether a set of variables

stays constant;  whether a covariance matrix of either the X-variables or Y-variables is

hypothesized to be stable over the third mode;  the hypothesized nature of cause and effect

between the X-variables and the Y-variables;  and what one wants to emphasize in his analysis.

For example, one is probably not interested in modeling the variation of a set of variables

which are constant.  Suppose the X-variables are group indicators that are constant over time.  To

choose PR/third over RA/third or CVA/third would imply one is maximizing the covariance

between the two sets.  The covariance, however, involves variation of the X-variables, and one is

likely not interested in modeling the variation of the X-variables since they are constant over the

third mode anyway.  One is likely to be more interested in modeling just the variation of the

Y-variables.  Thus RA/third or CVA/third would be more appropriate.  A similar logic would hold

if the X-variables were not constant but the covariance of the X-variables, SXX , were stable.

Also, one may think in terms of cause and effect.  One may hypothesize the X-variables

cause variation in the Y-variables in a regression sense.  If the X-variables are not constant over

time, one may nevertheless choose to estimate of SXX  and to transform the X-variables by SXX

−1
2 .

This reduces the importance of the variation of the X-variables in the estimation, though in an

uneven way;  that is, since S SXXk XX≠ , for k = 1, ,K g , S I
X X k∗ ∗ ≠  where X X Sk k XX

∗ = −1
2 , though

for some occasions S
X X k∗ ∗  may be closer to I than others.

What one wishes to emphasize may also play a role in choosing the transformation.  For

example, with grouped data with stable within-group covariances, one could use the

within-groups covariance to transform the Y-variables to get scale invariance.  However, if the

Y-variables are directly comparable one may prefer not to scale the data, but rather perform a

RA/third which analyzes the Y-variables in their raw form.  As another example, RA/third would

usually be preferred over CVA/third if the within-groups covariance matrix was not hypothesized

to be stable.  In this case one may wish to standardize the variance to make each Y-variable of

equal importance by scaling each variable such that they all have an equal total variation.
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However, if the within-group covariances were not too dissimilar, one could estimate a common

within-groups covariance matrix anyway and transform the Y-variables to achieve a crude scale

invariance.

In summary, the methods introduced in this chapter are exploratory.  When deciding what

kind of analysis to perform the researcher needs to consider the nature of his data and the

phenomena, and what he wants to bring out in an analysis.

5.3  HOW TO EVALUATE THE FIT OF THE MODEL

The choices in fitting the model are whether to use the PARAFAC (orth.) or Tucker2

framework, and how many components to include in the model.  While there is no systematic

approach to fitting the model such as hypothesis tests, there are certain principles and pointers to

guide in the decision.  Basically, one evaluates the sums of squares lack of fit and the

interpretability of the model terms.

It may help to view the modeling frameworks as a hierarchy going from the most complex

model that explains the relationship perfectly to the least complex which would have the greatest

lack of fit.  The most complex model is a separate CCA, RA or PR at each occasion.  These will

explain the relationship perfectly at each occasion or for each dataset.  The next most complex

model is the Tucker2.  The Tucker2 models two sets of stable variates.  A linear relationship

which varies in strength is assumed to exist between each variate of the X-set and each variate of

the Y-set.  Then there is the PARAFAC (orth.) model, which hypothesizes pairs of stable variates

with the linear relationship varying in strength.  Unlike the Tucker2 the relationship is modeled

strictly between members of a pair.  Lastly, the simplest model would be to model identical

relationships at each occasion, with identical variates and equal strength of relationship.

As an aid to the evaluation and interpretation of a three-mode model one can examine

what I shall call the matrix of explained sums of squares.  This matrix shows the sums of squares

explained of each Y-variable by each Y-component.  To determine how much of the sums of

squares of the i
th

 Y-variable is explained by the j th  Y-component, ′v yj , first consider the weight

of the (orthonormal) component corresponding to that variable.  If one is performing RA/third or

PR/third this is v j i[ ] ;  if CVA/third or CCA/third this is v j i∗[ ] .  Square this weight and multiply it

by the sum of the squared core elements corresponding to the j th  Y-component.  The matrix one

obtains allows one to see in a simple way what variables are well explained by what components.

The interpretation of what the sums of squares means depends on the method.  For example, for

RA/third, the sums of squares represent the variance of a given variable explained by a given

component.

When examining fit to compare the PARAFAC (orth.) and Tucker2, the values of the

off-diagonal elements are worth looking at.  Small off-diagonal elements suggest the PARAFAC

(orth.) model is more appropriate.  The Tucker2 will always explain more sums of square, but the

PARAFAC (orth.) requires fewer parameters to be estimated, and it has an advantage in

interpretability because each X-variate is related only to one Y-variate.
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When deciding on the number of components to include one can use a scree plot such as

that used in multidimensional scaling.  One plots the sums of squares lack of fit against the

number of components.  The point where the curve levels out suggests the number of components

to include in the model.

Other points to consider when evaluating the fit of a three-mode model are the nestedness

and scale invariance of the solutions.  In Chapter Three I show that the PARAFAC (orth.)

solutions are nested.  The nestedness property implies that a rank-f solution is always a subset of a

rank-(f+1) solution.  This allows one to evaluate the fit contributed by each pair of components

when comparing solutions of differing rank.  The Tucker2 solutions do not have this property.  In

Chapter Nine I discuss the topic of scale invariance.  While three-mode methods are generally not

scale invariant, the Tucker2 and PARAFAC (orth.) models do have approximate scale invariance

properties if the fit is very good.

In summary, it should be clear from the discussion that how much complexity the

researcher decides to model will be in part subjective.

5.4  AN EXAMPLE

I will go into more details about the models in Section 5.5, and about the interpretation of

the models in Chapter Six.  But first I present an example to illustrate what has been laid out so

far.  The following example is an application of RA/third.  The U.S. Geological Survey in

cooperation with the University of Virginia’s Department of Environmental Sciences performed a

study, “Sensitivity of Stream Basins in Shenandoah National Park to Acid Deposition” (Lynch &

Dise 1985).  This study investigated the acidification of the streams in the said park.  The acid

presumably came in the form of acid rain from man-made sources such as sulfur bearing

pollutants.  The purpose of the study was to identify and evaluate geological factors relating to

the sensitivity of basins to acid deposition.  There were 56 streams located throughout the park,

which was divided into 56 corresponding basins.  Per recommendation of the authors I discarded

three streams which ran parallel to roads, leaving 53 streams in my analysis.

Geological measurements were taken once over the whole basin and are assumed to be

unchanging over time.  These I designate the X-variables.  The geological measurements taken

included the classification of the types of underlying bedrock.  Since a stream basin frequently

contained more than one type of underlying bedrock, the basins are assigned a percentage for

each bedrock type.  The bedrock classifications included Catoctin, Pedlar, Old Rag, Hampton,

Antietam, Swift Run and Weverton.  To avoid colinearity among classification variables, I did not

assign variables for the Swift Run and Weverton bedrocks, which taken together were still less

common than any of the other bedrock types.  Other geological measurements were:  the percent

of the basin above 2400 feet in elevation;  an indicator variable for whether the site was on the

east or west slope (E/W);  an indicator variable for whether 5% or more of the basin was

developed;  and the drainage density (DD), calculated by dividing the length of the stream by the

area of the basin.

For each stream, streamwater measurements were taken on six occasions, always at the

same site.  These were the Y-variables.  The measurements taken were pH;  alkalinity, which was
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defined as a measure of ability to neutralize or buffer strong acids;  conductivity, which is an

indirect measure of how much ionization has occurred;  temperature;  stream discharge;  the base

cations calcium ( Ca
++

), magnesium ( Mg ++ ), potassium ( K
+

), sodium ( Na
+

) and ammonium

( NH 4

+ );  and the acidic anions chloride ( Cl
−

), sulfate ( SO4

= ), nitrate ( NO3

− ), and silica ( SiO4

= ).

The researchers have analyzed their data carefully.  The intention of my analysis is not to

replicate their work, but to illustrate my method, which will emphasize the investigation of what is

changing or not changing over time.  The researchers’ statistical analysis was largely concentrated

in two parts.  First, they averaged the data over the six occasions and performed a multiple

regression for each chemical measurement against the geological measures. The multiple

regression with alkalinity as a response showed that the geological variables explained 0.962 of

the variation.  Bedrock alone had an R
2
 of 0.947.  These were the key statistical findings of their

study.  Geology was also important for predicting amount of base cations and silica, with R
2
’s

ranging from 0.855 to 0.944.  Sulfate, nitrate and chlorine concentrations were modeled with

R
2
’s of 0.535, 0.695 and 0.600 respectively.

Next, in an attempt to examine time differences with respect to different bedrocks the

researchers subtracted the data for January 1982 from that of May 1982, and then that of June

1982 from September 1981.  They do this for only the 28 sites that are classified 75% or more as

one type of bedrock, and for only four of the more common bedrocks.  Then they compare the

mean differences between the sites classified to the various bedrocks.  These pairwise

comparisons revealed that in warmer months there was in general more alkalinity as well as more

base cations, and in particular there was relatively more in certain bedrocks susceptible to

carbonic weathering.  These increases are explained by more carbonic acid weathering due to

higher levels of carbon dioxide in the soil that result from greater microbial and plant activity

during these times of year.

My analysis attempts to model the relationship between the geological variables and the

stream measurements over time.  Since the geological measurements are constant it is appropriate

to transform these measurements to uncorrelated variates by multiplying by the Mahalanobis

transformation ( SXX

−1
2 ). Table 5.1 shows the error variances of the fourteen water variables at

each occasion.  (I define error variance as the sum of squared residuals obtained if one performs a

separate multivariate regression at each occasion).  One sees the error variances of the

streamwater measurements are not constant over time.  Note for example the changes in the

variation in pH and alkalinity.  To transform based on an averaged covariance matrix would put

the between-group differences in a metric that may not make sense.  Hence I choose not to

transform the water chemistry variables.  (See Section 5.2.5 for a discussion on the appropriate

choice of transformations.)  However, the responses are
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Table 5.1. Error Variance of Responses
Measurement Aug. 1981 Sept. 1981 Jan. 1982 March 1982 May 1982 June 1982

discharge 0.08 0.01 0.07 0.07 2.19 0.11

conductivity 0.13 0.55 0.05 0.05 0.48 0.10

pH 0.01 0.01 0 0 4.19 0.01

temperature 0.99 0.64 0.28 0.28 0.69 0.54

Ca
++ 0.19 0.60 0.05 0.05 0.25 0.09

Mg ++ 0.14 0.36 0.05 0.05 0.14 0.09

Na
+ 0.13 0.24 0.12 0.12 0.28 0.12

K
+ 0.10 0.14 0.03 0.03 1.90 0.05

alkalinity 0.22 0.61 0.06 0.06 0.06 0.08

SO4

= 0.18 0.35 0.30 0.30 0.59 0.30

Cl
− 0.21 0.28 0.24 0.24 2.04 0.16

SiO4

= 0.19 0.27 0.10 0.10 0.18 0.19

NO3

− 0.08 0.06 0.30 0.30 2.96 0.12

NH 4

+ 0.01 0 0 0 4.50 0.01

standardized to have an equal variance over the six occasions.  This standardization gives each of

the variables equal weight in the analysis while allowing the measurements to vary over time.  The

choice of transforming the geological variables but not the water measurement variables defines

the analysis as an RA/third analysis.  The RA/third model finds uncorrelated weighted sums of the

geological variables that explain the maximum amount of variation of the streamwater variables

over time.

The next step in the analysis is to determine whether the PARAFAC (orth.) or Tucker2

model is appropriate and how many pairs of components are appropriate.  I do this by comparing

the fit and the interpretability of the competing models.  I start by presenting the estimates of the

core elements PARAFAC (orth.) estimates in Table 5.2.  To save space they are not presented as
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Table 5.2  PARAFAC (orth.) Core
              Date

Component

Aug.
1981

Sept.
1981

Jan.
1982

Mar.
1982

May
1982

June
1982

1
st 2.25 2.52 1.83 1.61 2.2 2.06

2
nd 0.93 0.95 0.95 0.99 1.03 1.15

3
rd 0.90 1.05 0.56 0.76 0.71 0.76

4
th -0.03 0.01 0.01 -1.61 0.02 0.02

5
th -0.13 -0.20 -0.30 -0.83 -0.25 -0.3

6
th -0.23 -0.27 -0.28 -0.35 -0.31 -0.42

7
th 0.14 0.06 0.16 0.3 0.28 0.27

8
th 0.22 0.28 0.07 -0.1 -0.07 0.09

9
th 0.18 0.13 0.12 0.03 0.13 0.12

a diagonal matrix for each occasion, rather as vectors for each occasion.  Only the first four

components have core elements greater than one in magnitude.  Also, as will be discussed later,

the first four components have interpretations that lend credence to their selection in the model.

Thus the PAFARAC (orth.) model with four pairs of components is a competitive model.  The

SAS programming codes for the Tucker2 and PARAFAC (orth.) models are found in Appendix

Three.

The four-component Tucker2 solution is examined for comparison. The estimates of its

core matrices are shown in Table 5.3.  The sums of squares explained is equal to the sums of

squares of the core matrix.  The Tucker2 explains 41.8 (81.3%) of the variation, which is only

modestly more than the

Table 5.3  Core Matrices

 for the Tucker2

August 1981
2.26 -0.02 -0.11 -0.21

-0.63 0.90 0.13 0.17

-0.01 0.23 0.81 -0.26

0.29 -0.10 0.22 -0.10

March 1982
1.55 -0.35 0.36 1.25

0.50 1.05 -0.17 -0.10

-0.26 -0.30 0.90 -0.01

0.41 0.27 -0.54 -1.13

September 1981

2.54 -0.13 -0.09 -0.22

-0.10 0.89 -0.01 0.20

-0.06 0.31 0.96 -0.34

-0.10 -0.14 0.13 0.01

May 1982

2.19 -0.03 0.13 -0.22

0.42 0.99 0.05 0.21

-0.02 0.13 0.59 -0.32

-0.03 -0.10 0.20 -0.08

January 1982

1.82 0.03 -0 0.16

-0.02 0.91 0.11 0.18

-0.03 0.16 0.45 -0.26

0.24 -0.1 0.2 -0.05

June 1982

2.06 0.06 0.1 -0.12

0.37 1.12 -0.08 0.29

0.07 0.01 0.63 -0.35

0.04 -0.1 0.24 -0.08

rank-four PARAFAC (orth.) solution which explains 39.0 (75.9%).  Note that the total variation

that can be explained by the relationship by separate multivariate regressions at each occasion is

51.37.  Further, the components are similar to those of the PARAFAC (orth.) model, as one can
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see by comparing the weights for geological variables in Table 5.4 for the PARAFAC (orth.)

model to those in Table 5.5 for the Tucker2, and the weights for the water measurements for the

PARAFAC (orth.) model in Table 5.6 to those for the Tucker2 in Table 5.7.

Table 5.4 Canonical Variate X-weights

for PARAFAC (orth.)
Geological

Variable
First

Comp.
Second
Comp.

Third
Comp.

Fourth
Comp.

Antietam -0.084 -0.311 0.682 0.588

Hampton 0.188 -0.938 1.167 1.025

Catoctin 1.229 -0.750 1.327 1.373

Pedlar 0.838 -0.489 1.888 1.475

Old Rag 0.436 -0.238 1.542 1.052

ab2400 -0.445 0.406 -0.586 -0.468

DD 0.124 -0.131 0.345 -0.947

E/W 0.228 -0.396 0.101 0.585

Dev. 0.256 -0.173 -0.261 -0.313

Table 5.5 Canonical Variate X-weights

for the Tucker2
Geological

Variable
First

Comp.
Second
Comp.

Third
Comp.

Fourth
Comp.

Antietam -0.105 -0.314 0.540 0.695

Hampton 0.148 -0.907 0.858 1.331

Catoctin 1.169 -0.688 0.943 1.668

Pedlar 0.766 -0.433 1.489 1.871

Old Rag 0.382 -0.284 1.299 1.393

ab2400 -0.425 0.342 -0.409 -0.648

DD 0.193 -0.246 0.527 -0.851

E/W 0.193 -0.382 -0.031 0.597

Dev. 0.271 -0.204 -0.189 -0.250

Also, the core elements are similar.  The diagonal elements of the Tucker2 core in Table 5.3 are

close to that of the PARAFAC (orth.) of Table 5.2.  For example, for the first occasion they are

2.26, 0.9, 0.81 and -0.1 versus 2.25, 0.93, 0.9 and -0.03.  One can see in Table 5.3 that the

off-diagonal elements of the core matrices for the Tucker2 are generally small, except for those at

occasion four.  Given the similarity in fit and interpretation, the PARAFAC (orth.) model is

preferable to the Tucker2 because it has less terms and is simpler to interpret.  For the rest of this

section I discuss the PARAFAC (orth.) model and its estimates.

The interpretation of the first four components of the PARAFAC (orth.) model is

consistent with the analysis given by the researchers in their study.  The first component relates to

the level of alkalinity and the concentrations of base cations.  First inspect the matrix of sums of

squares explained, Table 5.8, which indicates how much variance a given geological component

explains of a given water measurement variable.  Note that the total variance of alkalinity

explained by the first component is 4.11.  Compare this with the total variance explainable of 4.86

(if separate regression were performed at each occasion), and a total variation of 6.0.  Also, there

are large variances explained for the base cations Ca
++

, Mg ++  and Na
+

, and the acid silica

( SiO4

= ).  These are all products of the same process, the carbonic weathering of minerals high in

silica and in base anions.  This process tends to increase the alkalinity through the production of

carbonic acid, which is a buffer against strong acids.  The corresponding geology variate, the

X-variate or



Table 5.6 Y-weights for PARAFAC
Measurement First

Comp.
Second
Comp.

Third
Comp.

Fourth
Comp.

discharge 0.036 0.297 -0.271 -0.113

conductivity 0.369 -0.293 -0.108 -0.156

pH 0.113 0.058 -0.002 0.593

temperature 0.132 -0.08 0.351 0.048

Ca
++ 0.383 0.018 -0.241 0.002

Mg ++ 0.365 -0.261 -0.43 -0.006

Na
+ 0.364 0.256 0.419 -0.063

K
+ -0.158 -0.566 0.182 0.308

alkalinity 0.394 0.012 -0.235 0.12

SO4

= 0.14 -0.543 0.22 -0.231

Cl
− 0.265 -0.06 0.133 -0.065

SiO4

= 0.363 0.229 0.458 0.003

NO3

− 0.133 0.098 -0.089 0.321

NH 4

+ 0.035 -0.029 0.034 0.579

Table 5.7. Y-weights for Tucker2
Measure-

ment
First

Comp.
Second
Comp.

Third
Comp.

Fourth
Comp.

discharge 0.057 0.311 -0.256 0.260

conductivity 0.373 -0.274 -0.177 -0.143

pH 0.094 -0.050 0.239 0.513

temperature 0.134 -0.065 0.311 -0.269

Ca
++ 0.381 -0.003 -0.206 0.074

Mg ++ 0.363 -0.267 -0.410 0.087

Na
+ 0.367 0.258 0.379 -0.139

K
+ -0.173 -0.592 0.243 0.079

alkalinity 0.393 -0.019 -0.193 0.059

SO4

= 0.129 -0.508 0.138 -0.144

Cl
− 0.268 -0.049 0.116 -0.002

SiO4

= 0.361 0.234 0.437 -0.125

NO3

− 0.122 0.023 0.101 0.529

NH 4

+ 0.017 -0.129 0.255 0.467
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Table 5.8. Matrix of Sums of Squares Explained by Variable and Component
Measurement First

Comp.
Second
Comp.

Third
Comp.

Fourth
Comp.

Total

discharge 0.03 0.53 0.29 0.03 0.88

conductivity 3.60 0.52 0.05 0.06 4.23

pH 0.34 0.02 0 0.91 1.27

temperature 0.46 0.04 0.48 0.01 0.99

Ca
++ 3.88 0 0.23 0 4.11

Mg ++ 3.53 0.41 0.72 0 4.63

Na
+ 3.51 0.39 0.68 0.01 4.49

K
+ 0.66 1.93 0.13 0.25 2.95

alkalinity 4.11 0 0.21 0.04 4.36

SO4

= 0.52 1.78 0.19 0.14 2.66

Cl
− 1.86 0.02 0.07 0.01 1.96

SiO4

= 3.48 0.31 0.81 0 4.60

NO3

− 0.47 0.06 0.03 0.27 0.83

NH 4

+ 0.03 0 0 0.87 0.90

Total Variation
Explained

26.47 6.02 3.88 2.59 39.0

predictor variate, is seen in Table 5.4.  This variate is uncorrelated with the other X-variates.  Its

weights are interpreted in the same sense that weights in a regression equation are.  First, one sees

the weights for type of bedrock are ordered as Catoctin (1.22), Pedlar (0.84), Old Rag (0.44),

Hampton (0.18) and Antietam (-0.08).  This ordering is the same as that of the regression weights

predicted by the researchers and found in their regression equation for alkalinity.  The other

weights are also consistent with their regression equation for alkalinity.

This first and largest component has several implications.  First it affirms the researchers’

decision to average the data over time.  Analyzing data averaged over time is after all a crude way

to get common components.  Indeed, it only makes sense if there are common components,

otherwise averaging muddles the analysis.  Second, it shows the advantage of the multivariate

approach over the univariate approach in that it models the responses simultaneously.  Alkalinity,

the base cations Ca
++

, Mg ++ , Na
+

 and silica, which are all modeled individually as univariate

responses in the researchers’ analysis, are modeled in RA/time in a way that reveals their

interrelationship.  Further, what the analysis over time reveals is that although this process was

roughly stable in strength over time, there were differences.  At occasion four the total variance

explained is 2.6 (one squares the core element to obtain the variance explained, which is 1.61

from Table 5.2).  This small value is likely due to heavy rain during that month which would

increase the proportion of runoff in the stream as opposed to ground discharge.  Runoff has less

of the chemicals that are formed by reactions in the soil and bedrock than does ground discharge,

weakening the relative strength of these alkalinity and base cations and silica.  The occasion where
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this process is strongest is September 1981 where the variate explains a variation of 6.36 (2.52

squared), followed by August 1981 with 5.06.  These higher values relate to the fact that in

warmer weather there is more microbial and plant activity in the soil creating carbon dioxide and

initiating carbonic acid weathering.

The second component pair is likewise interpretable as a process predicted and observed

by the researchers in their analysis.  It is related to precipitation of sulfurous compounds and the

ions that result from the ensuing reactions with the bedrock.  This is the process that researchers

refer to as “acidification”.  In the table of variance explained, Table 5.8, one sees that 1.78 of the

variation of sulfate, SO 4

= , is explained, and also 1.93 of potassium (K).  From Table 5.4 one sees

that there is more sulfate on the western slope and less at higher altitudes.  This can be accounted

for by the effect of the prevailing winds bearing pollution from the west.  Also, higher elevations

have more rain and consequently more acid deposition.  The high concentration of potassium may

be due to greater reactivity with sulfur in bedrock consisting of minerals with high potassium

content such as Hampton.  What the analysis over time reveals is first, that the researchers’

averaging of data over time was again plausible.  Second, though the strength of the relationship

does seem to be relatively stable, there is a weak increasing trend over time.

The variance explained by the third variate pair is a little less than that explained by the

second (Table 5.2).  The geological variate shows higher weights for bedrock that is granitous,

such as Pedlar and Old Rag.  The streamwater variate has larger weights for Silica and Na
++

,

which are byproducts of the plagioclastic weathering of granites, which also happen to be low in

Mg ++ .  Hence this variate pair is interpretable as indicating plagioclastic weathering.  The

differences over time in the strength of the variances would need to be interpreted by the

researchers for significance.

The fourth component pair is related to runoff effects of rainwater.  It is one that would

not fair well in an averaging over time.  Indeed it was not mentioned by the researchers.  One sees

that the variance explained at the fourth occasion is 2.59 (-1.61 squared, from Table 5.2), but at

other occasions it is close to zero.  This is likely due to the unusually heavy runoff during March

due to heavy rains and perhaps to melting snows.  The mean stream flow was 3.2 cubic feet per

second per square mile in March, versus 0.2 to 1.3 at the other occasions.  The salient weight

among the geology variates is drainage density, though altitude, east/west and bedrock type all

play a role.  In areas with poor drainage, the proportion of runoff will be greater, hence there will

be greater runoff effects.  Also, basins at higher altitudes receive more rain and have a greater

runoff.  The streamwater variables explained by this canonical variate are pH and NH 4

+ .  These

both reflect the fact that streamwater with a higher proportion of runoff from rain or snow melts

is more like rainwater.  Rainwater has a pH of 4.22, lower than the lowest soils in the park which

is about pH of 5.  Also, ammonia is not found in ground discharge but rather derives strictly from

atmospheric precipitation.

In summary, the RA/time analysis confirms the researchers conclusion found using

conventional methods.  However, it gave a more integrated view of the processes by using both a

multivariate approach and modeling over time.  It also raised some questions about the

relationships over time that the researchers might profitably address.
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5.5  SOME FURTHER CONSIDERATIONS

Having presented the CCA, RA and PR/third models and gone over in detail an

application, I discuss some issues that shed further light on the nature of the modeling and the

problems it solves.  These include autocorrelation, the covariances between the Y-variables at

different occasions and the (lack of) invariance of solutions to non-singular transformations.

5.5.1  Autocorrelation

Autocorrelation is a common phenomena with measurements made over time.  In this

section I attempt to answer the question of what effect autocorrelation has on models relating two

sets of variables over time.  The situation is clearest when one examines RA/third where the

X-variables indicate group membership.  Then 
1

1nk −
′X Yk  is a matrix whose i

th
 row is the

group means for each Y-variate for the k
th

 occasion.  Now it is easy to see  that the

autocorrelation for Y  equals the autocorrelation for Y, and that the effect of autocorrelation

weakens over time, i.e., corr k k m( , )Y Y + = σ m .  Thus a strong autocorrelation tends to make the

structure of the data static;  that is, little changes over time.  Otherwise its presence is observed in

the within-groups covariance matrix.  The effect of autocorrelation is similar if the X-variables are

continuous.  In summary, the possible presence of autocorrelation does not require any extra

model terms when modeling CCA, RA and PR over time.

5.5.2  Cross Occasion Covariances

When one has longitudinal data one will observe covariances of variables at different

occasions.  Take, for example, ′Y Yr s , r s≠ .  By modeling only 
1

1nk −
′

X Yk k  or its

transformations, it seems that one is ignoring information by not modeling these cross-occasion

covariances.  However, for certain important situations this is not so.  Consider when one has

constant X over time and is modeling RA/third.  Then the sums of squares regression of the

Y-variables explained by the X-variables at occasions r and s is ′ ′ ′−Y X X X X Yr s( ) 1 .  But this is

just the product of ( kn − ′−
1

1
2)S X Yxx r  and ( kn − ′−

1
1

2)S X Yxx s , two matrices which are already

modeled in RA/third (with a different weighting).  Further, ′ − ′ ′ ′−Y Y Y X X X X Yr s r s( ) 1  is the sum

of squares error, which is not modeled in RA/third.  In this sense the covariance between variables

at different occasions offers no new information.

An analogous argument can be made for CVA/third with longitudinal data.  However,

with data where X is not constant the situation is not clear.  Later chapters approach the issue of

modeling cross occasion covariances.  Chapter Seven presents least squares methods that attempt

to model some of these cross-occasion terms.  Chapter Eight presents maximum likelihood

methods that model the error terms.
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5.5.3  Invariance of the Rank of the Solution to Non-Singular 

Transformations

In Section 5.2.5 I discussed which transformations to apply.  In this section I add to that a

brief discussion on the invariance of the solutions to the choice of transformation.  It is known

that the rank of a matrix is invariant to non-singular transformations, and that the column space of

a matrix is invariant to non-singular transformations of the row space, and vice versa.  Since

CCA, RA and PR are based on the SVD of SXY  with the appropriate transformations (see

Section 2.2), one can draw two implications;  first, that for a given dataset the solutions for CCA,

RA and PR all are of the same rank;  second, the X-variates for CCA and RA span the same

space, as do the Y-variates for RA and PR.

These features hold true for the three-mode extensions of CCA, RA and PR if they are put

in the framework of the Tucker2, but not if they are in the PARAFAC (orth.) framework.  To see

this, consider a series of g matrices, Q Q1 , ,K g , which are modeled exactly by the Tucker2.  That

is: Q RS T1 1= ′ , Q RS T2 2= ′ , with R and T orthonormal, etc.  Now consider an arbitrary,

non-singular transformation A for the row space.  Perform a SVD on A, A MNP= ′ .  Then

AQ MNP RS Tk k= ′ ′ , for k = 1, ,K g .  Now one can perform a SVD on MNP R′  to get

MNP R DEF′ = ′  and consequently AQ DEF S Tk k= ′ ′ , or AQ DS Tk k= ′∗ , where S EF Sk k

∗ = ′ .

One sees that one has a Tucker2 solution with the same column space T.  On the other hand, if

S k  is now restricted to be diagonal, one cannot generally find S k

∗  that is diagonal to yield a

PARAFAC (orth.) solution.

The main implication of this to modeling is that if one is uncertain about which

transformation to apply to the data, then the Tucker2 is a safer model than the PARAFAC (orth.).

Also, if the Tucker2 has a lower rank model that fits better than a higher rank PARAFAC (orth.)

model, one might consider another transformation.

5.5.4  Concluding Comments

First note that categorical data are handled the same way as continuous data.  Hence

correspondence analysis is generalized to the third mode.  See Section 2.2.2 for the interpretation

of categorical data with CCA type analyses.

In summary, the methods of this chapter are flexible and exploratory.  They require some

subjective choices as to the choice of transformation, choosing the Tucker2 versus the PARAFAC

(orth.) models and determining the number of components in the solution.  Ultimately, as seen in

the example in Section 5.4, one may choose a model which does not explain all of what is going

on in the data, but explains some of what is going on;  that is, finds some structure to the data

over the third mode.
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CHAPTER SIX

GRAPHICAL M ETHODS

6.1  INTRODUCTION

In some circumstances a visual display more easily yields insights than the inspection of

tables of parameter estimates.  This is often the case with three-mode models as they have many

variables and complex relationships between components.  In this chapter I present the use of

graphical methods in modeling two sets of variables over a third mode.  The methods are based

on the three-mode models of Chapter Five.  These methods offer the user graphical views of the

relationships between variables, components and modes.

The chapter is organized as follows:  in Section 6.2 I introduce background on biplots and

joint plots.  Biplots for canonical correlation analysis (CCA) were developed by Ter Braak

(1990), who also suggested biplots for redundancy analysis (RA), which I develop in more detail.

I also develop biplots for Procrustes rotation (PR).  In Section 6.3 I extend these biplots to
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three-mode data with joint plots.  In Section 6.4 I discuss plots of components scores for

three-mode methods.  Lastly, in Section 6.5 I present the use of residual plots in three-mode

modeling.  Note that all the programming code that generated the graphs is found in Appendix

Four.

6.2  BIPLOTS

The biplot is a technique devised by Gabriel (1971) to represent a matrix approximately by

a two-dimensional plot of two sets of two vectors.  If the rank of the matrix is two, the

representation is exact.  A biplot is often, but not necessarily, derived from the two pairs of

components corresponding to the largest singular values from the SVD.  Eckart and Young

(1936) proved that such a two-dimensional approximation to a matrix is optimal in a least squares

sense.  Generally, any rank-two approximation to a matrix X can be decomposed as AB ′ :

[ ]X AB u u
v

v
≅ ′ =











′

′












1 2

1

2

1

2

0

0
,

λλ
λλ

.

There are three common equivalent ways of displaying this two-dimensional approximation to X.

1. [ ]A u u= 1 1 2 2λλ λλ  and [ ]B v v= 1 1 2 2λλ λλ (6.1)

2. [ ]A u u= 1 1 2 2λλ λλ  and [ ]B v v= 1 2

3. [ ]A u u= 1 2  and [ ]B v v= 1 1 2 2λλ λλ .

W hich of the three displays one chooses depends on whether one prefers to emphasize the rows

or the columns.

If one thinks of the rows as corresponding to subjects and the columns as corresponding

to variables, then A  plots the subjects and B the variables.  The first axis on the two-dimensional

graph represents both the first component for A  and the first component for B, while the second

axis represents both the second component of A  and the second component of B.  Thus a biplot

is two graphs superimposed upon each other:  a graph of subject scores and a graph of variable

scores.  The approximate value of any variable for any subject can be determined by the inner

product of the subject and variable vectors.  Further, the inner product between vectors of two

variables or two subjects is an approximate measure of the closeness or similarity of those

variables or subjects.  For example, in the third type of biplot the covariance between any two

variables is approximated by their inner product on the biplot.

6.2.1  Biplots for Canonical Correlation Analysis

In this section and in the subsequent ones I outline biplots for CCA, RA and PR.  These

plots have in common that they provide an approximation to SXY , the matrix of covariances

between the X-variables and Y-variables.  They will differ in the invariance properties that they

invoke.  The resulting biplots will be based on vectors whose values are directly related to the

variate weights of the associated method.



56

As a preliminary I shall review the interpretation of SXY .  If the X-variables and

Y-variables are standardized to unit length, then SXY i j[ , ]  is the correlation between the i
th

X-variable, x i , and the jth  Y-variable, y j .  If only the X-variables are standardized to unit length,

then SXY i j[ , ]  is the square root of the regression variance of y j  explained by x i  in a simple linear

regression of y j  on x i  (by the regression variance I refer to the sums of squares regression

divided by the n − 1, which is also sometimes known as the mean square regression).  If neither

the X-variables nor the Y-variables are standardized, then SXY i j[ , ]  is the covariance between x i

and y j .

In this section I describe biplots of structure coefficients associated with CCA.  These

biplots will also have the property that they approximate SXY  with invariance to linear

transformations of both the X-variables and the Y-variables.  Plots of structure coefficients have

been proposed as a means to graphically interpret canonical correlation analysis (Caillez & Pagès,

1976;  Israëls, 1987;  van der Geer, 1986).  Structure coefficients are defined as the correlations

between the variables and the canonical variates.  Ter Braak (1990) puts plots of structure

coefficients in the framework of biplots.  He shows their optimality property and discusses their

interpretation.  The following development of biplots for CCA is from Ter Braak (1990).

Let the matrix AB ′  denote a rank-two weighted least squares approximation to SXY

where the variables are standardized, thus SXY  is a correlation matrix.  The ways to factor AB ′
are of the form:

[ ] [ ]A S W E B S V E= =∗ − ∗
XX YY

1
2

1
21α α

2 2
, (6.2)

where [ ]Z 2  indicates the first two columns of a matrix Z; V
∗
 is a p r×  orthonormal matrix such

that V S V∗ = YY

1
2 , where V is the p r× matrix of Y-canonical variates; W

∗
 is an m r×

orthonormal matrix such that W S W∗ = XX

1
2 , where W  is the m r× matrix of X-canonical

variates;  and m p r, ≤ , where r is the rank of R XY .  Here E is an r r×  diagonal matrix with

diagonal entries that are the canonical correlations µµ µµ µµ1 2 0≥ ≥ ≥ ≥K
r

.  The most common

ways to factor AB ′  are to set α = 1, 1
2  or 0.

The vectors on the biplot have the following interpretations. S VYY

1
2 ∗  or equivalently,

S VYY , is the matrix of structure coefficients (correlations) of the Y-variables with the

Y-canonical variates.  Similarly, S WXX

1
2 ∗  or S WXX  is the matrix of structure coefficients of the

X-variables on the X-canonical variates.  If α = 1, then B S V E= ∗
YY

1
2  is the matrix of correlations

between the Y-variables and the X-canonical variates.  In the biplot display, the inner product of

the vector corresponding to the i
th

 X-variable with the vector corresponding to the jth  Y-variable

is a rank-two approximation of the ( )i j
th

,  element of SXY .  This is because

S W E E V S S S S S S SXX YY XX XX XY YY YY XY

1
2

1
2

1
2

1
2

1
2

1
21∗ ∗ − −= =1−α .



57

These biplots are optimal in the sense that one obtains an optimal rank-two approximation

to SXY  which is invariant to linear transformations of X and Y.  To see this, define the problem as

finding A and B, each of rank-two, such that the expression below is minimized:

S S AB SXX XY YY

− −− ′1
2

1
2

2

( ) , (6.3)

where for a matrix Z, Z Z Z
2 = ′trace( ) .  The solution to (6.3) is provided by the singular value

decomposition of S S SXX XY YY

− −1
2

1
2 ,

W EV S S S∗ ∗ − −′ = XX XY YY

1
2

1
2 ,

where A and B are defined as in (6.2).

Ter Braak (1990) also gives an alternative version of the biplot for CCA.  Instead of

plotting A and B of (6.2), one plots

[ ] [ ]A S W E B S V E= =∗ − ∗
XX e

1
2

1
21α α

2 2
(6.4)

where S e  is the residual sum of squares when the products matrix of Y with respect to X is

subtracted from the total variation for Y.  That is:

S S S S Se YY XY XX XY= − −1 . (6.5)

Ter Braak justifies this biplot in terms of approximating the matrix of regression coefficients in a

multivariate regression of Y on X.  However, it can be justified in the same way that (6.2) is

justified, by finding an optimal approximation to SXY  that is invariant to non-singular

transformations of the X-variables and the Y-variables.  That is, one finds A and B such that

S S AB SXX XY e

− −′
− ′1

2
1

2

2

( ) , (6.6)

is minimized.

When the X-variables are thought to cause the Y-variables in a regression sense then S e  is

a more natural choice than SYY .  For example, if the X-variables are group indicators then S e

becomes the within-groups covariance matrix.  The biplot then indicates which groups are well

discriminated, and which responses contribute to the discrimination.

6.2.2  Biplots for Redundancy Analysis

For an analogous biplot for redundancy analysis Ter Braak suggests finding A and B such

that one has an optimal approximation to SXY  which is invariant only to non-singular

transformations of the X-variables.  This definition leads to A and B that are functions of the

redundancy variables.  Find A and B such that

S S ABXX

− − ′1
2

2

( )XY

is minimized.  Which leads to

[ ] [ ]A S W E B VE= =∗ −
XX

1
2 1

2 2

α α ,
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where W
∗
 is an m r×  orthonormal matrix such that W S W∗ = XX

1
2 , where W is the m r×  matrix

of canonical coefficients for the X-variables; V is a p r×  orthonormal matrix of redundancy

variates;  and E is an r r×  diagonal matrix whose jth  element is ( - 1) -1
n  times the root of the

variation of the jth  Y-variate explained by the jth  X-variate, where n is the sample size.

The matrices of biplot vectors, A and B, are functions of the redundancy weights.

However, Ter Braak’s interpretation of these weights is incorrect.  He states (1990) correctly that

with α = 1 A is the matrix of structure coefficients.  However, it is not correct that “The elements

of B are not only correlations but also canonical coefficients”.  The correct interpretation is that

B VE= [ ]2  is a matrix whose ( )i j
th

,  element is ( - 1) -1
n  times the root of the variation of y i

explained by a simple linear regression on the jth  redundancy variate, ′w xj .  To see this, notice

that if one regresses y i  on ′w xj , the regression variance is

( )′ ′ ′ ′ ′ = ′−
y Xw w X Xw w X y y Xwi j j j

1

j i i j( )
2

, since ′ ′ =w X Xwj j 1.  Hence ′y Xwi j  is the root of the

regression variance.  The matrix of root variances of the y i  regressed against the ′w xj  is ′Y XW ,

and ′ = − ′ = −Y XW VEW W VE( ) ( )n n1 1 .

An alternative factorization is worth mentioning: A S WE= [ ]XX

1
2

2  and B V= [ ]2 .  Here B

is just the matrix of weights of the redundancy variates for the Y-variables. A is a matrix whose

elements are ( - 1) -1
n  times the root of the variation explained by each X-variable of each

Y-variate.

6.2.3  Biplots for Procrustes Rotation

Biplots for PR which are analogous to those for CCA and RA can also be developed.  One

wishes to find A and B that minimize ( )S ABXY − ′ 2
.  This method yields a biplot approximation

to SXY  that is optimal in a least squares sense.  Consistent with PR, this plot is invariant neither to

non-singular transformations of the X-variables nor the Y-variables.  As with the biplots for CCA

and RA, the matrices of vectors A and B are interpretable in terms of a PR analysis. A W= [ ]2  is

a matrix of coefficients for the X-variates. B VE= [ ]2  is a matrix showing the covariance of each

Y-variable with the Procrustes rotation variates, as ′ = ′ =W S I W WEV EVXY .

The biplot for PR can be interpreted as showing which X-variables covary with which

Y-variables.  It also can be interpreted as showing which variables are fit well in the Procrustes

rotation.  That is, it shows which X-variables match the pattern of the Y-variables when rotated.

In summary, there are biplots for displaying CCA, RA and PR that are optimal in a

weighted least squares sense and which yield markers related to the estimated model parameters.
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6.3  JOINT PLOTS

Chapter Five extended the CCA, RA and PR models to three-mode data, that is, multiple

occasions and multiple datasets.  Analogously, this section extends biplots for CCA, RA and PR

to three-mode data.  The biplots of Section 6.2 were based on singular value decompositions of a

matrix.  Joint plots (Kroonenberg 1983) are based on the Tucker2 or PARAFAC (orth.)

decomposition of a three-mode array.

Denote an m p g× ×  three-mode array as C .  To examine the relationship between the

component weights of two modes one can make joint plots.  One possibility is to create a series of

joint plots, one joint plot for each component of the non-examined mode;  i.e., one for each

occasion.  Another possibility is to make one averaged joint plot.  Each joint plot is analogous to

a biplot.  If one wants to examine the relationship between the subject and variable modes, then

what is plotted is based on either GC Hk ′ , k = 1, ,K g , or GCH ′ , where G is the matrix of

components for the subject mode, H is the matrix of components for the variables mode, Ck  is

the k
th

 slice of the core box, that is the matrix C[, , ]k , and C  is the average of the Ck .  As Ck

and C  are generally not diagonal, a SVD is performed on Ck  to factor it.  So what is plotted is

A k  and B k  where:

( ) ( )A B GC H G(U V H GU V Hk k k k k k k k k k′ = ′ = = ′ ′−ΛΛ ΛΛ ΛΛ' ) ' ( )( )m

p

p

m

1
4

1
41α α
,

or ( )A GUk k k= m

p

1
4

( )ΛΛα
 and ( )B V Hk k k= ′ ′−

( )ΛΛ1
1

4α p

m
, where m is the number of measurements in

the subjects mode and p the number measurements in the variables mode, G and H are defined to

be the two specific pairs of components, thus G is an m × 2  matrix and H is a p × 2  matrix;  and

Ck  and C  are the 2 2×  submatrices of the core matrices corresponding to the selected

components.  One typically chooses the two components for G and H with the largest associated

core elements.  However, one can make a joint plot between any two components.

Further details: α  is chosen typically to be 1/2.  The weightings ( )mp
1

4

 and ( )pm
1

4

 put the

distances from the origin of the subject vectors on the same scale as those of the variable vectors

(Kroonenberg 1983).  This makes the plots easier to view, though one may choose other

weightings (see Section 6.2, in particular (6.1), for a discussion on the weighting of biplots).

6.3.1  Joint Plots for Canonical Correlation Analysis

In this section I extend the biplots of structure coefficients for CCA at one occasion to

joint plots of structure coefficients for multiple occasions.  Here one models SXY  over the third

mode.  The assumptions necessary for this particular biplot are the same as for CCA/third, that

S XX  is constant over the third mode, and that either SYY  or S e  (6.5) is also constant over the

third mode (see Section 5.5.3 for a discussion of these assumptions).  The subsequent

developments apply to both S e  and SYY , although I use SYY .

Plot A k  and B k  for each occasion k, where A k  and B k :
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A S W Uk XX k k= ∗1
2

1
2ΛΛ , B S V Zk YY k k= ∗1

2
1

2ΛΛ ,

where V
∗
 is a p × 2  orthonormal matrix such that V S V∗ = YY

1
2

2[ ] , where V is the p r× matrix

of Y-canonical variates from the CCA/third model; W
∗
 is a m × 2  orthonormal matrix such that

W S W∗ = XX

1
2

2[ ] , where W  is the m q× matrix of X-canonical variates from the CCA/third

model;  and U Z Ck k k kΛΛ ′ =  is the singular value decomposition of Ck , the k th core matrix from

the CCA/third model.  An alternative is to plot A S W U= ∗
XX

1
2

1
2ΛΛ  and B S V Z= ∗

YY

1
2

1
2ΛΛ , where

U Z CΛΛ ′ = .

Note that the S WXX

1
2 ∗  and the S VYY

1
2 ∗  are matrices of structure coefficients.

Next I discuss the sense in which these joint plots are optimal.  The function one

minimizes is the least squares lack of fit of a rank-two approximation to the matrix of covariances

between the X-variables and the Y-variables,
1

1nk −
′X Yk k , k = 1, ,K g .  The loss function should

be invariant to non-singular transformations of the X-variables and the Y-variables, as is CCA.

Further, A k  should span the same space for k = 1, ,K g , as should B k .  Thus the problem

reduces to finding A k  and B k  of rank-two such that

S X Y A B SXX k k k k YY

k

g
− −

−
′ − ′









=
∑ 1

2
1

2
1

1

2

1 nk

is minimized.  Clearly the optimal solution is given by a two-component Tucker2 decomposition

of
1

1

1
2

1
2

nk −
′− −

S X Y SXX k k YY , k = 1, ,K g .  That is

W C V S X Y S∗ ∗ − −′ =
−

′k XX k k YY

1

1

1
2

1
2

nk

,

for k = 1, ,K g .  Thus W C V S A B S∗ ∗ − −′ = ′k XX k k YY

1
2

1
2  and

A S W Uk XX k k= ∗1
2 ΛΛα , B S V Zk YY k k= ∗ −1

2 1ΛΛ α , (6.7)

where one performs a singular value decomposition on Ck  to get U Z Ck k k kΛΛ ′ = .

If one restricts the columns of A k  to be proportional over k = 1, ,K g , i.e.,

A Ac di f i[, ] [, ]= , for c d≠ , and likewise makes the same restriction for B k , then one can use an

argument similar to the one above to show that the optimal joint plots are based on the

PARAFAC (orth.) solution.  Such joint plots are easier to interpret as the axes in the joint plots

correspond to the two pairs of components.  This is so because the core matrices are diagonal,

and thus the matrices of structure coefficients are not rotated (by U k  or Z k  in (6.7)).
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6.3.2  Joint Plots for Redundancy Analysis

The biplot for RA, which plotted structure coefficients and redundancy variates, can be

extended to joint plots for multimode data in a manner analogous to how the biplot for CCA was

extended to joint plots for CCA.  The multimode extension of the biplot for RA is

A S W Uk XX k k= ∗1
2

1
2ΛΛ , B V Zk k k= ∗ ΛΛ 1

2 , (6.8)

where U Z Ck k k kΛΛ =  is the singular value decomposition of the k th core matrix Ck . W
∗
 is an

m × 2  orthonormal matrix such that, W S W∗ = XX

1
2

2[ ] , where W is the m q×  matrix of canonical

coefficients for the X-variables;  and V V∗ = [ ]2 , where V is a p r×  orthonormal matrix of

redundancy variates.  One can also plot A S W U= ∗
XX

1
2

1
2ΛΛ  and B V Z= ∗ ΛΛ 1

2 , where U Z CΛΛ ′ = .

Notice that S WXX

1
2 ∗  is the matrix of structure coefficients and V is the matrix of

redundancy coefficients.

These biplots are optimal in that they yield a display approximating the matrices

1

1nk −
′X Yk k , k = 1, ,K g , based on a loss function that is invariant to non-singular linear

transformations of the X-variables, as is RA.  Further, A k  should span the same space for

k = 1, ,K g , as should B k .  The problem reduces to finding A k  and B k  of rank-two such that

S X Y A BXX k k k k

k

g
−

−
′ − ′









=
∑ 1

2
1

1

2

1 nk

is minimized.  Clearly the optimal solution is given by a two-component Tucker2 decomposition

of
1

1

1
2

nk −
′−

S X YXX k k , k = 1, ,K g .  That is W C V S X Y∗ ∗′ =
−

′−

k XX k k

1

1

1
2

nk

.  Thus

W C V S A B∗ ∗ −′ = ′k XX k k

1
2  and A S W Uk XX k k= ∗1

2 ΛΛα , B V Zk k k= ∗ −ΛΛ1 α , where U Z Ck k k kΛΛ ′ = .

If one restricts the columns of A k  to be proportional over k = 1, ,K g , i.e.

A Ac di f i[, ] [, ]= , for c d≠ , and likewise makes the same restriction for B k , then one can use an

argument similar to the one above to show that the optimal joint plots are based on the

PARAFAC (orth.) solution.  Such joint plots are easier to interpret as the axes in the joint plots

correspond to the two pairs of components.  This is so because the core matrices are diagonal,

and thus the matrices of structure coefficients are not rotated (by U k  or Z k  in (6.8)).

Example 6.1

Figure 6.1 shows the joint plot for the Shenendoah data from Section 5.4.  The plot is

based on the RA/third solution for the first two components of the PARAFAC (orth.) model.

Since for this example the plots are roughly similar across time, instead of showing the joint plots

for each occasion, the plot based on the sum of the core matrices is shown.  This gives a general

picture of how the two modes, geological variables and streamwater variables, relate.

The vectors corresponding to the nine geological variables are numbered one through

nine.  Recall that the first five geological variables refer to bedrock types, ab2400 refers to
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altitude, DD refers to drainage density, E/W refers to east or west slope, and Dev. refers to the

presence of development.  The vectors corresponding to the fourteen streamwater variables are

lettered from a to p, skipping l and o;  they are more self-explanatory.  The origin is labeled with a

zero.  The key to the numbering and lettering is given in Figure 6.2.
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Figure 6.1  Joint Plot for the Sum of Core Matrices for PARAFAC (orth.)

a discharge h K
+ 1 Antietam

b conductivity i alkalinity 2 Hampton

c pH j SO4

= 3 Catoctin

d temperature k Cl
− 4 Pedlar

e Ca
++ m SiO4

= 5 Old Rag

f Mg ++ n NO3

− 6 ab2400

g Na
+ p NH 4

+ 7 DD

8 E/W

9 Dev.

Figure 6.2 Key to Symbols
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The interpretation of the joint plot is aided by consideration of what the components are

and how the vectors relate.  The first axis corresponds to the first geological and streamwater

variables component pair, which relates to carbonic acid weathering.  The second axis

corresponds to the second component pair, which relates to acidification.  Next, consider that

since the geological variables are standardized, the ( , )i j th  element of SXY  for a given occasion

shows (n − −1 1)  times the root of the variance of the jth  Y-variable explained in a simple linear

regression on the i
th

 X-variable.  Consequently, the inner product between a geological variable’s

vector and a streamwater variable’s vector yields an approximation to (n − −1 1)  times the root of

the regression variance of the streamwater variable predicted by the geological variable.  This is in

an averaged sense since the joint plot is based on an averaged core matrix.  Thus if a geological

and streamwater variable are near each other on the plot, such as Hampton bedrock (2) and SO4

=

(j), then the geological variable is a strong predictor of the streamwater variable in a simple linear

regression.

The advantage of the joint plot is that it lets one view all of the variables in relation to

each other.  Geological variables which are located near one another are similar in the variation of

the streamwater variables they explain.  For example, Catoctin (3) and Pedlar (4) bedrock types

explain the streamwater variables similarly, though Catoctin (3) has a stronger effect since it is

further from the origin.  Likewise, streamwater variables which are near to each other are similar

in that they are explained by the same geological variables.  For example, the sodium (g), silica

(m) and calcium (e) ions are near each other.  They result from the same processes, and thus are

predicted by the same geological variates.  Important also is the distance from the origin.

Geological variables that are near the origin, such as drainage density (7), are not strong

predictors in the rank-two RA/time model upon which the joint plot is based.  Similarly

streamwater variables near the origin, such as ammonium (p), are not well explained by the

rank-two RA/time model.

A limitation of these joint plots is that they only display a two-components solution.  Thus

the effects of possible lower order components are not seen.  For example, ammonium and

drainage density are both related to the fourth pair of components in the analysis in Section 5.4.

6.3.3  Joint Plots for Procrustes Rotation

The biplot for PR can be extended to joint plots for multimode data in a manner analogous

to how the biplots for CCA and RA were extended to joint plots.  The multimode extension of the

biplot for PR is

A WUk k k= ΛΛ 1
2 , B VZk k k= ΛΛ 1

2 , (6.9)

where W W∗ = [ ]2 , where W is the m q×  matrix of PR coefficients for the X-variables;

V V∗ = [ ]2 , where V is a p r×  orthonormal matrix of PR variates;  and where U Z Ck k k kΛΛ =  is

the singular value decomposition of the k th core matrix Ck .  One can also plot A WU= ΛΛ
1

2  and

B VZ= ΛΛ 1
2 , where U Z CΛΛ ′ = .



65

Note that W is the m r×  matrix of PR coefficients for the X-variables and V is the p r×
matrix of PR coefficients for the Y-variables.

These biplots are optimal in that they yield a display approximating the matrix

1

1nk −
′X Yk k .  Consistent with PR, the solution is not invariant linear transformations of the

variables. A k  should span the same space, as should the B k .  The problem reduces to finding

A k  and B k  of rank-two such that

1

1

2

1 nk −
′ − ′









=
∑ X Y A Bk k k k

k

g

is minimized.  Clearly the optimal solution is given by a Tucker2 decomposition of 
1

1nk −
′X Yk k ,

k = 1, ,K g .  That is WC V X Yk k k′ =
−

′
1

1nk

.  Thus WC V A Bk k k′ = ′  and A WUk k k= ΛΛα ,

B VZk k k= −ΛΛ1 α , where U Z Ck k k kΛΛ ′ = .

If one restricts the columns of A k  to be proportional over k = 1, ,K g , i.e.

A Ac di f i[, ] [, ]= , for c d≠ , and likewise makes the same restriction for B k , then one can use an

argument similar to the one above to show that the optimal joint plots are based on the

PARAFAC (orth.) solution.  Such joint plots are easier to interpret as the axes in the joint plots

correspond to the two pairs of components.  This is so because the core matrices are diagonal,

and thus the matrices of structure coefficients are not rotated (by U k  or Z k  in (6.9)).

6.4  PLOTS OF THE COMPONENT SCORES

The score on a component for a given subject is generally defined as a weighted sum of

the variables, the weights being component weights.  Define the m × 1 vector of scores for

subjects on the b
th

 variable component at the k
th

 occasion, denoted by Q k b[, ] , as

Q D Hk kb b[, ] [, ]= .

An equivalent form is Q GCk kb b[, ] [, ]= .  One could also define scores for the variables on the

subject components.

In some applications it may be useful to inspect the scores of all combinations of the

elements of two modes on the components of the third mode.  For instance, for longitudinal data

the scores of each subject-time combination on the variable components can be used to inspect the

development of a subject’s score on the variable components over time (Kroonenberg 1983).

Component scores serve as an intermediate level of condensation between the raw data and the

three-mode model.
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Example 6.2

In Figures 6.3, 6.4, 6.5 and 6.6 I present the scores of the geological variables at the six

occasions on each of the four streamwater components.  These scores are based on the Tucker2

solution with four geological and four streamwater variates, as given in Section 5.4.

The scores give a picture of how the geological variables relate to the streamwater

components.  I start by making two general observations on the plots.  First, one notices that in

the plots for the first three components (Figures 6.3, 6.4 and 6.5) is that the relative positions of

the geological variables are steady, even roughly proportional, over time.  This is a reflection of

the fact that the off-diagonal elements of the core matrices are near zero.  Indeed, if one plotted

scores based on the PARAFAC (orth.) model the positions of the scores would be exactly

proportional over time.  Only for the fourth variate does this not hold true.  If one looks at the

core matrix in Table 5.3 for the March 1982 one sees a large off-diagonal element (1.25) between

the fourth streamwater variate and first geological variate.  Second, note that the range of the

scores narrows for the subsequent components.  This is because each component accounts for less

of the variation than the previous.

I will just point out a few notable details about the score plots to provide a sense for how

one interprets them.  First, recall from Section 5.4 that the first streamwater component is

interpreted to be related to the results of the weathering due to carbonic acid, with heavy

weightings for, silica, alkalinity and the alkaline ions. Figure 6.3 shows where the geological

variables measure on this component over time.  For example one sees that altitude (6) has a

generally low score, but is particularly low at the first occasion, August 1981.  Also, note in

Figure 6.5 that drainage density (7) has a high score on the third component at the fourth

occasion (March 1982).  This component was related in Section 5.4 to high silica and sodium, the

results of plagioclastic weathering.  Drainage density explains a relatively good deal of the

variation of this component and of the associated streamwater variables at this occasion.

The key to the numbering is shown in Figure 6.2.  Note that some numbers may be

obscured by others.
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Figure 6.3  Scores on the First Streamwater Variate
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Figure 6.4  Scores on the Second Streamwater Variate



69

kl)m�n�o
k p
k
k
k
kn�m�q�o
k
k
k q q

r k q q q
s k.p t p uv n�m�n�o�l l p q
w k x l l l l
y k.x t x u x zr k.z z { x

k.{ | {
k { { | |} n�m�q�o |
k
k.|
k |
k
k} l)m�n�o
k~=� o ��������������������� o ��������������������� o ��������������������� o ��������������������� o ��������������������� o ���
�)��� m u l � y���� m u l �)����m u�x � � w m u�x � �=� u�x � � � y u�x

v�s�s � r)�=v �

Figure 6.5  Scores on the Third Streamwater Variate
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Figure 6.6  Scores on the Fourth Streamwater Variate
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6.5  RESIDUAL PLOTS

Kroonenberg (1983) recommends sums of squares plots to assess the quality of fit of the

elements of a mode.  For each variable (or subject) one plots its sums of squares fit (sums of

squares explained) against its sums of squares residuals (sums of squares lack of fit).

Example 6.3

Below in Figure 6.7 is the residual plot for the Shenendoah data based on the estimates

for the four component PARAFAC (orth.) model from Section 5.5.  Plotted are the sums of

squares residuals versus sums of squares fit for the fourteen variables.  Note that the total sums of

squares for each variable is the total of the sums of squares explained by a separate multiple

regression at each occasion.

In this plot one sees the relationship variance of variables temperature (d), discharge (a)

and nitrate (n) are modeled relatively poorly by the three-mode model.  If one recalls the analysis

of Section 5.5, these were variables that did not participate in any of the processes attributed to

the four variate pairs.  On the other hand, some streamwater variables are modeled well by the

three-mode models, such as alkalinity.

The key relating the numbers to the variables is given in Figure 6.8.
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Figure 6.7  Residual Plot for the Sums of Squares Explainable of the Streamwater Variables

a discharge h K
+

b conductivity i alkalinity

c pH j SO4

=

d temperature k Cl
−

e Ca
++ m SiO4

=

f Mg ++ n NO3

−

g Na
+ p NH 4

+

Figure 6.8 Key to Symbols

6.6  SUMMARY

In this chapter I showed how to use graphical displays to aid in the analysis of the

relationship between two sets of variables over time.  These displays were related to the CCA,

RA, or PR parameters of the three-mode models of Chapter Six.  The joint plots showed how the
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variables from the two sets related to each other.  The component plots were useful for showing

the interactions between variables and components over time.  In all, these plots allow the

researcher to get a quick, visual appreciation of the relationships between many variables at

different occasions.
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CHAPTER SEVEN

COVARIANCE STRUCTURE ANALYSIS

7.1  INTRODUCTION

In this chapter I model canonical variate analysis (CVA) with longitudinal data using

covariance structure analysis (COSAN) (McDonald 1978, 1980).  If one assumes common

canonical variates, then multivariate data with group structure imply a certain covariance

structure.   COSAN models this implied structure.  An advantage of modeling with COSAN is

that SAS software exists for analyzing it, obviating the need to program new algorithms.

I begin Chapter Seven with a description of the COSAN model in Section 7.2.  In Section

7.3 I express CVA with longitudinal data as a covariance structure.  In Section 7.4 I show how

CVA over time is parameterized in the COSAN framework.  Lastly, in Section 7.5 I show a

limited example based on the Shenandoah study previously described in Section 5.4.
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7.2  COVARIANCE STRUCTURE ANALYSIS

Covariance Structure Analysis (McDonald 1978, 1980, SAS 1990) is a model for

analyzing positive definite or semidefinite matrices.  Most commonly known models for analyzing

covariance structures can be presented as special cases of COSAN, such as principal components

analysis, confirmatory and exploratory factor analysis, and LISREL (Linear Structural RELations,

Jöreskog 1989).

The general form of the COSAN model is

C F P F F P F= ′+ + ′1 1 1 L m m m (7.1)

where C is a symmetric positive definite or semi-definite matrix;  each Fk , k = 1, ,K m , is the

product of sk  matrices, F F Fk k k k
= 1K s ;  and each matrix Pk  is symmetric.  The matrices Pk  can

be of the form of an inverse of a matrix H k , that is, P Hk k= −1 .  The matrices Fki  above can be of

the form of an inverse of a matrix H ki , or of the inverse of an identity matrix minus H ki ;  that is,

Fki  can be of the form F Hki ki= −1  or F I Hki ki= − −( ) 1 .  Furthermore, a matrix can contain both

parameter terms and constant terms.  A parameter can be constrained to be a function of other

parameters.  Hence COSAN is a flexible model for analyzing covariance structures.

The general idea behind COSAN is that covariance structures can often be modeled as the

crossproduct of matrices whose columns consist of the weights of components or the loadings of

factors.  Consider for example the factor analysis model, ΣΣ ΨΨ= ′ +LL . ΣΣ  is modeled as the

crossproduct matrix of L, the matrix of factor loadings, (plus a diagonal matrix of specific

variances ΨΨ ).  The factor analysis model is expressed in COSAN as C F P F F P F= ′ + ′1 1 1 2 2 2 ,

where F1  is the matrix of factor loadings, P1  and F2  are restricted to be identity matrices, and

P2  is restricted to be a diagonal matrix of specific variances.  One can incorporate more

complexity to get LISREL models by modeling the Fk  to be the product of matrices

F F Fk k k k
= 1K s , and where appropriate by constraining these Fki  to be either the inverse of a

matrix of parameter and constants, or the identity matrix minus the inverse of a matrix of

parameter and constants (see Jöreskog 1989).

In COSAN restricting a matrix to be orthogonal is done indirectly with the Cayley

(McDonald 1978) decomposition.  For example, if one wants to restrict a matrix of parameters

and constants L to be orthogonal, then set L I H I H= − ′ −−( ) ( )1 , where H is skew symmetric

with zeros as its diagonal elements.  (Skew symmetric means H is parameterized such that

H H= − ′ ).

For an example of modeling orthogonal matrices consider the principal components

model.  This is parameterized as

C I H I H P I H I H= − ′ − − ′ − ′
′− −( ) ( ) ( ) ( )1 1 .

P is a p p×  diagonal matrix whose elements are the squares of the eigenvalues associated with

the principal components.  The p p×  orthogonal matrix of principal components V is found as

V I H I H= − ′ −−( ) ( )1 , where H is a p p×  skew symmetric matrix.  In terms of the model given



76

in (7.1), C F F PF F= ′ ′11 12 12 11 , where F11  is the inverse of the identity minus ′H , and F12  is the

identity minus H.

The COSAN model can be estimated using several different fit functions.  These include

maximum likelihood if one assumes the data follow a multivariate normal distribution.  Other fit

functions include unweighted least squares and generalized least squares.  Estimates and test

statistics can be obtained using SAS’s Proc Calis package, which offers a variety of fit functions

and convergence algorithms.  All of the fit functions mentioned previously can be fit with Proc

Calis.  Proc Calis also offers the user the choice of the several optimization techniques.  These

include conjugate-gradient techniques, the Marquardt technique, and Newton-Raphson

techniques.  Furthermore, parameter constraints can be specified using SAS programming

statements.

7.3  M ODELING CANONICAL VARIATE ANALYSIS OVER TIM E AS A 

COVARIANCE STRUCTURE

The CVA over time model that I present in this section is more akin to an extension of RA

than of CVA, as the canonical variates are orthogonal in their weights as opposed to being

uncorrelated.  Essentially, I will model the between-groups covariance matrix.  Start with the

standard (non-longitudinal) case by performing a spectral decomposition of the between-groups

covariance matrix.  Let the between-groups covariance matrix for p Y-variables be denoted as

CovB(Y), and let V denote a p r×  columnwise orthonormal matrix of variate weights.  Then

CovB( )Y VD V= ′2 ,

where D is an r r×  diagonal matrix whose 
th

i  diagonal element is the square root of the

between-groups variation of the 
th

i  column of V, v i .

Now consider the multiple occasions case.  (As a reminder, X and Y are assumed to be

centered).  The products matrix for Yi  and Yj  regressed on X is Y X X X X Yi j( )′ ′−1 , where Yi  is

the Y-data at the 
th

i  occasion.  But ( 1)
- 1

2n - ( )′ ′ = ′− ∗
X X X Y W D V

1
2

j j , where W
∗
, and V are

the redundancy variates for the X-variables and Y-variables as defined in Section 2.2.4, and D j  is

a diagonal matrix whose i
th

 diagonal element is the square root of the variance explained by the

i
th

 variate;  see equation (2.2).  Now if one assumes that one has common variates at each of g

occasions, then

( 1) -1
n - Y X X X X Y VD D Vi j i j( )′ ′ = ′−1 . (7.2)

But (7.2) implies

CovB( : : : )Y Y Y

VD V VD D V VD D V

VD D V VD V VD D V

VD D V VD D V VD V

1 2

1

2

1 2 1

2 1 2

2

2

1 2

2

L

L

L

M M O M

L

g

g

g

g g g

=

′ ′ ′
′ ′ ′

′ ′ ′





















, (7.3)
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where CovB( : : : )Y Y Y1 2 L g  indicates the between-groups covariance matrix for the p variables

over g occasions.  This between-groups covariance matrix follows a non-central, deficient W ishart

distribution.  Thus maximum likelihood estimates are not readily obtained.  However, (7.3) can be

estimated by the method of least squares.

In order to estimate with the method of maximum likelihood one must include the

within-groups covariance matrix in the model, as the between-groups covariance matrix plus the

within-groups covariance matrix yield the overall covariance structure, which does follow a

W ishart distribution.  A plausible assumption is that the within-groups covariance matrices at all

occasions are proportional to E, where E is a p p×  positive definite matrix.  Then

CovW ( )Y A E= ⊗ , where CovW ( )Y  is the pg pg×  within-groups covariance matrix, and A is

a g g×  positive semi-definite matrix scaled such that trace( )A = g .

The approach outlined above does not model W, the matrix of coefficients for the

X-variables (which are group indicators).  If one desires an estimate of W, a reasonable approach

is to find W which minimizes the sums of squares fit to S WD VXYk k= ′ , for k = 1, ,K g .  This is

equivalent to a step in the alternating least squares algorithm for the PARAFAC (orth.) model.

A more complicated way to obtain W is to model the SXY  and SXX  matrices along with

the SYY  matrices.  By definition S W WXX = ′− −1 1  since ′ =W S W IXX  and S W D VXY1

1

1= ′−

since ′ =W S V DXY1 1 .  Hence the resulting model is

S S S S

S S S S

S S S S

S S S S

W W W D V W D V W D V

W D V VD V VD D V VD D V

W D V VD D V VD V VD D V

W D V

XX XY XY XYg

Y X Y Y Y Y Y Yg

Y X Y Y Y Y Y Yg

YgX YgY YgY YgYg

k

k

k

k

1 2

1 1 1 1 2 1

2 2 1 2 2 2

1 2

1 1 1

1

1

2

1

1

1 1

2

1 2 1

1

2 2 1 2

2

2

1

L

L

L

M M M O M

L

L

L

L

M M M O M























=

′ ′ ′ ′ ′ ′ ′
′ ′ ′ ′ ′
′ ′ ′ ′ ′

′ ′

− − − − −

−

−

−
VD D V VD D V VD Vk k k1 2

2′ ′ ′






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
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
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




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
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L

.

7.4  PUTTING CVA OVER TIME IN THE COSAN FRAMEWORK

Next I show how the CVA over time model is expressed in terms of the Fi  and Pi

matrices of (7.1).  The model for the between-groups covariance matrix in (7.3) can be

decomposed as in (7.4):

V

V

V

D

D

D

I I I

I I I

I I I

D

D

D
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V

O O
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O O
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2

1

2

k k

. (7.4)

Note that the rank of the center matrix and thus the rank of the product of the matrices is r, where

r is the number of common variates, r p g≤ min( , - 1) .  Now, the second and fourth matrices in
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(7.4), that is, the ones with block diagonals of D1  to D g , and the center matrix can be expressed

directly in the COSAN model.  For example, one could label the matrix of block diagonals of D1

to D g  as F11 , and the center matrix as P1 .  However, V must be modeled indirectly, using the

Cayley decomposition to constrain it to orthogonality.  Hence let the matrix I V( )k ⊗  be

I I H I I H( ) ( ) ( ) ( )( ) ( )k p k p⊗ + ⊗ −−1 .  Let I I H( ) ( )( )k p⊗ + −1  be labeled F12  and let

I I H( ) ( )( )k p⊗ −  be labeled F13 .  Thus the between groups covariance is modeled as

F F F P F F F12 13 11 1 11 13 12′ ′ ′ .

To see how the error matrix, CovW( )Y A E= ⊗ , would be expressed in the terms of the

Fi  and Pi  matrices of (7.1), notice that:

A E

L

L

L

I I I

I I I
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11 12 1

21 22 2
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

p p p

p p p

p p p

where L is a p p×  matrix.  Thus E is not directly modeled by COSAN, but is determined as

E LL= ′ .  One can call the matrix of block diagonals of L matrices F21 , and the center matrix

P2 .  These terms are added to those that model the between groups variation.  Thus the model

for the total covariance is the between groups covariance plus the within groups covariance:

F F F P F F F F P F12 13 11 1 11 13 12 21 2 21′ ′ ′ + ′ .

It is necessary to mention a further detail.  In the CVA over time model one will usually

desire a solution with fewer variates than p, say r.  Thus one would like to model orthonormal V,

where V has r < p  columns.  But the Cayley decomposition requires a square matrix.  Hence one

needs to model dummy canonical variates in the matrix V.  One fixes these dummy variates by

setting certain elements of V equal to zero.  However, this must be done indirectly because in the

COSAN model one directly estimates the matrix of parameters H.  The details on how to do this

are found in Appendix Five.

7.5  AN EXAMPLE

In this section I revisit the data from the Shenandoah study which was described in

Section 5.4.  Because of unresolved difficulties in programming in Proc Calis and in executing

programs that model large covariance matrices, the example will be limited to modeling one

canonical variate over the first two occasions, August and September of 1981.  Since the error

variance was previously determined to be non-homogeneous (see Table 5.1), the between-groups

covariance matrix is being modeled with the fit function unweighted least squares.  The SAS

program is given in Appendix Five.

The weights for the first canonical variate are presented in Figure7.1, along with the first

canonical variate of the PARAFAC (orth.) solution for comparison.  These weights are similar, as

are the estimated roots of the variances explained by each variate, which are 2.47 and 2.65 for
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COSAN, in contrast to 2.25 and 2.52 for the PARAFAC (orth.).  The similarity in the parameter

estimates is evidence that both methods are correctly estimating the common variate, though it

will be necessary to estimate a larger COSAN model with data from all the occasions to have

convincing evidence of this.

Measurement COSAN Estimates PARAFAC (orth.)
 Estimates

discharge -0.024 0.036

conductivity 0.411 0.369

pH 0.046 0.113

temperature 0.097 0.132

Ca
++ 0.415 0.383

Mg ++ 0.434 0.365

Na
+ 0.312 0.364

K
+ -0.069 -0.158

alkalinity 0.467 0.394

SO4

= 0.052 0.14

Cl
− 0.220 0.265

SiO4

= 0.293 0.363

NO3

− 0.023 0.133

NH 4

+ -0.001 0.035

Figure 7.1 Estimates for the COSAN and PARAFAC Models



80

7.6  CONCLUDING REMARKS

In summary, COSAN offers a flexible and powerful modeling tool for modeling CVA with

longitudinal data.  However, work needs to be done to overcome programming and estimation

difficulties.  One problem is that the SAS system uses up all the available memory when large

covariance matrices are analyzed.  Another is that when writing code each element of each matrix

must be specified, making programming a laborious task for modeling large matrices.  This is seen

in the SAS code in Appendix Five.  A way to solve this problem is to write a macro that sets up

the program code.

If the difficulties mentioned in the previous paragraph are overcome, then the model can

be further developed.  For example, modeling uncorrelated canonical variates would be useful, as

would a model that hypothesized that some variates be unique to each occasion.
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CHAPTER EIGHT

CANONICAL VARIATE ANALYSIS OVER TIM E

8.1  INTRODUCTION

In this chapter I present a model for CVA with measurements made over multiple

occasions.  In contrasts to earlier chapters, this chapter emphasizes statistical inference based on

maximum likelihood methods.  I shall call the models developed in this chapter CVA/time, though

I distinguish between models with orthogonal canonical variates, CVA/time (orthogonal), and

those with uncorrelated canonical variates, CVA/time (uncorrelated).  CVA/time is suggested by

Campbell and Tomensoǹs (1983) model for CVA with multiple datasets, which hypothesizes that

the group means lie on planes defined by canonical variates common to all datasets (see Section

2.4).  Analogously, CVA/time hypothesizes that the group means lie on planes defined by

canonical variates which are common to all occasions.
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The goal of the CVA/time model is to answer the question of what is and what is not

changing over time when one has multivariate data with group structure.  In particular it attempts

to determine if the canonical variates are stable over time, and if they are, if the positions of the

group means on the canonical variates are changing over time.  Thus CVA/time is the only model

in this dissertation that will estimate the group positions and develop hypothesis tests to determine

if they are equal over time.

Chapter Eight is organized as follows.  In Section 8.2 I make two preliminary points.  In

Section 8.3 I detail a model for group means in the space of orthogonal canonical variates,

CVA/time (orthogonal).  I also derive estimating equations for this model, discuss their solution

and describe how to make statistical inferences.  In Section 8.4 I use simulated data to test the

methodology of Section 8.3.  In Section 8.5 I derive a model for group means in the space of

uncorrelated canonical variates, CVA/time (uncorrelated).  Uncorrelated variates entail assuming

a particular structure for the within-groups covariance matrix.  The estimation of this structure is

also discussed in this section.  In Section 8.6 I illustrate the methodology of Section 8.5 by

analyzing a real dataset.  Lastly, in Section 8.7 I compare CVA/time with several alternative

methods for this type of data, with particular attention given to doubly multivariate repeated

measures.

8.2  PRELIMINARIES

8.2.1  Orthogonal Versus Uncorrelated Variates

This chapter presents two models with differing assumptions about the structure of the

group means.  The first model to be discussed CVA/time (orth.), hypothesizes that the canonical

variates are orthogonal to each other in their weights.  It models the positions of the group means

in the space of the untransformed data.  The second model to be discussed, CVA/time (unc.),

hypothesizes that the canonical variates are uncorrelated, which is consistent with the standard

definition of canonical variates.  It models the positions of the group means in the space

transformed by the Mahalanobis transformation..  I shall present the CVA/time (orth.) model first

because it is simpler.

The main reason to model orthogonal variates is that, unlike uncorrelated variates, they do

not require the assumption that one has the same within-groups covariance structure at each

occasion, an assumption which may be unrealistic.  Beyond the issue of whether the within-groups

covariance matrices are stable over time, there are important differences between the approaches

whose implications the researcher needs to consider.  These differences are analogous to the

differences between canonical variate analysis and redundancy analysis, a topic which is discussed

in Section 2.2.3.  Uncorrelated variates have the important advantage that they are scale invariant.

They also are more closely related to the goal of optimizing the discrimination among the groups.

Though CVA/time (unc.) does not explicitly maximize group discrimination over time (see

Section 5.2.2 for something along this line), it is a generalization of CVA, which does.  On the

other hand, the CVA/time (orth.) model is not a true generalization of CVA, but is more akin to a

generalization of redundancy analysis for grouped data (see Section 2.2.3).
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The situations where one may prefer orthogonal variates to uncorrelated variates when

uncorrelated variables are feasible are the same as those where one would prefer to perform a

redundancy analysis over a canonical correlation analysis.  CVA may find group differences which

are large in terms of discrimination but small in terms of between-groups variation explained.  Or,

the total variation explained may be of direct interest.  For example, if the measurements made are

directly comparable, such as if one had a battery of exams with the same scales, one may prefer to

maximize the total variance explained by the group structure.

8.2.2  The Structure of the Data

A clarification of how the data is organized illuminates the discussion of the previous

section and other issues not yet touched upon.  The same variables measured at different

occasions will be treated as distinct variables.  Hence tp variables are effectively modeled, where t

is the number of occasions and p is the number of variables measured at one occasion.  This

contrasts with Campbell & Tomenson’s method which models distinct datasets of the same p

variables.

It will be necessary to partition ΣΣ , the tp tp×  within-groups covariance matrix, into t
2

p p×  matrices ΣΣ qs , where ΣΣ qs  is the matrix of covariances between the measurements of the q th

and s
th

 occasions, q s, , ,= 1 K t .  The partitioning of ΣΣ  is shown below:

ΣΣ

ΣΣ ΣΣ ΣΣ
ΣΣ ΣΣ ΣΣ

ΣΣ ΣΣ ΣΣ

=

′ ′
′







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








11 21 1

21 22 2

1 2

L

L

M M O M

L

t

t

t t tt

. (8.1)

The model developed in Section 8.3 assumes no specific structure for ΣΣ .  A consequence

of this flexibility in ΣΣ  is that there is no common p p×  within-groups covariance matrix, ΣΣ qq , by

which to transform the data.  In Section 8.5.2 a model will be introduced which assumes a

structure for ΣΣ  that specifies common ΣΣ qq  and thus allows for modeling uncorrelated variates.

8.3  THE CVA/TIME (ORTHOGONAL) MODEL

In this section I develop a model for analyzing group structure with longitudinal

multivariate data which I shall call CVA/time (orthogonal).  CVA/time (orth.) is not a

generalization of CVA/time, but rather a generalization of redundancy analysis.  Beyond interest

in its own right, the discussion of this model introduces basic ideas and methods which will be

used later for the CVA/time model with uncorrelated variates.  In particular, I introduce the

concepts of common and unique variates, group positions, the methods of obtaining estimates,

and statistical inference.

The model I develop in this section encompasses several possible cases.  One basic model

hypothesizes a given number of variates common to all occasions.  A simple alternative to this

model is one that hypothesizes that there are an equal number of variates specific or unique at
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each occasion.  Henceforth I shall refer to the former as common variates and to the latter as

unique variates.  Unique variates are the natural alternative to common variates because they

hypothesize variates that change over time, and the interest is to determine what is and what is not

changing over time.

The model which I will refer to as CVA/time (orth.) hypothesizes both types of variates.

However, even more complex models are possible.  For example, one could hypothesize variates

which are common to only a subset of the groups.  Estimating equations can be derived for all of

the possible models using the methods of calculus, though I shall derive them only for the

CVA/time (orth.) model.

It is useful to give a simple example of a common variate model.  Assume the positions of

two group means can be plotted on one canonical variate which is common over two occasions,

and assume the positions of the group means change over time. Figure 8.1 shows the positions at

the first occasion, and Figure Error! Reference source not found. shows the positions at the

second occasion.

Figure 8.1
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Figure 8.2

8.3.1  The CVA/Time Model with Orthogonal Variates

The CVA/time (orth.) model is specified as follows;  assume the data follow the

multivariate normal distribution; x i iN~ ( , )µµ ΣΣ , where x i  is a tp  vector of random variables, µµ i

is a tp  vector of means, and ΣΣ  is a tp tp×  covariance matrix.  Further assume that µµ i  is

completely determined by group membership, so that µµ µµ µµi g∈{ , , }1 K , depending on the group

membership of the i
th

 observation.

The model for the structure of the means given in equation (8.2) below specifies u variates

for each occasion q; c of these variates, v v1 , ,K
c
, are common to all occasions, where v i

indicates the i
th

 common variate. u c−  of these variates, v v
c u+1

q q, ,K , are unique to the q th

occasion, where v i

q  indicates the i
th

 variate of the set of variates for the q th  occasion.  Thus the

model for the g th  group mean, µµ g , g = 1, ,K m , is:

µµ µµg g g

g

g

g

g

= + ⊗ + + ⊗ +
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c c
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u

t

e

e

e

e

, (8.2)

where µµ g  is a pt × 1 vector of means for the g th  group, µµ 0  is a pt × 1 vector of overall means,

v i  are c p × 1  vectors of common variates, v j

k  are ( )u c− t × 1 vectors of unique variates, eg i

q

,

is the score for the g th  group mean on the i
th

 canonical variate at the q th  occasion, and eg i,  is the

t × 1 vector whose elements are eg i

q

, .

Note the constraints on the parameters.  First, the group positions for each occasion for

each variate sum to zero, i.e., n
m

geg i

q

g

,

=
∑ =

1

0  for q = 1, ,K t , and i = 1, ,K u .  This constraint is just
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a reflection of the fact that the model is centered by an overall mean, µµ 0 .  Second, the common

variates are mutually orthogonal:

′ = ×V V Icom com c c
,

where Vcom  is the matrix whose columns are the c common variates.  Furthermore, within each

set of unique variates for each occasion the variates are constrained to be mutually orthogonal,

that is:

V V Iq q′ = − × −( (u c u c) ) ,

where V
q
 is the matrix whose columns are the u - c  unique variates for the q th  occasion,

q = 1, ,K t .  Finally, each variate in each set of unique variates is orthogonal with each common

variate.  Thus:

′ = ×V Vcom

q [ ]0 c u-c( ) .

Note there is a limit on u - c , the number of unique variates one can have at each

occasion. u - c  cannot be greater than the modular of 
p

t
.  For example, if p = t , then a model

can hypothesize at most one unique variate at each occasion.  Further, such a model is equivalent

to a model with p common variates.

8.3.2  Sufficient Statistics

Before proceeding to develop the estimating equations I will show a result for grouped

multivariate data that will simplify the later derivations.  I will show that xg  and S, the sample

means and within-groups covariance matrix, are sufficient statistics for µµ g  and ΣΣ , and

consequently for the parameters with which I later model µµ g  and ΣΣ .  The likelihood equations

for multivariate grouped data are as follows below, where X indicates the data matrix, µµ
indicates the parameters determining the mean of the variables, ΣΣ  indicates the parameters

determining the covariance of the variables, Ð ( | , )X µµ ΣΣ  indicates the likelihood of the data X

given parameters µµ  and ΣΣ , and x ig  is the i
th

 observation in the g th  group:

Ð ( | , )

( )

exp ( ) ( )X x xµµ µµ µµΣΣ
ΣΣ

ΣΣ= − ′ −





















− −

==
∑∑1

2 2 2

1
2

1

11π
npt n

nm

gi g gi g

ig

g

. (8.3)

Consider the part of the likelihood equation which is a function of xgi  and µµ g  and call it K.  Then

K is:

K gi g

i

gi g

g

g

= − ′ −−

==
∑∑ ( ) ( )x xµµ µµΣΣ 1

11

nm

= − − ′−

==
∑∑ tr gi g gi g

ig

g

( ( )( ) )ΣΣ 1

11

x xµµ µµ
nm



87

= − + − − + − ′−

==
∑∑ tr gi g g g gi g g g

ig

g

( (( ) ( ))(( ) ( )) )ΣΣ 1

11

x x x x x xµµ µµ
nm

Since tr gi g g g

i

g

( ( )( ) )ΣΣ −

=

− − ′ =∑ 1

1

0x x x µµ
n

, for g = 1, ,K m ,

K tr gi g gi g g g g g

ig

g

= − − ′ + − − ′− −

==
∑∑ ( ( )( ) ( )( ) )ΣΣ ΣΣ1 1

11

x x x x x xµµ µµ
nm

.

Recognizing that S x x x x= − − ′∑∑1
n

nm g

( )( )gi g gi g

i=1g=1

 and further rearrangement gives:

K g g g g g

g

= + − ′ −− −

=
∑1 1 1

1

n

m

nΣΣ ΣΣS x x( ) ( )µµ µµ .

Replacing K back into the likelihood equation one has the desired result:

Ñ
( | , )X S x xµµ µµ µµΣΣ

ΣΣ
ΣΣ ΣΣ= − + − ′ −










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









− −

=
∑1

2 2 2

1

2

1 1 1

1( )

exp ( ) ( )

π
npt n n

m

ng g g g g

g

. (8.4)

From this form of the likelihood function it is clear that xg  and S are sufficient statistics

for µµ g  and ΣΣ  because the likelihood function is factored into a part which is a function of the

sufficient statistics xg  and S, and the parameters µµ g  and ΣΣ , and a part which is not a function of

µµ g  and ΣΣ .

8.3.3  Estimating Equations

In this section I develop estimating equations for the CVA/time (orth.) model.  Henceforth

I will work with the log-likelihood equation instead of the likelihood equation.  Let Ò ( |, )X µµ , ΣΣ
stand for the natural logarithm of the likelihood of the data X given parameters µµ  and ΣΣ .  Then

Ò ( |, )X µµ , ΣΣ  is:

Ò ( | , )X µµ ΣΣ ΣΣ= − −npt n

2
2

2
log( ) logπ

− − ′ − + − ′ −








−

==

−

=
∑∑ ∑1

2

1

11

1

1

( ) ( ) ( ) ( )x x x x x xgi g i g

ig

g g g g g

g

g

ΣΣ ΣΣ
nm m

n µµ µµ . (8.5)

First I derive the maximum likelihood estimator for µµ o .  For convenience, let C denote

terms not involving µµ g , and F i i

q

g i( , , ),v v e  denote the terms in the model for µµ g  (8.2) that do

not involve µµ 0 ;  hence µµ µµg i i

q

g iF= +0 ( , , ),v v e .  Then the log-likelihood is:

( ) ( )Ò ( )X x v v e x v v e| , ( , , ) ( , , ), ,µµ µµ µµΣΣ ΣΣ= − − −
′

− −−

=
∑C F Fg g i i

q

g i g i i

q

g i

g

1
2 0

1

0

1

n
m

.

Taking the derivatives of the log-likelihood with respect to µµ o  yields the following:
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( )δ
δ

Ó
( )X

x v v e
| ,

( , , ),

µµ
µµ

µµΣΣ ΣΣ ΣΣ ΣΣ
o

g o g g g i i

r

g i

g

F= − − +− − −

=
∑1

2

1 1 1

1

2 2 2n n n
m

. (8.6)

One sets these derivatives equal to zero to obtain the estimating equations for µµ o .  The last term

in (8.6) drops out as n
m

g i i

q

g i

g

F( , , ),v v e 0
=

∑ =
1

, where 0 is a pt × 1 vector of zeros, because

eg i

q

g

,

=
∑ =

1

0
m

 for all q,i.  Hence:

n n
mm

g o g g

gg

ΣΣ ΣΣ− −

==

= ∑∑ 1 1

11

µµ x .

Multiplying through by ΣΣ  gives the maximum likelihood estimate for µµ o , which I denote as $µµ o ,

$µµ o g

g

g

g

g g

g

g=

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
 =
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=
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m m m

1

1

1

1

1

x x . (8.7)

$µµ o  is just the average over all observations.

Next, I derive estimating equations for ΣΣ .  Denote by C terms that are not a function of

ΣΣ .  Then 
Ó
( )X| ,µµ ΣΣ  is:

Ó
( | , ) log ( ) ( ) ( ) ( )X x x x x x xµµ µµ µµΣΣ ΣΣ ΣΣ ΣΣ= − − − − ′ + − − ′









−

==

−

=
∑∑ ∑C gi g gi g

ig

g g g g g

g

gn
n

nm m

2

1
2

1

11

1

1

.

Taking the derivative of 
Ó
( )X| ,µµ ΣΣ with respect to ΣΣ  yields:

δ
δ
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(X µµ ΣΣ
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)
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diagΣΣ ΣΣ ΣΣ ΣΣ1 1
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1
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1

( )( ) ( )( )x x x xµµ µµ µµ µµ .

Pre-multiply and post-multiply the above by ΣΣ , and set the equations equal to a matrix of zeros.

Then the normal equations are solved when:

$ ( )( ) ( )( )ΣΣ = − − ′ + − − ′−

==

−

=
∑∑ ∑n n n

nm m
1

11

1

1

x x x x x xgi g gi g

ig

g g g g g

g

g

µµ µµ , (8.8)

where $ΣΣ  denotes the estimate for ΣΣ .

One sees that $ΣΣ  is equal to S, the sample estimate of ΣΣ , plus an additional term which

depends on the difference between the predicted and observed group means.  Although the topic

of obtaining estimates will be discussed later in Section 8.3.5, it is worth mentioning now that this

additional term will be small when the model is correctly specified, but inflated when the model is

misspecified. S, on the other hand, is completely robust to model misspecification.  Thus in

practice using S may be preferable to $ΣΣ .
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Next I derive the estimating equations for v i , v i

r  and eg i, .  Substituting the means model

for µµ g  from equation (8.2) into equation (8.4) gives the likelihood equations for CVA/time

(orth.).  Denote the log-likelihood by × ( )X| ,µµ ΣΣ , and the terms which include neither v i , v i

r  nor

eg i,  by C.  Then:

× ( )
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where µµ 0

q  is the p × 1 vector of means averaged over all groups for the q th  occasion, and xg

q  is

the p × 1 vector of sample means for the g th  group.

The estimating equations for the common variates are considered next.  The estimation of

variates requires consideration of the constraints.  The constraints for the orthogonality of the

common variates are incorporated by the method of Lagrangian multipliers.  The constraints with

Lagrangian multipliers for the unit length of the common variates are as follows (note that here

and in subsequent developments the constraints with Lagrangian multipliers are implicitly set to

zero):

( )1
2

aa

1a

a −′γ∑
=

vv
c

,

where γ a  are c Lagrangian multipliers.  The constraints with Lagrangian multipliers for the

orthogonality of the common variates are:

∑ ∑
=

−

=

′γ
c

1a

1a

1b

baab vv ,

where γ ab  are c c -( 1) / 2  Lagrangian multipliers.  The constraints with Lagrangian multipliers for

the orthogonality of each common variate with all of the unique variates are:

γ abq a b

q

baq

′
= +==
∑∑∑ v v
c

uct

111

, (8.10)

where γ abq  are tc u c( - )  Lagrangian multipliers.  Denote the log-likelihood modified to

incorporate the constraints with Lagrangian multipliers by × ∗ ( )X| ,µµ ΣΣ .  Take the derivative of

× ∗ ( )X| ,µµ ΣΣ  with respect to v f :

δ
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1 11

c
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.

Setting these derivatives equal to a vector of zeros yields the estimating equations to solve for

v f .
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Next I derive the estimating equations for the unique variates.  The constraints with

Lagrangian multipliers are as follows, starting with those which constrain the unique variates to

unit length (note they are implicitly set to zero):

γ aq

a

q

a

q

qa 2
1

11

v v
′ −



== +

∑∑
t

c

u

,

where γ aq  are ( )u - c t  Lagrangian multipliers.  The constraints for the mutual orthogonality of

each unique variate with the other unique variates of the same occasion are:

γ abq a

q

b

q

b

a

aq

v v
′

= +

−

= +=
∑∑∑
cc

ut

1

1

11

,

where γ abq  are t u c u c 1( )( ) /− − − 2  Lagrangian multipliers.  The constraints for the

orthogonality of each common variate with all of the unique variates are already given in equation

(8.10).

Now take the derivative of Ø ( | , )X µµ ΣΣ  with respect to v f

r .  These derivatives yield the

estimating equations for solving for v f

r  when they are set to zero:

δ
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Lastly I derive estimating equations for the group positions, the eg b

s

,  terms, beginning with

those corresponding to the common variates.  The constraints for these terms are n
m

g g b

s

g

e ,

=
∑ =

1

0 ,

for s = 1, ,K t  and b = 1, ,K c .  They are handled in the estimation by letting e eb

s

h b

s

h

m

m

, ,= −
=

−

∑
1

1

 for

s = 1, ,K t  and b = 1, ,K c .  One takes the derivative of Ø ( | , )X µµ ΣΣ  with respect to ew f

r

,  for

w ≠ m , and sets these derivatives equal to zero to obtain the estimating equations for the eg b

s

,

terms:
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The estimating equations for the group positions corresponding to the unique variates are

handled similarly to those corresponding to the common variates.  The constraints are identical to

those of the common variates.  Take the derivative of Ø ( )X| ,µµ ΣΣ  with respect to ew f

r

,  for h ≠ m :

δ
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Set these derivatives equal to zero, yielding the estimating equations.
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8.3.4  Unchanging Group Positions

Another model of possible interest to the researcher is one that hypothesizes that the

scores for the group means on the common variates, eg a

q

, , do not change;  i.e., they are equal at

different occasions, e eg a

q

g a

s

, ,= ∀ ≠q s .  Let eg a,  denote the unchanging score of the g th  group

for the a
th

 common variate.  The likelihood equation for this model is obtained by substituting

eg a,  for eg a

q

,  in the likelihood equation for CVA/time (orth.) (8.9).  The constraints on the eg a,

and the manner of handling them are the same as for the eg a

q

,  terms in Section 8.3.3.  The

estimating equations for the eg a,  are found by taking the derivative of Ù ( | , )X µµ ΣΣ  with respect to

eg f,  and setting it equal to zero:
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The estimating equations for v i  and v i

q  are the same as those in the previous section

except that eg a,  is substituted for eg a

q

, .

8.3.5  Obtaining Estimates

The estimating equations taken together with the constraints result in a system of

non-linear equations which can be solved with a Gauss-Newton algorithm, implementing the

Marquardt modification where appropriate.  The estimates for all parameters are generally solved

for simultaneously, as all the estimating equations must be simultaneously true in order to be at a

solution.  However, the estimation of µµ 0  is an exception to this rule as its estimator is a function

only of the data, not of any of the other parameter estimates;  see equation (8.7).

The algorithm does not guarentee convergence to a local extremum or saddle point.  The

convergence of the algorithm to a globally optimal solution depends on good starting values.

Reasonable starting values can be obtained for the common variates by performing a common

principal components on the group means.  Starting values for the unique variates can be obtained

by performing separate canonical variate analysis or redundancy analyses at each occasion.  For

models that include both common and unique variates one has to use both methods to obtain

starting values.  In some cases it may be necessary to try more than one set of starting values.

One can examine the matrix of second order partial derivatives of the likelihood function with to

the parameters to determine whether a solution is a local maximum, minimum or saddle point.

Unfortunately, one can never be certain one has achieved a global solution.

8.3.6  Statistical Inference

Maximum likelihood estimation has under regularity conditions (W ilks 1962) properties

which allow one to perform various forms of statistical inference including hypothesis tests and
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confidence intervals for parameter estimates.  This section discusses how such inference is

obtained.

Firstly, define the composite hypothesis and alternative as follows:

H

H

0 0

1 1

= ∈
= ∈

θθ
θθ

ΘΘ
ΘΘ ,

where ΘΘ ΘΘ ΘΘ0 1= − , θθ  is an r-dimensional vector of unknown parameters to be estimated, ΘΘ  is

an open region in r-dimensional Euclidean space and ΘΘ 0  is q-dimensional, q < r .  Then for such

composite hypotheses likelihood ratio tests can be based on the asymptotic chi-square distribution

of negative two times the log-likelihood ratio, which is denoted by −2 λ(log X) , where:

λ(X
X

X
)

sup{ ( , ): }

sup{ ( , ): }
=

∈
∈

Ú
Ú θθ θθ

θθ θθ
ΘΘ
ΘΘ

0

1

,

and sup{ ( , ): }
Ú

X θθ θθ ∈ΘΘ1  is the maximum likelihood estimate given θθ ∈ΘΘ 1 .  For large sample

sizes the following is approximately true:

−2 λ( Χ −log 2X) ~ r q .

The form of an α -level test is straightforward:  reject H 0  if

−2 λ( Χ α−log 2X) ( )≥ −r q 1 .

One can perform a likelihood ratio test if the set of parameters of the null hypothesis is

nested within the set of parameters of the alternative hypothesis.  For example, the set of

parameters of the common variate hypothesis is nested within the set of parameters of the unique

variate hypothesis.  Thus one can test the null hypothesis that a given number of variates are

common versus the alternative that they are unique.

Next I point out that maximum likelihood estimates are consistent and asymptotically

unbiased.  Furthermore, they are asymptotically normal with a covariance matrix equal to the

inverse of the information matrix.  The information matrix is defined as:

I
X

( )
( , )

( )θθ θθ θθ θθ0 0= − =












δ
δθ δθ

2

ϕ

Û
i

,

though in practice one evaluates the information matrix at the parameter estimates based on the

data.  Estimates for variances of the parameter estimates can be obtained from I−1

0( )θθ , enabling

one to make confidence intervals and simple hypothesis tests for the parameters.  Let θ i  be a

parameter in the model, and $θ i  be its estimate.  Then a 100 1× −( )%α  confidence interval for θ i

would be ( )
$θ αi ± −c Zii 1 2

, where c ii  is the i
th

 diagonal element of I−1( $ )θθ  and ( )Z
1 2−α  is the value

of the standard normal variate corresponding to a cumulative probability of 1 2− α .

An α -level hypothesis test for testing the following hypothesis that a single parameter,

θ i , is zero

Η : θ = 0 : θ 00 i ivs H. 1 ≠ ,

would be to reject H 0  if ( )
$θ αi ≥ −c Zii 1 2

 or ( )
$θ αi ≤ − −c Zii 1 2

.  One can test more complex

hypotheses of the form
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Η : = 0 : 00 C Cθθ θθvs H. 1 ≠
where θθ  is a q × 1  the vector of parameters and C is an r q×  matrix of rank r with the Wald

(Wald 1945) statistic W, where W = ′ ′ − −( $ ) (( $ ) ( $ ) $ ) $C C I C Cθθ θθ θθ θθ θθ1 1 .

8.4  SIMULATIONS

In this section I present a simulated study of the methods developed in Section 8.3.

Simulated data have the advantage that one knows the true structure of the data, hence one can

ascertain whether the method is successful in discerning that structure.  In particular I attempt to

answer the following questions:  Is the method obtaining the true parameters?  When the null

hypothesis is true, is the likelihood ratio test rejecting at the specified alpha-level?  Is the test

statistic distributed as predicted in the theory?  And, does the simulated variance-covariance

matrix for the parameter estimates converge to the theoretical asymptotic variance-covariance

based on the inverse of the information matrix?

These simulated data were generated using a pseudo-multivariate normal distribution in

SAS’s Proc IML.  The generated multivariate normal data served as residuals which were added

to a mean structure specified to be a one common variate model.  The actual parameters were

chosen arbitrarily.  The simulated data consisted of measurements of three variables at three

occasions for four groups.  The SAS code used to generate the simulation and obtain the

estimates is given in Appendix Six.  There were three simulations performed.  One simulation

generated 1,000 datasets of a sample size of 100, or a sample of 25 for each of the four groups.

The other two simulations generated 5,000 datasets each of samples of sizes of 400 and 4,000, or

100 and 1,000 for each of the four groups.  There were fewer simulations for samples of size 100

(four groups of 25), because the algorithm to solve the estimating equations took prohibitively

longer to converge.

The information matrix was calculated using the computer package “Mathematica”

(Wolfram 1991).  The Mathematica code is given in Appendix Seven.  It is clear from equation

(8.6) that the theoretical estimate for µµ 0  based on the information matrix is independent of the

estimates for the rest of the parameters because the derivative of (8.6) with respect to any

parameter other than µµ 0  will be zero.  Further, it is straightforward to show that the derivatives

of
δ

δ

ÜÞÝàß
(X µµ ΣΣ

ΣΣ
)

 with respect to v and eg  will be zero.  Thus $ΣΣ  is independent (asymptotically) of

the estimates of v and eg .  Hence Table 8.2 and Appendix Eight only show the calculated

variances of the parameters v  and eg .

The model for the group means used to simulate the data is shown below.  The terms are

defined as in Section 8.3:

µµ µµg g= + ⊗0 e v ,
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where g = 1, ,K m  and µµ g  is a 9 1×  vector.  The parameter values for v, the common variate,

are:

[ ]v = ′
05 05 0 707. , . , . .

Let E be the matrix whose columns are eg , g = 1, ,K m , then:

E =
− −

−
− −

















1 05 5 1

0 1 0 1

1 5 5 1

. .

. .

.

The errors have the covariance matrix C:

C =

4 8 21 10 2 4 105 05 12 0525 0 25
21 3 3 14 105 165 0 7 0525 0825 0 35
10 14 2 9 0 5 0 7 145 0 25 0 35 0 725
2 4 105 0 5 4 8 2 1 10 2 4 105 0 5
105 165 0 7 21 33 14 105 165 0 7
0 5 0 7 145 10 1

. . . . . . . . .

. . . . . . . . .
. . . . . . . . .
. . . . . . . . ..

. . . . . . . . .
. . . . .4 2 9 05 0 7 145

12 0 525 0 25 2 4 105 05 4 8 21 10
0 525 0 825 0 35 105 165 0 7 21 33 14
0 25 0 35 0 725 0 5 0 7 145 10 14 2 9

. . . .
. . . . . . . . .

. . . . . . . . .
. . . . . . . . .

























.

The one common variate model and the one unique variate model were fit for each

dataset.  The one unique variate model is as follows:

µµ µµg o

g

g

g

e

e

e

= +
















1 1

2 2

3 3

v

v

v

,

where by definition n
m

g g

g

e
=

∑ =
1

0, v v
1 1

1
′ = , v v

2 2
1

′ =  and v v
3 3

1
′ = .  Note that for 108 of the

1,000 datasets with sample size of 100 that the algorithm for the unique variates converged to an

estimate that was clearly not a global maximum.  I determined that an estimate for the unique

variates model was not a global maximum if it had a lower likelihood than the estimate of the

common variate model.  Since the unique variates model has more free parameters than the

common variates model the likelihood of its estimate should be greater if it is at the global

maximum.  The 108 runs were not included in the tables.  In only one of the 5,000 runs with the

sample size of 400 did this problem occur, and in none of the runs with the sample size of 4,000.

Table 8.1 shows the means of the parameter estimates based on the simulations.  At the

left are the true parameter values.  All three sets of estimates are in the area of the true parameter

values.  However, the estimates based on the larger samples are clearly closer to the true values.
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Table 8.1 Parameter Estimates

Para-

meters

True

Parameter

Values

Estimates

for Sample

of 4000

Estimates

for Sample

of 400

Estimates

for Sample

of 100

v1
0.5 0.4994 0.4967 0.4911

v2
0.5 0.4997 0.4981 0.4910

v3
0.7071 0.7073 0.7058 0.6940

e1

1 1.0 0.9995 1.0048 1.0368

e1

2 0.0 0.0006 0.0001 0.0290

e1

3 1.0 0.9989 1.0018 1.0359

e2

1 0.5 0.4999 0.4990 0.4892

e2

2 1.0 0.9989 1.0024 1.0078

e2

3 -0.5 -0.5000 -0.5057 -0.5181

e3

1 -0.5 -0.4997 -0.5029 -0.4901

e3

2 0.0 0.0003 0.0016 0.0039

e3

3 0.5 0.5007 0.5033 0.5209

e4

1 -1.0 -0.9997 -1.0009 -1.0360

e4

2 -1.0 -0.9998 -1.0007 -1.0407

e4

3 -1.0 -0.9996 -0.9994 -1.0389

Table 8.2 presents the observed variances based on the simulations for comparison with

the theoretical variances based on the inverse of the information matrix.  The theoretical variances

are calculated assuming a sample of size 400.  Not presented in Table 8.2 are the theoretical

variances for a sample of size 4,000, which are 1
10

th  that of the variance for n= 400 , and the

theoretical variances for a sample size of 100, which are four times those of a sample size of 400.

One sees that the estimated variances of the parameter estimates are close to the theoretical

variances for the sample sizes of 400 and 4,000, but not for a sample size of 100.  Examination of

the full variance-covariance matrices would reveal the same pattern.  The full theoretical

variance-covariance matrix is presented in Appendix Eight, while the full variance-covariance

matrices based on the estimates from the simulations is presented in Appendix Nine.
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Table 8.2 Theoretical and Observed Variances for the Parameter Estimates

Para-

meters

Theoretical

Values For

Sample of 400

Observed

for Sample

of 4000

Observed

for Sample

of 400

Observed

for Sample

of 100

v1
0.002998 0.000314 0.00326 0.046457

v2
0.001589 0.000158 0.001802 0.037871

v 3
0.001928 0.0001964 0.00215 0.06856

e1

1 0.040908 0.00427 0.042776 0.325786

e1

2 0.039628 0.003878 0.040881 0.185901

e1

3 0.040908 0.00409 0.042394 0.306227

e2

1 0.039948 0.004037 0.041292 0.204403

e2

2 0.040908 0.004177 0.041389 0.324521

e2

3 0.039948 0.004072 0.041348 0.218552

e3

1 0.039948 0.004059 0.041273 0.219736

e3

2 0.039628 0.003866 0.042012 0.197513

e3

3 0.039948 0.003925 0.041697 0.208513

e 4

1 0.040908 0.004207 0.04335 0.30024

e 4

2 0.040908 0.004036 0.041934 0.308235

e 4

3 0.040908 0.004189 0.04264 0.324294

The next results of interest are the distributions of the likelihood ratio test statistics.

Table 8.3 shows the mean and variance of the test statistics, and the proportion that are greater

than the 90
th
, 95

th
 and 99

th
 percentile of the cumulative distribution of a chi-square with four

degrees of freedom.  One sees for sample sizes of 4,000 that the mean and variance of the

likelihood ratio test statistic are very close to the theoretical values.  Also, the proportions of the

observed test statistics that are above the ΧΧ (1

2

−α)  are close to what is predicted by the theory.  For

the datasets with sizes of 400, the variance of the test statistic is larger at about 9, though the

proportions are roughly correct.  For the data with sample sizes of 100 the distribution of the test

statistic deviates more noticeably from the theoretical.  This is not surprising as one has only 100

observations with which to estimate a total of 61 parameters (one must also estimate the elements

of ΣΣ ).
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Table 8.3 Theoretical and Observed Values of the Likelihood Ratio Test Statistic

Labels Mean Variance Proportion

over 90
th

Percentile

Proportion

over 95
th

Percentile

Proportion

over 99
th

Percentile

Theoretical 4.0 8.0 0.1 0.05 0.01

Sample of 4000 4.005 8.036 0.099 0.0506 0.0099

Sample of 400 4.212 9.076 0.117 0.0614 0.0146

Sample of 100 3.904 7.000 0.084 0.0426 0.0034

In summary, these simulations confirm the basic methodology.  First, they confirm that the

algorithm and estimating equations yield correct estimates.  The estimates are correct in the sense

that they are approaching the true parameter values and that the observed variances of the

parameter estimates are close to the theoretical variances, at least for the larger sample sizes.

Second, they confirm the correctness of the hypothesis tests for the larger samples.  With samples

sizes of 400 or 4,000 the test statistic is distributed close to the theoretical distribution under the

null hypothesis.

8.5  CVA/TIME - UNCORRELATED VARIATES

In this section I develop an alternative model for analyzing group structure with

longitudinal multivariate data, CVA/time with uncorrelated canonical variates.  Where CVA/time

(orth.) hypothesizes that the group means lie in the space of orthogonal variates, CVA/time (unc.)

hypothesizes that the group means lie in the space of uncorrelated canonical variates.  CVA/time

(unc.), unlike CVA/time (orth.), represents a true generalization of CVA.  Furthermore, it is

equivalent to Campbell and Tomenson’s model under the special circumstance that the

covariances of the variables between different occasions are zero.

CVA/time (unc.) follows much of the logic of that for CVA/time (orth.).  The CVA/time

(unc.) model hypothesizes common variates, unique variates, and group positions.  It differs from

CVA/time (orth.) in that the model for the means now involves the covariance matrix.

Furthermore, as is seen in equation (8.1), a common within-groups covariance structure for each

occasion, ΣΣ w , is required, which will necessitate a certain structure for ΣΣ .  The estimation of the

structure of ΣΣ  will encompass a good part of this section.  On the other hand, the development of

the estimation for µµ 0  is identical to that in Section 8.3.3, as is the discussion about obtaining

estimates in Section 8.3.5 and that of statistical inference in Section 8.3.6.  Hence these topics

need not be further addressed with respect to CVA/time (unc.).

It is useful to give a simple example of a common variate model.  Assume the positions of

two group means can be plotted on a variate in the transformed space which is common over two

occasions, and assume the positions of the group means change over time. Figure 8.3 shows the

positions at the first occasion, and Figure 8.4 shows the positions at the second occasion.
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Figure 8.3

Figure 8.4

8.5.1  The CVA/Time Model with Uncorrelated Variates

CVA/time (unc.) model is as follows:

( ) ( )µµ µµg w g w g w

g
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= + ⊗ + + ⊗ + ⊗
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,(8.11)

where µµ g  is a pt × 1 vector of means for the g th  group, µµ 0  is a pt × 1 vector of overall means,

v i  are c p × 1  vectors of common variates, v j

k  are ( )t u - c p × 1 vectors of unique variates, eg i,

t



99

is the score for the g th  group mean on the i
th

 canonical variate at the q th  occasion, and eg i,  is the

t × 1 vector whose elements are eg i

q

, .

Note the constraints on the parameters.  Those for the positions of the group means are

the same as for CVA/time (orth.), eg i

q

g

,

=
∑ =

1

0
m

 for all q,i.  This constraint reflects the centering by

µµ 0 .  The constraints on the variates differ from those for CVA/time (orth.) as the variates are

constrained to be mutually uncorrelated, not orthogonal:

′ = ×V V Icom w comΣΣ
c c

,

where Vcom  is the matrix whose c columns are the common variates.  Furthermore, within each

set of unique variates for each occasion the variates are mutually uncorrelated, that is:

V V Iq

w

q′ = ×ΣΣ ( ) ( )u-c u-c ,

where V
q
 is the matrix whose columns are the unique variates for the q th  occasion, q = 1, ,K t .

Finally, each variate in each set of unique variates is orthogonal with each common variate.  Thus:

′ = ×V Vcom w

qΣΣ [ ] ( )0 c u-c ,

for q = 1, ,K t .

To conclude this section I point out that a model that hypothesizes unique variates at each

occasion is not equivalent to performing separate canonical variate analyses at each occasion.  A

unique variates model estimates the variates at each occasion as a part of a larger model.  It may

be superior to a separate analysis of each occasion because it models the covariances between the

measurements made at different occasions.

8.5.2  Estimating the W ithin-Groups Covariance Matrix

CVA/time (unc.) necessitates a particular structure to ΣΣ .  The estimation of this structure

is discussed in this section.  Also briefly discussed at the conclusion is how to estimate this same

structure for ΣΣ  if one should hypothesize orthogonal canonical variates.

As stated previously, the logic of CVA/time (unc.) requires within-groups covariance

matrices that are equal over time or at minimum proportional over time.  However, given this

assumption it is reasonable to make the further assumption that the covariances matrices between

measurements at different occasions are proportional.  Indeed, this additional assumption proves

to be necessary to obtain workable estimating equations.  Hence the structure given in (8.12) is

assumed:

ΣΣ

ΣΣ ΣΣ ΣΣ
ΣΣ ΣΣ ΣΣ

ΣΣ ΣΣ ΣΣ

ΣΣ=







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A , (8.12)
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where A = [ ]a ij , is a t t×  positive definite matrix, and ΣΣ w  is a p p×  matrix that is proportional

to the within-groups variance-covariance matrix at each occasion.  The matrix A will be referred

to as the matrix of proportionality constants.

The estimating equations for A are derived in Section 8.5.3.  I proceed by deriving the

estimating equations for ΣΣ w .  The estimation of ΣΣ w  is complicated by the fact that the group

means, µµ g , are now functions of ΣΣ w , which is seen in (8.11).  The log-likelihood for the model

is:

á
( )X A| , log( ) log logµµ ΣΣ ΣΣ=

−
− −

np nt np

2
2

2 2
π w

− − ′ − + − ′ −
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Taking the derivative of the log-likelihood with respect to ΣΣ w  yields:

δ
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To obtain the estimating equations one sets these derivatives equal to a matrix of zeros.  To put

the equations in a simpler form first multiply through by ΣΣ w .  Then note that the last term above

equals the following expression:
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Then the estimating equations are solved when equation (8.13) below is solved.  Note that ΣΣ w  is

on both sides of the equations.
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If one wants to estimate the covariance structure assuming orthogonal variates, that is,

assuming the CVA/time (orth.) model, then the estimating equations are solved when ΣΣ w  equals

the expression below.  The derivation of this equation involves a modification of the derivation of

equation (8.13).
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8.5.3  Estimating the Matrix of Proportionality Constants (A)

To solve for A it will be necessary to define some new notation.  Let x i(b)  be the t × 1

vector whose r
th

 element is the b
th

 variable of the i
th

 observation at the r
th

 occasion.  In other

words, x i(b)  is composed of the measurements made over the t occasions of the b
th

 variable for

the i
th

 subject.  Let xg(b)  be the analogous for the g th  group mean.  Then the log-likelihood

becomes as follows:
â
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The A matrix needs to be restrained for scale.  The simplest way to do this is to set

trace( )A − =p 0 ,

which constrains the within-groups covariance matrix to be proportional over time.  The

constraint with Lagrangian multiplier is ( )λ trace( )A − p , where λ  is the Lagrangian multiplier.

To obtain the estimating equations for A take the derivative with respect to A of the

log-likelihood modified by the constraint with the Lagrangian multipliers yielding (8.14).  Set this

equal to a t t×  matrix of zeros to get the estimating equations.
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ΣΣ [ , ] ( )( )( ) ( ) ( ) ( )A x x A Iµµ µµ − λ . (8.14)

If one wants to hypothesize that the within-groups covariance matrices are constant at

each occasion, then one would restrict A to have ones as its diagonal elements.  Let h ( )i  denote a

vector that has a one as its i
th

 element and zeros as the rest;  i.e. h ( ) [ ]i j = 1 if j i= , else

h ( ) [ ]i j = 0  if j i≠ .  Then this restriction is equivalent to requiring:

′ =h Ah( ) ( )i i 1 for i = 1, ,K p .

The p constraints with p Lagrangian multipliers are as follows:

( )λ
=1

i

i

′ − =∑ h Ah( ) ( )i i 1 0
p

.

When differentiated with respect to A this expression yields a diagonal matrix T whose i
th

diagonal element is λ i .  Hence the estimating equations for solving for A with this method are the

same as in (8.14), except that one substitutes T for λI p p× .

8.5.4  Hypothesis Test for the Simple Structure of the Covariance Matrix ( ΣΣ )

One may wish to test the hypothesis of a simple structure for ΣΣ , that is H 0 : ΣΣ ΣΣ= ⊗A w ,

versus the alternative: H 1: ΣΣ ΣΣ≠ ⊗A w .  Such a test can be performed in two contexts.  The first

is more consistent with the rest of Section 8.5 but may not be practical.  One assumes a specific

mean structure, obtains estimates for both the structured and unstructured ΣΣ , and then performs

a likelihood ratio test based on those estimates.  The difficulty with this approach is that one

usually does not know the means model.  This is particularly troublesome since the estimate of

ΣΣ w  is sensitive to misspecification of the means model, as is seen in equations (8.8) and (8.13).

Indeed, a more robust estimate of ΣΣ w  may be desirable even if one does not intend to perform the

hypothesis test for simple structure.

One can obtain such a robust approach by assuming a saturated model for µµ g ;  i.e., let xg

be the estimate for µµ g .  The log-likelihood for such a model is obtained by substituting the model

for the structure of ΣΣ  (8.12) into the likelihood equation in its general form (8.4), yielding:
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The estimating equations that result are seen to be reasonable.  The estimate of the unconstrained

variance-covariance reduces to S;  see (8.8).  The derivation of the estimate for the structured

variance-covariance matrix is similar to, though simpler than, the derivation in Section 8.5.2, and

yields:

ΣΣ w is gs iq gq

sqig

s
g

= − − ′− −

====
∑∑∑∑( ) [q, ]( )( )nt
ttnm

1 1

1111

A x x x x ,

where the matrix A is estimated as in Section 8.5.3.  This estimate for ΣΣ w  is just the sum of the

p p×  submatrices of S  weighted by the appropriate element of A
−1

.

A reservation needs to be made about this hypothesis test.  It is possible that despite

rejecting the null hypothesis of structure for ΣΣ , a researcher may conclude the deviations from

this structure are not of practical significance.  Instead, the researcher may prefer to assume a

simple structure for ΣΣ  to obtain a (crude) scale invariance or to reduce the number of parameters

that need to be estimated.

8.5.5  Estimating the Canonical Variates and the Group Scores

Next I develop the estimating equations for the canonical variates, v i  and v i

q , and the

group scores eg i, . µµ o  is estimated as in equation (8.8).  Denote the log-likelihood by 
ä
( )X| ,µµ ΣΣ

and the terms which include neither v i , v i

q  nor eg i,  by C.  Then:
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where µµ 0

q  is the p × 1 vector of overall means for the q th  occasion and xg

q  is the p × 1 vector of

sample means for the g th  group.

I start by deriving the equations for the common variates.  The constraints are

incorporated by the method of Lagrangian multipliers.  Note that these and subsequent constraints

with Lagrangian multipliers are implicitly set to zero.  The constraints with Lagrangian multipliers

for the unit length of the common variates are as follows below.

( )γ a

a

a w a
2

1
1=

∑ ′ −
c

v vΣΣ ,



104

where γ a  are c Lagrangian multipliers.  The constraints with Lagrangian multipliers for the

orthogonality of the common variates are:

γγ ab a w b

b

a

a

′
=

−

=
∑∑ v vΣΣ

1

1

1

c

,

where γ ab  are c c -( 1) / 2  Lagrangian multipliers.  The constraints with Lagrangian multipliers for

the orthogonality of each common variate with all of the unique variates are:

γ abq a w b

q

baq

′
= +==
∑∑∑ v vΣΣ
c

uct

111

, (8.16)

where γ abq  are ct u c( - )  Lagrangian multipliers.  The constraints with Lagrangian multipliers for

the restriction to unit length of the unique variates are:

γ aq
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where γ aq  are ( )u - c t Lagrangian multipliers.  The constraints with Lagrangian multipliers for

the mutual orthogonality of each unique variate with the other unique variates of the same

occasion are:

γ abq a
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where γ abq  are t u c u c( )( ) /− − − 1 2  Lagrangian multipliers.

Denote the log-likelihood modified by constraints with Lagrangian multipliers byå ∗ ( | , )X µµ ΣΣ .  Take the derivative of 
å ∗ ( | , )X µµ ΣΣ  with respect to v f :
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Set this equal to a zero vector to yield the estimating equations for v f .

Next I derive the estimating equations for the unique variates.  Take the derivative ofå ∗ ( | , )X µµ ΣΣ  with respect to v f

r
:
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Set this equal to a vector of zeros to yield the estimating equations for solving for v f

r .

Lastly I derive estimating equations for the egb

s  terms, beginning with those for the group

positions corresponding to the common variates.  The constraints here are n
m

g g b

s

g

e ,

=
∑ =

1

0  for
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s = 1, ,K t  and b = 1, ,K c .  They are handled by letting e eb

s

h b

s

h

m

m

, ,= −
=

−

∑
1

1

 for s = 1, ,K t , and then

taking the derivative of the log-likelihood with respect to eh w

r

,  for h ≠ m .  Then the estimating

equations for the egb

s are obtained by setting this derivative equal to zero:
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The estimating equations for the group positions corresponding to the unique variates are

handled similarly to those corresponding to the common variates.  The constraints and the manner

of incorporating them into the estimating equations are the same as the for the common variates:
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Set these derivatives equal to zero to obtain the estimating equations.

8.5.6  Estimating Unchanging Group Positions

It may be of interest to hypothesize that the scores for the group means on the common

variates, eg a

q

, , do not change, i.e., are equal over occasion, and to estimate these stable scores.

The unchanging score of the g th  group for the b
th

 common variate shall be denoted by e g b, .  The

likelihood equation is obtained by substituting e g b,  for e g b

q

,  in the likelihood equation for

CVA/time (unc.) (8.15).  The constraints and the manner of incorporating them are the same as

for the e g b

q

,  terms in Section 8.5.5.  Taking the derivative of 
æ
( )X| ,µµ ΣΣ  with respect to e h w,  and

setting it equal to zero yields the following estimating equation for e h w, :
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The estimating equations for v i  and v i

s  are the same as those in the previous section

except that e g b,  is substituted for e g b

q

, .
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8.6  EXAMPLE FOR CVA/TIME WITH UNCORRELATED VARIATES - 

SEX DIFFERENCES IN MATH ANXIETY BEFORE AND AFTER 

INTRODUCTORY CALCULUS

In this section I present a real data example of modeling the group means over time in the

space of uncorrelated canonical variates.  The example is a relatively simple one.  423 male

college students and 118 female college students enrolled in an introductory calculus course at

Virginia Tech were given a questionnaire at the beginning and end of the course.  The

questionnaire included 19 questions pertaining to “math anxiety”.  Math anxiety is generally

construed to be a particular apprehension some students have about mathematics.  The groups of

interest are men and women.  Thus p=19 , t = 2  and m = 2 .  The 19 questions are presented in

Table 8.4.  The responses to these questions followed the ordinal scale, as seen in Table 8.5.

Thus the data are not normal and the inferential techniques used in the analysis are at best

approximate.

Table 8.4 The Math Anxiety Questions

1. Generally, I have felt secure about attempting mathematics.

2. The thought of a math test scares me.

3. I usually have been at ease in math classes.

4. It wouldn’t bother me at all to take more math classes.

5. It would make me happy to be recognized as an excellent student in math.

6. Figuring out mathematical problems does not appeal to me.

7. Math is enjoyable and stimulating to me.

8. I get a sinking feeling when I think of trying hard math problems.

9. Winning a prize in mathematics would make me feel uncomfortably conspicuous.

10. Even though I study, math seems unusually hard for me.

11. I study mathematics because I know how useful it can be.

12. I wouldn’t like people to think I’m smart in math.

13. I like math puzzles.

14. I memorize math formulas and techniques but often don’t understand the underlying

concepts.

15. I am sure I could do advanced work in math.

16. I’m not the type to do well in math.

17 Mathematics is a worthwhile and necessary subject.

18. I’d be proud to be a top student in math.

19. I would rather have someone give me the solution to a hard math problem than solve it

myself.

Table 8.5 Possible Responses

1) Agree  2) Tend to agree  3) Tend to disagree  4)Disagree

The analysis pursues both statistical inference and the interpretation of the results.  The

first question for statistical inference is, is there a weighted sum of the variables that distinguishes

between the sexes?  Now, if there is such a weighted sum, is it interpretable as a “math anxiety”
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construct?  Further inferential questions are, is such a variate stable over time?  If yes, are the

scores of the group means on the variate, that is, the positions of the group means on the variate,

stable over time?  How does one interpret the scores or positions of the group means?

It is believed from previous research that there are differences between the sexes in math

anxiety.  However, it is not known whether such a construct is stable over the course of taking

introductory calculus.  Since there are two groups the maximum number of canonical variates is

one.  First the one common canonical variate and one unique variate model will be estimated.

Then a hypothesis test will be performed based on the likelihood ratio test statistics with the

common variate hypothesis being the null hypothesis.

The one common variate model is:

µµ µµg
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And the one unique variate model is:
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The test for common versus unique variates is stated as:
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1 2

1

1 2

:

: .

v v
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=
≠

There are a total of 19 weights to be estimated for each variate, with the constraint that

each variate have a variance of one.  Thus the difference between the number of parameters to be

estimated in the null and in the alternative hypotheses is 18, and the test statistic under the null

hypothesis is distributed approximately as a chi-square with 18 degrees of freedom.  The

parameter estimates were obtained by solving the estimating equations given in Sections 8.5.2,

8.5.3 and 8.5.5.  The likelihood test statistic was determined as described in Section 8.3.6.  The

observed value of the test statistic is 20.8, which is not significant, so one fails to reject H0 .

Given that one has failed to reject the null hypothesis of one common variate, the next

question of interest is whether the positions of the group means over time on the common variate

are changing.  The null hypothesis is that they are unchanging.  The test for equality of group

positions is stated as:

H e e e e

H at least one of the above is untrue

0 1

1

1

2

2

1

2

2

1

: ,

: .

= =

The estimating equations for the unchanging group positions are given in Section 8.5.6.

The estimates are: e1 01427= .  and e2 0 5117= − . .  The estimates for the changing group

positions are obtained as part of the estimation of the common variate model Section 8.5.5.

Those estimates are: e1

1 01909= . , e1

2 0 0804= . , e2

1 0 6844= − .  and e2

2 0 2882= − . .  (Note that the

group positions for any occasion sum to zero when weighted by sample size).

Under the null hypothesis the test statistic follows a chi-square distribution with one

degree of freedom.  The resulting p-value is p<0.002.  Hence one rejects H 0  and concludes

e eg g

1 2≠ .  In other words, one concludes that the differences between the group means change
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over the two occasions.  In this case they move closer, see Figure 8.5.  Note that rejecting

H e eg g0

1 2: =  obviates any need to test H e eg g0

1 2 0: = = , which is the test for the existence of

treatment effects.

At this point it is appropriate to examine the common canonical variates and ascertain if

they arguably comprise a math anxiety construct.  The interpretation is clearer when examining

the structural coefficients, which are the correlations of the variates with the variables (see

Section 2.2.1).  The canonical variate weights and the structural coefficients are presented in

Table 8.6.  From inspection of the structural coefficients it is apparent that the variate is

correlated positively with answers that seem to indicate low math anxiety.  For example, a high

score on Question #4, “It wouldn’t bother me at all to take more math classes”, is arguably

indicative of low math anxiety.  The signs of the correlations of all 19 variables with the canonical

variate are all arguably consistent with low math anxiety, though these correlations vary in

magnitude.

Table 8.6  Canonical Variate Weights and Structural Coefficients

Question # Canonical Variates Structural Coefficients
1 -0.2007 0.0459

2 -0.2257 -0.0810

3 0.0632 0.1246

4 0.8437 0.5578

5 -0.2397 0.2101

6 0.1774 -0.2092

7 0.6225 0.4772

8 0.2444 -0.0289

9 -0.6116 -0.4668

10 -0.3278 -0.1353

11 0.0473 0.1242

12 -0.1554 -0.2091

13 0.1338 0.2921

14 -0.6087 -0.2734

15 -0.0988 0.0996

16 0.2919 -0.0620

17 -0.2328 0.0957

18 -0.1069 -0.2529

19 0.1955 -0.0220

Next, consider the estimates of the positions of the group means.  Men clearly score

higher on this low math anxiety construct, though the difference between the sexes diminishes

over time;  see Figure 8.5 below.  Note that the axis in Figure 8.5 is the canonical variate, which

by definition has a variance of one, and also that the group means have been centered at zero.



109

Figure 8.5

Figures 8.6, 8.7, 8.8 and 8.9 below show the group separation more clearly than does

Figure 8.5.  They are histograms of the scores for the 423 men and 118 women at both

occasions.  These historgrams are based on the uncentered data.  As in Figure 8.5, the separation

is greater for the first occasion.
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Figure 8.6

Figure 8.7
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Figure 8.8

Figure 8.9
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To summarize the analysis so far, one can conclude that men and women do differ on the

construct of math anxiety, and that this construct is stable over time.  Further, the women admit

to more math anxiety, though the difference in admitted math anxiety between the sexes shrinks at

the end of the course.

Next consider what the parameters mean in a geometric sense.  The weights for the

canonical variate are a direction in the multi-dimensional variable space.  The one canonical

variate model hypothesizes that the group means, when centered, will line up on this canonical

variate.  The group positions indicate where on these variates the group means are centered.

Another way to interpret the results is in the spirit of a multivariate regression.  That is,

one predicts the mean response of each variable for each group.  Such an interpretation will allow

one to consider the canonical variate and the group positions in conjunction.  To obtain the vector

of predicted group means for any occasion, apply equation (8.17). Table 8.7 shows the observed

and predicted group means of men and women on the 19 questions at the first occasion.  The

predicted group means are generally similar to the observed.  For example, in Question 18 they

are almost the same.

For comparison Table 8.8 shows the overall group means for each question and the

standard deviations.  Appendix Ten has the complete sample variance-covariance matrix and the

maximum likelihood estimate of the variance-covariance matrix.

Table 8.7 Observed and Predicted Means at the First Occasion

Men Women
Question # Observed Predicted Observed Predicted

1 1.284 1.281 1.254 1.264

2 2.071 2.073 2.136 2.129

3 1.655 1.652 1.576 1.585

4 1.993 1.988 1.576 1.593

5 1.317 1.317 1.220 1.219

6 1.837 1.837 1.720 1.719

7 2.135 2.133 1.831 1.835

8 1.993 1.993 1.983 1.982

9 1.976 1.976 1.678 1.678

10 1.773 1.772 1.678 1.680

11 1.600 1.597 1.525 1.537

12 1.548 1.549 1.424 1.420

13 2.035 2.036 1.839 1.838

14 2.778 2.777 2.585 2.588

15 1.882 1.877 1.805 1.822

16 1.485 1.484 1.458 1.462

17 1.248 1.247 1.212 1.215

18 1.317 1.317 1.195 1.195

19 1.716 1.712 1.703 1.717
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Table 8.8  Group Means and Standard Deviations for each Question

Question # Overall
Mean

Sample
Variance

MLE of
Variance

1 1.34288 0.591816 0.585489

2 1.98429 0.835527 0.815629

3 1.61553 0.680435 0.660555

4 1.82348 0.837711 0.822719

5 1.34843 0.607680 0.583501

6 1.83087 0.721879 0.700720

7 2.04621 0.749102 0.720939

8 1.97412 0.768150 0.741683

9 1.87061 0.770398 0.744001

10 1.78466 0.726312 0.706184

11 1.64418 0.692900 0.669706

12 1.53789 0.749156 0.751014

13 2.06285 0.859188 0.815019

14 2.78928 0.800275 0.771214

15 1.85120 0.744667 0.731749

16 1.55638 0.624593 0.608705

17 1.31978 0.497792 0.492861

18 1.33272 0.599802 0.589608

19 1.77542 0.694748 0.679944

In concluding this example, Figure 8.10 presents the matrix of proportionality constants,

A.  What is noteworthy here is that the weights for the within-groups covariance matrices for

measurements at the beginning and at the end of the course are nearly equal.

0 986 0 289

0 289 1014

. .

. .











Figure 8.10 The Matrix of Proportionality Constants (A)

8.7  A COMPARISON TO ALTERNATIVE METHODS, INCLUDING 

DOUBLY MULTIVARIATE REPEATED MEASURES

In this section I make a comparison between CVA/time and alternative methods for

longitudinal multivariate data with group structure.  These alternative methods attempt to answer

the same questions as the common variate hypothesis does;  that is to determine what is and is not

changing over time.  However they attempt this without the clarity and efficacy achieved by

explicitly modeling common variates.  The interpretations of these models for data which have the

common canonical variate structure will be illuminating.

I will begin by briefly considering two simple alternative approaches.   Then I will discuss

in greater depth two more ambitious approaches.  The first of these involves performing a

canonical variate analysis with the measurements at different occasions treated as different
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variables.  The second, which is of particular interest, is an analysis that is loosely called “doubly

multivariate repeated measures”.

8.7.1  Two Simple Approaches

One simple approach to longitudinal multivariate data with group structure is to perform a

separate canonical variate analysis at each occasion.  It is easy to see that if common canonical

variate structure exists over time that the common variates will be found by each analysis.  The

limitations of such an approach are that one has no means to test for the appropriateness of a

common variate structure, nor for the number of common variates.  Furthermore, due to chance

variation one does not have a single estimate for a given common variate.

Another simple approach would be to pool the measurements over time.  This approach

raises the question of whether one centers by an overall mean or separately at each occasion.  All

of the other approaches discussed in this section either explicitly or implicitly assume that one

centers at each occasion.  This issue aside, it is clear that pooling the variables will estimate the

common variates if they exist.  However, inspecting the estimated variates yields neither a hint of

which (if any) of the estimated variates are common, nor what is changing over time.

8.7.2  Measurements at Different Occasions Treated as Distinct Variables

An approach one may take is to treat the measurements taken at different occasions as

distinct variables in a single canonical variate analysis.  A failing of this approach is that if there is

an effect, i.e., a statistically significant canonical variate and an associated non-zero canonical

correlation, it cannot be attributed specifically to either treatment effects or to time-treatment

interaction effects.  Further, neither common variates, unique variates nor group positions are

estimated.  However, the canonical variates one obtains do have a particular structure.  The tp × 1

vector of weights of each canonical variate consists of t p × 1 subvectors, each of which is a

linear combination of the common and unique variates.  Although this point is in itself of minor

interest, it is illustrative to show it.

First determine B, where B is the matrix of between-groups sums of squares and

crossproducts, under the assumption that the common variates hypothesis is true. B is generally

defined as:

B
=

= − − ′∑ n
m

g

g 1

( )( )µµ µµ µµ µµg g0 0 .

Now consider the common variates model after the data are centered:

µµ µµg w g w g− = ⊗ + + ⊗0 1 1ΣΣ ΣΣv e v e, ,K c c ,

for g = 1, ,K c .  Then the p p×  submatrix of B corresponding to the q th , s
th

 occasions, denoted

as B
q s,

, is as follows:

( )( )B v v v vq s

w w g

q

w g

s

w g

se e e,

, , ,= + + + +
′

∑ n
c c c c

m

g g,1

qeΣΣ ΣΣ ΣΣ ΣΣ1 1 1K K

g=1
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B v v V d d Vq s

i

g

q

g

s

g

, = ′








 = ′







 ′∑∑ ∑ ∑

= =
i j

j=1

g g,i

q

g, j

s

g=1

e e
rr m m

n
1 1

,

where V is the matrix whose i
th

 column is the i
th

 canonical variate, v i , for i = 1, ,K r , and dg

q  is

the r × 1 vector whose i
th

 element is ng g,i

q1
2 e , for i = 1, ,K r  and q = 1, ,K t .  If r < p  then

complement V with p r-  canonical variates which correspond to canonical correlations of zero,

making V a p p×  matrix, and likewise complement each dg

q  vector with p r-  zeros, making

them p × 1 vectors.  Then the implied between-groups crossproducts matrix, B, is

( )( ) ( )( )B I V I D V I I= ⊗ ⊗ ′ ⊗ ⊗× × × ×ΣΣ ΣΣw wt t t t t t t t
,

where D is an pt pt×  matrix, D d d
=

= ′∑ g g

g 1

m

, with d d d dg g g g= ′ ′ ′ ′[ , , , ]1 2
K

t .

The canonical variates are obtained as described in Section 2.2.1, by performing a SVD on

1 1
2

1
2

n-1
ΣΣ ΣΣ− −′

B , where n = n
m

g

g=1

∑ .  The first step in determining this SVD is to express

1 1
2

1
2

n-1
ΣΣ ΣΣ− −′

B  as follows:

( )( ) ( )( )1 11
2

1
2

1
2

1
2

n n t t t t t t t t
ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ− − −

× × × ×
−′

=
′

⊗ ⊗ ′ ⊗ ⊗B I V I D V I Iw w . (8.18)

Assume ΣΣ ΣΣ= ⊗A w  (8.12), so ΣΣ ΣΣ− = ⊗
− −

1
2

1
2

1
2

w A .  Recall from Section 2.2.1 that V V= − ∗ΣΣ w

1
2 ,

where V
∗
 is orthogonal.  Then ( )( )V I I V I⊗ = ⊗ ⊗×

−
×

∗
×t t t t t tΣΣ w

1
2 .  Substituting the above

expressions back into (8.18) gives:

( )( )( )1 11
2

1
2

1
2

1
2 1

2

n n t t t t t tΣΣ ΣΣ ΣΣ ΣΣ ΣΣ− −
×

−
×

∗
×

′
=

′
⊗

′







 ⊗ ⊗ ⊗

− −

B A I I V I Dw w w

( )( )V I I I A∗
×

−
× ×

′ ⊗



 ⊗ ⊗ ⊗





− −

t t t t t tΣΣ ΣΣ ΣΣw w w

1
2

1
2

1
2

.

The above simplifies to:

( )1 11
2

1
2

1
2

1
2

n t t n p p t tΣΣ ΣΣ− − ∗
× ×

−
×

− ∗
×

′
= ′ ⊗



 ⊗

′





⊗










′ ⊗



B V I I A D I A V Ip p . (8.19)

Note that V I
∗

×
′ ⊗



t t  is orthogonal.  Let the singular value decomposition of the

square-bracketed part of (8.19) be ( )1 1
2

1
2

n p pI A D I A D MD×
−

×
− ∗ ∗⊗

′





⊗ = ′
p p .  Then

V I D
∗

×
∗′ ⊗



t t  is also orthonormal because D

∗
 is.  Hence the matrix of canonical variates

obtained, denoted by U, will be:
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U I V I D V I D= ⊗





′ ⊗





= ′ ⊗





−

×
∗

×
∗

×
∗ΣΣ w

1
2

t t t t t t . (8.20)

Now one sees that each column of U  is a concatenation of t subvectors which are a linear

compound of V: U VDi

q

i

q= , where U i

q  and D i

q  are the i
th

 column and q th p × 1 subvector of

U  and D.

Next consider that unique variates can be modeled as multiple common variates, a point

which is touched on briefly at the end of Section 8.3.1.  The ( )u - c  unique variates at each

occasion can be viewed as up to t u - c( )  common variates with the appropriate group positions;

if t u - c p( ) ≥  then the unique variates model is equivalent to a common variates model with a full

complement of p common variates.  For a simple example, assume that one has one unique variate

at each of t occasions and that these unique variates are mutually uncorrelated.  Then these unique

variates can be viewed as t common variates;  a group position on a given common variate is

either the position of the original unique variate or zero, depending on whether or not the

common variate corresponds to an original unique variate at the given occasion.  As a rule, unique

variates can always be put into the form of common variates, with the group positions conveying

the change over time.

Putting a model with unique variates in the form of a model with only common variates

allows one to take advantage of the earlier results for common variates, in particular to generalize

(8.20).  Hence one can assert that the canonical variates one obtains consist of subvectors which

are linear combinations of these “common” variates;  that is, of the original common and unique

variates.

8.7.3  Doubly Multivariate Repeated Measures

I am aware of only one method other than CVA/time that specifically deals with

longitudinal multivariate data with group structure.  This is the analysis which goes by the name

of doubly multivariate repeated measures, an example of which is given in the SAS-STAT Users

Guide (1990).  In this section I compare doubly multivariate repeated measures with CVA/time.

Doubly multivariate repeated measures is the most sophisticated of the alternatives I discuss.  It

will be seen that it answers some but not all of the questions CVA/time answers.

The method described in the SAS/STAT User’s Guide tests for time effects, treatment

effects and time-treatment interactions by performing either a standard or a modified multivariate

analyses of variance (MANOVA) on transformed variables.  I will review each of these tests in

the context of common and unique variate structure and compare their performance to CVA/time

(unc.).

First I will discuss the test for time effects.  The first step in the SAS approach for testing

for simple time effects is to create time profile variates.  One transforms the tp  original

measurements into ( )t p− 1  variates by taking the profiles of the measurements at different

occasions with respect to a baseline occasion.  If the t
th

 occasion is chosen to be the baseline

occasion then one would have X X Xij ij i

* = − t  for i = 1, ,K p  and j = −1 1, ,K t .  Then,
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disregarding group membership (treatment effects), the vector of means of these variates is tested

to be zero.  In SAS one does this by using the “manova” statement with “ H ercept= int ” in Proc

GLM.

In comparison, the CVA/time model centers the data at each occasion.  This centering

removes the time effect that the SAS approach tests for.  However, if the examination of a simple

time effect is of interest, one can perform this same test that SAS does in addition to performing a

CVA/time analysis.  Note that the doubly multivariate repeated measures analysis test for

treatment effects and the test for treatment-time interactions also remove the simple time effect

from the analysis by the transformations of the variables that they use.

The first step in the test for treatment effects given by SAS is to create transformed

variables by summing up the measurements over occasion.  That is, one obtains p transformed

variables, X j

∗ , where X Xj j

q

q

∗

=

= ∑
1

t

 for i = 1, ,K p  and j = 1, ,K t .  Then one performs a one-way

MANOVA on the transformed data.

This test for treatment effects is powerful only in the following circumstances:  if the

common variate hypothesis is true or approximately true;  i.e., the unique variates are nearly

collinear;  and the scores for the group means at different occasions are equal or similar over time.

Indeed, if the common variate hypothesis holds exactly and the positions of the group means are

completely stable over time ( e e j kg j

q

g k

q

, , ,= ≠ ), then the doubly multivariate repeated measures

finds the common variates exactly.  However, to the extent that variates or group positions

change over time the effects will be muddled and the test rendered ineffective.  To realize these

assertions one can examine the vector of expected values for the transformed variables for each

group, denoted by µµ g

∗
, under the assumption of the common variate structure.  That is, for

g = 1, ,K m :

E g

q

q

g

q

q

w

q

w

q

x v v
=

∗

= = =
∑ ∑ ∑ ∑









 = = +









 + +











1

0

1

1

1 1

t t t

c c

t

µµ µµ ΣΣ ΣΣe eg,1

q

g,

q
K

µµ µµg w w

∗ ∗ ∗ ∗= + + +0 1ΣΣ ΣΣv ve eg,1 g,K c c (8.21)

where xg

q  is the p × 1 vector of random variables at the q th  occasion for the g th  group.  The

form in (8.21) is identical to the form of a canonical variate analysis with the common variates as

the canonical variates (see 2.1).  (Recall that a one-way MANOVA is equivalent to a canonical

variate analysis;  to obtain the canonical variates from SAS one requests “canonical” in the

“manova” statement).  Hence the method estimates the common variates if the egi

∗  are not zero.

However, if the group positions are not at least similar over time they tend to cancel each other

out, resulting in a weaker or non-detectable effect;  i.e., eg,i

∗  terms that are close to zero.  Hence

the treatment effects may not be detected.

On the other hand, if the variates change over time, i.e., one has unique variates, one can

view the analysis as one with extra common variates where the changes in the group positions

convey the change over time, as described in Section 8.7.2.  Since group positions on these
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common variates change, the treatment effects get muddled in the summation and again the

resulting treatment effect will be weaker.

The SAS test for time-treatment interactions analyzes the ( )t p− 1  variables created by

taking the profiles of the measurements at different occasions with respect to a baseline occasion,

as was done to analyze the time effects.  Here, however, one performs a usual one-way

MANOVA on the transformed data.

The test for time-treatment interactions does indeed detect change over time in the group

structure.  But it provides no way to determine if that change is due to changing group positions

on common variates or to unique variates at different occasions.  Nor does it estimate the

common or unique variates.  (Recall that a one-way MANOVA is equivalent to a CVA).  To see

these points, consider the expected values of the transformed variables if the common variate

structure exists.  Then the expected value of the time profile variates is a function of the common

variates and the group positions.  That is,

( ) ( )E g

q

g g

q q

w w w wx x v v v v− = = + + + − + + +t

c c p

t

c c

tµµ µµ µµ0 1 0 1ΣΣ ΣΣ ΣΣ ΣΣe e e eg,1

q

g,

q

g,1 g,K K

( ) ( ) ( )= − + + +µµ µµ0 0 1

q

w w

t t

c c c

tΣΣ ΣΣv ve - e e - eg,1

q

g,1 g,

q

g,K ,

for q = −1 1, ,K t .  Now let µµ g

∗  be the p t -( 1)  vector of expected values of the transformed

variables;  in other words the concatenation of µµ g

q
, q = −1 1, ,K t .  Similarly let µµ 0

∗  be the

p t -( 1)  vector of overall means.  Then

µµ µµg w g w g

∗ ∗ ∗ ∗− = ⊗ + + ⊗0 1 1ΣΣ ΣΣv e v e, ,K c c . (8.22)

Observe that (8.22) has the form of a common variate model.  The first implication of this

is that if the common variate structure exists then the test for the time-treatment interaction is

equivalent to a test for the equality of the group positions at various occasions, because if the

original group positions are equal, the group positions for the transformed data will be zero.  A

second implication is that when one performs a CVA on the p t -( 1)  transformed variables one

has a situation similar to that in Section 8.7.2.  As argued in Section 8.7.2, the variates generated

will consist of subvectors which are linear compounds of the common variates.  Furthermore, the

logic of these arguments can be extended to data with unique variates as was done in Section

8.7.2 by replacing each unique variate with up to t common variates.  By definition the group

positions corresponding to these (extra) common variates cannot be equal over time.  Thus this

test also detects changes due to changing or unique canonical variates, though one will not be able

to determine if the observed effects are due to changes in group positions or changes in unique

variates.

In summary, the doubly multivariate approach answers the questions of whether there are

differences among the groups, and if these differences change over (interact with) time.  But it

does not determine what changes over time;  i.e., whether it is the variates or the group scores

that change.
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CHAPTER NINE

SCALING THE VARIABLES

Up to this point the scaling of the data and the (possible) scale invariance of the methods

under consideration have been approached on an ad hoc basis in the examples.  In this chapter I

provide a more thorough discussion.  To the best of my knowledge the only systematic treatment

on the scale invariance of multivariate data is Jöreskog’s (1989) discussion on scale invariance for

the analysis of covariance structures.  I try to extend his ideas to the methods considered in this

dissertation.  I show that my methods are often not scale invariant.  Hence the issue of which

scaling to employ is of obvious importance.  I discuss several possible standardizations and when

one would want to employ them.

9.1  AN EXAM PLE OF RESCALING THE DATA

Example9.1
To emphasize the importance of the choice of scale, I begin with an example which shows

how sensitive a solution may be to a rescaling of the data.  I present a principal components

analysis of the covariance matrix (a) before and after rescaling.  For this example the rescaling
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involves multiplying the first variable by 10 and the second by five.  The rescaling could be the

result of changing units;  for example, when one converts from millimeters to centimeters.  The

rescaling is equivalent to multiplying the data matrix by the diagonal matrix (b), or by

pre-multiplying and post-multiplying the covariance matrix (a) by (b).  (c) is the matrix whose

columns are the principal components of (a), ordered by the size of their eigenvalues.  Compare

(c) with (d), the matrix of principal components after the data have been rescaled.  There is no

nontrivial way to relate the principal components derived from the unscaled data (c) and that of

the rescaled data (d).

(a)

15 9 7

9 23 0

7 0 6

−

−

















(b)

10 0 0

0 5 0

0 0 1

















(c)

0578 0598 0554

0 798 0558 0 228

0172 0573 0801

. . .

. . .

. . .

−
−

−

















(d)

0 926 0 372 0 061

0 375 0 926 0 048

0 039 0 067 0 996

. . .

. . .

. . .

−
−

−

















9.2  DEFINITIONS OF SCALE INVARIANCE

In point estimation for one location parameter, π , equivariance to scale is defined simply

as

$ ( , , , ) $ ( , , , )π πcy cy cy c y y yn n1 2 1 2K K=
where $π  is the parameter estimate, c is a constant and y i , i = 1, ,K n , are the data.  Scale

invariance needs to be defined more broadly for multivariate methods.  For example, consider the

relatively simple case of multiple regression.  If one multiplies a regressor variable x i  by c, then

$ $b b ci i

∗ = , where $b i  and $b i

∗  are the estimates of the regression parameter associated with x i

before and after multiplication by c.  This relationship of the parameter estimate to scale differs

from that of the point estimation for a location parameter as seen above.  Nevertheless,

researchers consider multiple regression to be scale invariant for two reasons:  because there is a

simple relationship between each parameter estimate and the scale of its associated regressor

variable, and because the parameter estimate for a given b i  is invariant to the scaling of those

other regressors not associated with it.

Jöreskog (1989) gives a systematic discussion on scale invariance in covariance structure

modeling (see Chapter Seven for a definition of covariance structure modeling).  According to
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Jöreskog one distinguishes between a model being scale invariant and a fit function being scale

invariant.  A covariance model ΣΣ( )θθ  is scale invariant (Browne 1982) if for any diagonal matrix

D of positive scalars and any parameter vector θθ  there exists another parameter vector θθ∗  such

that

ΣΣ ΣΣ( ) ( )θθ θθ∗ = D D .

Denote a fit function as F( , )S ΣΣ , where S is an observed covariance matrix and ΣΣ  is a predicted

covariance matrix.  Then F( , )S ΣΣ  is scale invariant (Jöreskog 1989) if for any diagonal matrix D

of positive scalars the following is true:

F F( ) ( , )DSD,D D SΣΣ ΣΣ= . (9.1)

Maximum likelihood and generalized least squares are scale invariant fit functions;  least squares

is not (Jöreskog 1989).  To see that generalized least squares is a scale invariant fit function, note

that it minimizes the sum of squares of the deviations weighted by the inverse of the sample

covariance matrix, S.  Generalized least squares satisfies (8.1) as

[ ] [ ]Tr TrD S D DSD D D S S
− − − −− = −1 1 1 2 1 2

( ) ( )ΣΣ ΣΣ .

If both the model and the fit function are scale invariant, then the analysis of the same

variables in different scales yields results which are properly related;  i.e. one can obtain $θθ∗  from
$θθ  and D.  This is because scale invariance for the fit function implies that the global optima is the

same for all scalings.  Scale invariance for the model then implies that the parameter estimates

under the various scalings can be related.

An additional point is that a parameter estimate, $π , is defined to be scale-free if for all D

the following holds:

$ ( ) $ ( )π πDSD S= .

9.3  EXAMPLES OF SCALE INVARIANT METHODS

Multiple regression is an example of a scale invariant method where there is a simple

relationship between the estimates of parameters under different choices of scale.  However, scale

invariance as defined in the previous section does not in itself imply a simple or easily interpretable

relationship between the parameter estimates before and after scaling.  For example, principal

components analysis is scale invariant as defined above, although there is no simple relationship

between the parameter estimates before and after rescaling as seen with multiple regression in

Example 8.1.  The fit function for the full principal components model is scale invariant for either

least squares or maximum likelihood estimation as the fit is always perfect.  The principal

components model, ΣΣ( ) 'θθ = PLP , where P is orthogonal and L diagonal, is scale invariant, as

pre-multiplication and post-multiplication by D yields the following:

ΣΣ( ) 'θθ ∗ ∗ ∗ ∗= = ′
DPLP D P L P ,

where P L P
∗ ∗ ∗′

 is the singular value decomposition of DPLP D' .  However, this relationship is

trivial and not useful.
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One can identify a class of models which will have a simple relationship between

parameter estimates based on different choices of scale.  If the matrices Fi  of the model

ΣΣ( )θθ = ′∑F M Fi

i

i i  are unrestricted in their column space, e.g., not constrained to be orthogonal

or of unit length, then clearly, F DFi i

∗ = .  Furthermore, M i  are scale-free.  Factor analysis and

multiple regression can both be put into this framework.

Canonical correlation analysis is also scale invariant.  Clearly its estimation by maximum

likelihood is scale invariant.  Further, it can be expressed as a covariance structures model as is

shown below, where W, E and V are defined as in Section 2.2.1:

( )ΣΣ θθ =








 =

′ ′
′ ′













− − − −

− − − −

S S

S S

W W W EV

V EW V V

XX XY

YX YY

1 1 1 1

1 1 1 1
.

Let the diagonal matrix of scale terms be D
K

F
=









 .  Then when one pre-multiplies and

post-multiplies ( )ΣΣ θθ  by D one has the following matrix:

( )D D
K W W K K W EV F

F V EW K F V V F

W W W E V

V E W V V
ΣΣ θθ = ′

′
′

′

′ ′ ′ ′












=
′ ′

′ ′












− − − −

− − − −

∗− ∗− ∗− ∗ ∗−

∗− ∗ ∗− ∗− ∗−

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1
.

Thus W WK
∗ −= 1

, V VF
∗ −= 1

 and E E
∗ = .  The relationship between the parameter estimates

for the canonical variates before and after rescaling is the same as that of multiple regression.

Note also that E  is scale-free.

Estimating the full redundancy analysis (RA) model by least squares yields a perfect fit

regardless of multiplication by D.  Hence it is scale invariant with respect to fit function.  RA can

be expressed as a covariance structure model as follows:

( )ΣΣ θθ =








 =

′ ′ ′
′ +













− − −

−

S S

S S

W W W EV

VEW VE V J

XX XY

YX YY

1 1 1

1 2
,

where W, R and V are defined as in Section 2.2.2 and J S VE V= − ′YY

2 .  Pre-multiply and

post-multiply ( )ΣΣ θθ  by D as defined above.  Then one has the following matrix:

( )D D K W W K K W EV F

F VEW K F VE V F F JF

W W W E V

V E W V E V J
ΣΣ θθ = ′ ′ ′ ′ ′

′ ′ ′ + ′













=
′ ′ ′

′ +













− − −

−

∗− ∗− ∗− ∗ ∗

∗ ∗ ∗− ∗ ∗ ∗ ∗

1 1 1

1 2

1 1 1

1 2
.

One sees RA is model scale-invariant as defined in Section 9.2 as W
∗

, V
∗

, E
∗
 and J

∗
 can be

found from W, E , V and J .  However, their relationship to W, V, E , J  is not simple.

Nevertheless, if one rescales only the X-variables one has simple relationships between the

parameter estimates as W WK
∗ −= 1

, E E
∗ = , V V

∗ = and J J
∗ = .

The CVA/time model (7.3) presented in Chapter Seven is not scale invariant.  This model

can be expressed in the form VQ V Pij ij′ = , where Pij  is the submatrix of the between-group

covariance matrix corresponding to the covariance between the i
th

 and jth  occasions, and Q ij  is
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a diagonal matrix.  If this model were to have scale invariance then the following must be true:

DVQ V D V Q Vij ij′ = ′∗ ∗ ∗  and DVQ V D V Q V′ ′
∗

′ ′
∗ ∗′ = ′

i j i j , where i, j i , j≠ ′ ′ .  This implies

V Q Q V DVQ V DDVQ V D∗ ∗
′ ′

∗ ∗
′ ′

′ = ′ ′ij i j ij i j . (9.2)

But (9.2) can be seen to be generally untrue.  The term on the left is symmetric since Q ij  and

Q ′ ′i j  are diagonal.  However, the term on the right is symmetric only if Q Qij i j= ′ ′  or if ′V D V
2

 is

diagonal.  The former is generally not true and the latter is true only if V is the diagonal.  Hence

there is no way to relate the parameters of the model before and after a rescaling.

9.4  SCALE INVARIANCE FOR THREE-MODE PRINCIPAL 

COMPONENTS ANALYSIS

Kroonenberg (1983) and Harshman and Lundy (1984) have discussed the choice of scale

for three-mode data.  However, they never discuss scale invariance.  Indeed, it seems the

researchers who develop and use three-mode methods implicitly assume that scale invariance is

unattainable for three-mode data.  In this section I show that for certain three-mode models that a

type of scale invariance or approximate scale invariance exists.  The discussion of how to scale

three-mode data when scale invariance does not exist is deferred until Section 9.5.

I will provide a definition of scale invariance for three-mode PCA that is analogous to

Jöreskog’s definition of scale invariance for covariance structures.  As in Jöreskog’s development

I will need to define both scale invariance for the fit function and scale invariance for the model.

First of all, however, I must define what is meant by rescaling in the context of three-mode PCA.

In the analysis of covariance structures there are two modes, a variables mode and an

observations mode, and by definition one rescales only the variables mode.  In three-mode PCA

all three modes are candidates for rescaling.  However, (approximate) scale invariance can exist

only when one rescales one mode at a time.  Hence I restrict myself to considering the rescaling of

just one mode.  The rescaling of three-way data is defined as follows:  if one has g slices of the

three-way array, Z Zi , ,K g , i = 1, ,K g , one can post-multiply them by B, a diagonal matrix of

positive scalars.  Because of symmetry the following arguments generalize to any one of the three

modes being rescaled.

Having defined choice of scale in the context of three-mode PCA, I can address the issue

of scale invariance for the fit function.  The least squares fit function is generally not invariant to

scale.  However, the Tucker2 and Tucker3 models can decompose a three-mode matrix exactly,

which yields scale invariance;  i.e., regardless of the scaling, the fit function is zero.  If one

chooses a solution with less than the full complement of components one can get approximate

scale invariance if the fit is good.  How good the fit must be remains to be determined.

Next I consider model scale invariance for various three-mode PCA models.  The Tucker2

model can be shown to be invariant to column scaling.  The Tucker2 is expressed in matrix form

as follows, where G, Ci , H are defined as in Section 2.32

Z GC Hi i for i= ′ =, , , .1 K g
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Post-multiplying the Z i  terms by B yields the following:

Z B GC H B G C Hi i i for i= ′ = ′ =∗ ∗ ∗ , , , .1 K g (9.3)

To get G
∗
, Ci

∗  and H
∗
 in terms of G, Ci , H and B, perform a singular value decomposition on

′H B , yielding ′ = ′H B MNP .  Then (9.3) becomes

GC MNP G C Hi i for i′ = ′ =∗ ∗ ∗ , , , .1 K g (9.4)

Thus G G
∗ = , C C MNi i

∗ =  and H P
∗′ = ′ .  The model is invariant to rescaling the column space

of the Z i  in the sense that G
∗
, Ci

∗  and H
∗
 can be found for all G, Ci , H and B.  Further, G is

G
∗
.  The core matrices, Ci

∗ , and the components for the column space, H
∗
, however, are not

related to Ci  and H in any simple or useful manner.  W ith similar logic the Tucker3 can be shown

to have scale invariance properties.

Now consider the PARAFAC model, first with two sets of components restricted to

orthonormality.  This is the model one gets when one requires diagonal Ci  in (9.3).  Clearly, in

order for a solution to exist there must be orthonormal G
∗
 and H

∗
 that simultaneously

diagonalize GC H Bi ′  for i = 1, ,K g .  As they generally do not exist the model is not scale

invariant.  However, the PARAFAC model without the orthonormality constraints is scale

invariant.  Again referring to (9.3), one sees that one can relate G
∗
, Ci

∗  and H
∗
 to G, Ci , H and

B by letting G G
∗ = , H LHB

∗ =  and C C Li i

∗ −= 1 , where ( )L HB HB= ′Diag ( ) .  Not only is G

unchanged by the rescaling, but there is an interpretable relationship between the coefficients of

H
∗
 and H and between Ci

∗  and Ci .

Example 9.2:

This example illustrates the approximate scale invariance of the Tucker2 method. X1  and

X2  are the data matrices.  These data are purposely constructed to fit the one component

Tucker2 relatively poorly but to fit the two component Tucker2 excellently, with 59% of the sums

of squares being explained by the former model but 99% by the latter. X1  and X2  of (a) are the

data before rescaling, X1

∗  and X 2

∗  of (b) are the data after rescaling.  Note the extent to which the

scaled and unscaled solutions differ for the one-component solution (c).  On the other hand,  the

scaled and unscaled solutions for two-component matrices are recognizably similar.  If the fit

were perfect, then the there would exist perfect scale invariance.

(a) X
1

19 5 105 7

105 19 5 7

7 7 2

=
− −
−

















. .

. . X
2

27 6 10 3 10 6

10 3 27 6 10 6

10 6 10 6 6 6

=
− −
−

















. . .

. . .

. . .
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(b) X
1

195 105 70

10 5 19 5 7

7 7 2

=
− −
−

















. . X
2

276 6 103 3 106 6

10 3 27 6 10 6

10 6 10 6 6 6

=
− −
−

















. . .

. . .

. . .

(c)

Original

0 7071

0 7071

0 0000

.

.

.

−

Rescaled

0.8680

-0.3760

0.3243

(d)

Original

0.7071 0.5774

-0.7071 0.5774

0.0000 0.5774

Rescaled

0.6688 0.5906

-0.7398 0.5887

0.07335 0.5520

9.5  HOW TO SCALE THE DATA

Since the models I propose are often not scale invariant, the choice of scale of the

variables is salient.  There are several plausible ways to scale the data.  The simplest is to analyze

the raw data.  This scaling is appropriate only if the measures in their unscaled form are

comparable.  Some examples of this could be species counts or company sales in dollars for

particular types of goods.  Because measures are often not comparable, one must choose a scaling

that makes them so.  In many multivariate applications one “standardizes”, or scales the variables

to unit length.  This standardization effectively gives each variable equal importance in the

modeling.  Another possibility is to apply the Mahalanobis transformation to the data by

post-multiplying Y by S YY

−1
2 .

Choosing an appropriate scaling for data over time is complicated by two things.  First,

the covariances may be changing over time.  Hence a scaling that is appropriate for one occasion

may not be appropriate for other occasions.  Second, the covariance of the Y-variables is assumed

to be related to the X-variables either in a causal manner or in a correlational manner.  Hence one

must decide whether to, and perhaps how to, remove the effect of the X-variables on the

Y-variables.  This issue is simplified if the X-variables are group indicators, because then one can

calculate a within-groups covariance.

I first discuss the issue of standardization for the situation where the X-variables are group

indicators.  The simplest scenario is that the within-group covariances are assumed not to vary

over time.  Then one could standardize by post-multiplying Y by D S= −
Diag YY

1
2 ( )  or apply the

Mahalanobis transformation by post-multiplying Y by S YY

−1
2 , where S YY  is a pooled estimate over

time.
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If the within-group covariances are assumed to vary over time the situation is more

complex.  One possible way to standardize such data is to choose a baseline occasion and use its

within-group covariance to standardize.  Another possibility is to average the variances over

occasions and standardize by the average variance.  That is, one can post-multiply Y by

D S S S= + + +−
Diag YY YY YY

1
2

1 2 3(( ) / )L g , where g is the number of occasions.  Such a

standardization is akin to what is done in the factor analysis of multiple groups (Loehlin 1992) and

is also recommended for some situations in three-mode PCA (Kroonenberg 1983).  It gives each

variable the same weight in the overall analysis while allowing the variances to vary over

occasion.  Applying the Mahalanobis transformation to the data based on a baseline or averaged

covariance matrix is problematic as the transformed data will not satisfy S I
X X k∗ ∗ = , for

k = 1, ,K g , where x S x∗ = −

XX

1
2 .

If the X-variables are not group indicators but continuous variables the standardization is

further complicated because one does not have the elegant partitioning of the variation into

between-group effects and within-group effects.  One can express the matrix of the total sums of

squares of the Y-variables as the sum of a regression sums of squares matrix and a residuals or

error matrix.  Then one could standardize by the residuals matrix.  Such a standardization

attempts to make the error terms equal for each observation, which is analogous to what is done

when one standardizes by a within-group covariance matrix.  For this standardization to be

reasonable one should have X-variables that are controlled by the experimenter.  If the

X-variables are random variables in their own right, then the X-variables and Y-variables are

correlated and one may prefer to standardize Y based on the total covariance matrix for the

Y-variables.

The analysis of covariance structures and three-mode PCA are both methods based on the

decomposition of matrices.  In contrast, Campbell and Tomenson’s model and the CVA/time

model of Chapter Eight are means models.  These means cannot be put into the framework used

for evaluating the scale invariance of the analysis of covariance or three-mode PCA which begins

by multiplying a mode by a diagonal matrix of positive scalars.  However, there is another useful

way to look at these models.  Campbell and Tomenson’s analysis is equivalent to plotting the

group means in the space transformed by the Mahalanobis transformation and then finding a

reduced space of common orthogonal variates in which the means approximately lay.  This

method effectively transforms the data by S YY

−1
2  and thus is scale invariant.  Likewise, CVA/time

with uncorrelated variates plots the group means in the transformed space and is scale invariant.

On the other hand CVA/time with orthogonal variates does not transform the data and is not scale

invariant.  Hence one must standardize the data by one of the methods described in the previous

paragraphs of this section.

This discussion on scaling should make clear that the researcher needs to give thoughtful

consideration to the standardization and scaling he uses.
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CHAPTER TEN

CONCLUSION AND FURTHER RESEARCH

The problem of greatest interest in this dissertation has been canonical variate analysis

with measurements over time.  I suggest three approaches:  a maximum likelihood approach based

on modeling the means (Chapter Eight):  a least squares approach based on three-mode principal

components (Chapter Five):  and an analysis of covariances approach (Chapter Seven).  W hat

proves to be a unifying theme in these attempts to model CVA over time, indeed throughout the

entiredissertaition, is that of the common variate over time (or over a third mode).

The most ambitious of the methods to model CVA over time is the maximum likelihood

approach.  In addition to modeling the means, I model the error terms over time.  I provide a

model for error which is constant over time and changes over time.  I also work out estimating

equations to solve for the parameter estimates and implement an algorithm to obtain the
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estimates.  Lastly I show that my approach is superior to doubly multivariate repeated measures in

conceptualizing the problem of multivariate grouped data over time.

The least squares method I develop as an exploratory approach (Chapter Five).  I show it

to have attractive features such as the partitioning of the sums of squares and the nestedness of

solutions (Chapter Three).  I also develop graphical methods to be used in conjunction with it

(Chapter Six).

The covariance structure analysis (COSAN, Chapter Seven) approach puts modeling CVA

over time in an larger framework of methods that have an extensive usership, a developed theory,

and powerful software.  Despite this promise, however, more work needs to be done on the

programming and on achieving convergence of the estimating algorithm.

In this dissertation I also approach several problems related to CVA over time.  In

Chapters Five and Six I propose a schema for modeling a broad variety of data with two sets of

variables measured over a third mode.  This includes modeling canonical correlation analysis

(CCA), canonical variate analysis (CVA), redundancy analysis (RA), Procrustes Rotation (PR)

and correspondence analysis with both data over time and multiple datasets.

In Chapter Four I develop a least squares approach to common principal components,

which I show is comparable to the maximum likelihood method.  I also extend the least squares

method to common space analysis.

In Chapters Three and Nine I do not develop any new methods, but rather certain

supporting ideas.  In Chapter Three I show the partitioning of sums of squares and prove the

nestedness of solutions for the PARAFAC (orth.) model.  In Chapter Nine I extend the ideas for

scale invariance previously developed for the analysis of covariance structures to three-mode

principal components models.

I have just summarized the many problems tackled in this dissertation.  The work done,

however, suggests more problems to be solved.  In particular, there is still much that can be done

to develop and extend the ideas in the dissertation.  What follows is a list of some of the

possibilities.

• For the CVA/time model of Chapter Eight work out a method for handling missing values.

Use Ware’s (1985) approach to longitudinal regression which iteratively estimates the error

matrix and the means model.

• Prepare a SAS macro for estimating the CVA/time model.

• Investigate the robustness of CVA/time model to heterogeneous variance over groups,

outliers and non-normality.

• Develop a SAS macro for the least squares methods for CVA/third, CCA/third, RA/third and

PR/third.

• Develop hypothesis tests and confidence intervals for the three-mode models.  A possibility

may be to use resampling methods.

• Investigate modeling the relationship between two sets of variables over time when one drops

the restriction that both sets of variables be orthogonal.

• Develop a SAS macro for COSAN modeling for canonical variate analysis and redundancy

analysis over time.
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• Extend the COSAN model to include uncorrelated canonical variates over time and unique

variates at each occasion.

• Develop hypothesis tests and confidence intervals for COSAN models.

• Investigate the modeling of error structure over time in the COSAN approach to canonical

variate analysis over time.

• Compare the maximum likelihood, least squares and COSAN approaches to CVA over time.

• Investigate how good a Tucker2 model must fit in order to have approximate scale invariance.
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APPENDIX ONE

THE KRONECKER PRODUCT OF TW O M ATRICES

Let A be a p m×  matrix and B a q n×  matrix, let a ij  denote the element in the i
th

 row and jth

column of A and let b rs denote the element in the i
th

 row and jth  column of B.  The pq mn×
matrix with a bij rs as the element in the (i r)th

q +  row and the (j s)th
n +  column is called the

Kronecker or direct product of A and B is denoted by A B⊗ ;  that is,

A B

B B B

B B B

B B B

⊗ =
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
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
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.
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APPENDIX TWO

THE F-G ALGORITHM

W hat follows is SAS code for Flury's & Gautschi's F-G algorithm, with adaptation to get leasts

squares estimates, applied to Fisher’s iris data.

proc iml;

*C1, C2 and C3 contain the sample covariance matrices for the three species

 of iris.;

C1={26.6433 8.5184 18.2898 5.5780,

     8.5184 9.8469  8.2653 4.1204,

    18.2898 8.2653 22.0816 7.3102,

     5.5780 4.1204  7.3102 3.9106};

C2={40.4343  9.3763 30.3290 4.9094,

     9.3763 10.4004  7.1380 4.7629,

    30.3290  7.1380 30.4588 4.8824,

     4.9094  4.7629  4.8824 7.5433};

C3={12.4249  9.9216  1.6355 1.0331,

     9.9216 14.3690  1.1698 0.9298,

     1.6355  1.1698  3.0159 0.6069,

     1.0331  0.9298  0.6069 1.1106};

*The F-G algorithm consists of the macro Gstep nested within the macro

Fstep.  In the Fstep every pair of column vectors of the current

 approximation to B is rotated such that the normal equations are satisfied.

 The Gstep determines these rotations;

*P is the number of variables, K the number of datasets or groups and L is

 the number of iterations.  B is the matrix of common principal components.

%macro Gstep; M=j(2,2,0);

  %do i=1 %to &K;  H=B[,{&d &e}]; T&i=H`*C&i*H;

    d1&i=Q[,1]`*T&i*Q[,1];   d2&i=Q[,2]`*T&i*Q[,2];
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    *The line of code immediately below is for the least squares solution.
     The line of code following it is for the maximum likelihood algorithm.;

    *M=M + (d1&i-d2&i)*T&i;
    M=M + (d1&i-d2&i)/(d1&i*d2&i)*T&i;
  %end;
%mend;

*The Fstep follows.  Bold stores the matrix B from the previous iteration.;

%macro Fstep;  %let P=4;   %let K=3;   %let L=15;  B=I(&P); Bold=I(&P);
  %do s=1 %to &L;
    %do d=1 %to &P;
      %do e=1 %to &d;    Q=I(2);
        if &e<&d then do;  c=0;
          do until(c=4);
            %Gstep

normala=Q[,1]`*M*Q[,2];
Q=eigvec(M);

            B[,{&d &e}]=H*Q;
            c=c+1;
          end;
        If &s=&L then do;

normal=B[,&d]`*B[,&e];  print &d &e normal;
        end;
        end;
      %end;
    %end;

Crit=SSQ(B-Bold); print B bold; Bold=B;
    phi=1; SSLF=0;
    %do i=1 %to &K;

R&i=B`*C&i*B;
phi=phi*det(diag(R&i))/det(R&i);

      SSLF=SSLF+SSQ(R&i-diag(R&i));
    %end;    print crit phi sslf;
  %end;
%mend; %Fstep

*The following macro determines the eigenvalues;

%macro eigen;   %let P=4;   %let K=3;   %let L=15;
%do i=1 %to &K;
eig&i=diag(B`*c&i*B)*j(&P,1,1);

  print eig&i;
%end;
%mend;
%eigen
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APPENDIX THREE

THE PROGRAMS FOR PARAFAC (ORTH.) AND

TUCKER2 FOR THE SHENANDOAH EXAMPLE

*Program for the PARAFAC with orthogonal variates and the Tucker2;

*First the streamwater variables are standardized;

libname shen 'c:\prg\shen';
%macro first;
data n&L.; set shen.table&L.;
keep site disch cond ph temp ca mg na k alk so4 c1 si no3 nh4;
disch=v3; cond=v4; ph=v5; temp=v6; ca=v7; mg=v8; na=v9; k=v10; alk=v11;
so4=v12; c1=v13; si=v14;
if v15='<1' then no3=0.5; else no3=v15;if v16='<1' then nh4=0.5; else nh4=v16;
if site=2032589 or site=1628910 or site=1630542 then zzz=1;
else output;

proc standard data=n&L. replace mean=0 out=nm&L.;   run;
proc corr data=nm&L. noprint nocorr cov out=st&L.(type=cov); run;
%mend first;
%let L=a; %first %let L=b; %first %let L=c; %first
%let L=d; %first %let L=e; %first %let L=f; %first

proc iml;
use sta; read all var {site disch cond ph temp ca mg na k alk so4 c1 si
 no3 nh4} into stna;
use stb; read all var {site disch cond ph temp ca mg na k alk so4 c1 si
 no3 nh4} into stnb;
use stc; read all var {site disch cond ph temp ca mg na k alk so4 c1 si
 no3 nh4} into stnc;
use std; read all var {site disch cond ph temp ca mg na k alk so4 c1 si
 no3 nh4} into stnd;
use ste; read all var {site disch cond ph temp ca mg na k alk so4 c1 si
 no3 nh4} into stne;
use stf; read all var {site disch cond ph temp ca mg na k alk so4 c1 si
 no3 nh4} into stnf;
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*The streamwater variables are standardized such that the total variance
 for each variable over the six occasions is one.;

ssva=(stna+stnb+stnc+stnd+stne+stnf)/6; ssvar=ssva[2:15,2:15];
store ssvar;   quit iml;

%macro mann;

proc sort data=n&L.; by site; proc sort data=shen.table2; by site; run;
data table2n; set shen.table2;
keep site anti hamp wev cat sr pedl or ab2400 dd ew dev;
anti=v4; hamp=v5; wev=v6; cat=v7; sr=v8; pedl=v9; or=v10; ab2400=v11;
dd=v12; ew=v13; dev=v14;
run;

*The geological variables are merged with the streamwater variables.;

data t2&L.; merge table2n(in=tab2) n&L.(in=&L.); by site; drop site sr wev;
if &L.=1 then output t2&L.;

*Covariance matrices are created for each occasion.;

proc corr data=t2&L. nocorr noprint cov out=mad(type=cov); run;
proc iml; use mad; load;
read all var {anti hamp cat pedl or ab2400 dd ew dev
disch cond ph temp ca mg na k alk so4 c1 si no3 nh4} into cov&M.;
ssvart=inv(root(diag(ssvar)));
sxx&L.=cov&M.[1:9,1:9];
syy&L.=ssvart*cov&M.[10:23,10:23]*ssvart;
sxy&L.=cov&M.[1:9,10:23]*ssvart;

*The matrices c1-c6 are what will be modeled;

c&M.=inv(root(sxx&L.)`)*sxy&L.;  store c&M. cov&M.;
%mend mann;

%let L=a; %let M=1; %mann
%let L=b; %let M=2; %mann
%let L=c; %let M=3; %mann
%let L=d; %let M=4; %mann
%let L=e; %let M=5; %mann
%let L=f; %let M=6; %mann

m=0;    load;

*The PARAFAC model with orthogonality constraints follows.  K is the matrix
 of orthogonal variates corresponding to the geological variables.  L is the
 matrix of orthogonal variates corresponding to the streamwater variates.
 The K and L that immediately follow are matrices of initial values.;
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K={1 0 0 0, 0 1 0 0, 0 0 1 0,
   0 0 0 1, 0 0 0 0, 0 0 0 0,
   0 0 0 0, 0 0 0 0, 0 0 0 0};

L={1 0 0 0, 0 1 0 0, 0 0 1 0,
   0 0 0 1, 0 0 0 0, 0 0 0 0,
   0 0 0 0, 0 0 0 0, 0 0 0 0,
   0 0 0 0, 0 0 0 0, 0 0 0 0,
   0 0 0 0, 0 0 0 0};

*Below follows the alternating least squares algorithm.  K and L are
 at each iteration estimated in a regression that assumes that the rest of
 the parameters are fixed.;

%let m=1; %let n=6;
%macro diag; %do i=&m %to &n; D&i=(diag(K`*C&i*L));
%end; %mend; %diag

ssb=1000000000;

do until (abscrit<0.000001);

%macro sumU;
U=0;
%do i=&m %to &n;
U= U+C&i*L*D&i; %end; %mend;  %sumu

%macro sumV;
V=0;
%do i=&m %to &n;
V= V+C&i`*K*D&i; %end; %mend;  %sumv

K=U*inv(root(U`*U));
L=V*inv(root(V`*V));
          ssa=0;
%macro diagssa; %do i=&m %to &n; D&i=(diag(K`*C&i*L));
ssa=ssa + trace(C&i`*C&i) - 2#trace(C&i`*K*D&i*L`) + trace(D&i**2);
%end; %mend; %diagssa

m=m+1; crit=ssb-ssa; ssb=ssa;
abscrit=abs(crit);

print m ssa crit abscrit;
end;

print K L;

*This step just prints the core matrix;

e=j(4,1,1);
D1=d1*e; D2=d2*e; D3=d3*e; D4=d4*e; D5=d5*e; D6=d6*e;
print D1 D2 D3 D4 D5 D6;

*Next follows the Tucker2 model with four geological variable and four
streamwater variable components.  G is the matrix of orthogonal variates
 corresponding to the geological variables.  H is the matrix of orthogonal
variates corresponding to the streamwater variates.;

p=0; ssb=0;
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G={1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1, 0 0 0 0, 0 0 0 0, 0 0 0 0, 0 0 0 0,
   0 0 0 0};
H={1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1, 0 0 0 0, 0 0 0 0, 0 0 0 0, 0 0 0 0,
   0 0 0 0, 0 0 0 0, 0 0 0 0, 0 0 0 0, 0 0 0 0, 0 0 0 0};

%let m=1; %let n=6; Gold=G; Hold=H; m=&m; n=&n;

do until (abscrit<0.00000001);

%macro sumU;
U=0;
%do i=&m %to &n;
U= U+C&i*H*H`*C&i`; %end; %mend;  %sumu
G=U*G*inv(root(G`*(U**2)*G));

%macro sumV;
V=0;
%do i=&m %to &n;
V= V+C&i`*G*G`*C&i; %end; %mend;  %sumv
H=V*H*inv(root(H`*(V**2)*H));

%macro sumsqu;
ssa=0;
%do i=&m %to &n; D&i=G`*C&i*H; Ce&i=G*D&i*H`;
ssa=ssa + trace((C&i-Ce&i)`*(C&i-Ce&i));
%end; %mend; %sumsqu

Gcrit=ssq(G-Gold);Hcrit=ssq(H-Hold);
Gold=G; Hold=H;
p=p+1; crit=ssb-ssa; ssb=ssa;

abscrit=abs(crit);

print p ssa crit Gcrit Hcrit; end;
print G H D1 D2 D3 D4 D5 D6;
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APPENDIX FOUR

CODE FOR PLOTS AND GRAPHS

*Joint plot for the sum of the core matrices.  This sum is dtot.
Gmarker is the matrix of vectors to be plotted for the geological
variables and hmarker is the vector for the streamwater variables.;

dtot=(d1+d2+d3+d4+d5+d6)/6; ddtot=diag(dtot[1:2]);
ll=9; m=14;
const=(ll/m)##(1/2);   call svd(u,d,v,ddtot);
gmarker=const*cvxs[,1:2]*u*sqrt(diag(d));
hmarker=(1/const)*L[,1:2]*v*sqrt(diag(d));
ghstar=gmarker//hmarker; xya=ghstar[1:ll+m, 1:2]; or={0 0};
xy=or//xya;
options ls=67; reset pagesize=39;
*id={'O', 'g1', 'g2', 'g3', 'g4', 'g5', 'g6', 'g7', 'g8', 'g9', 'h1',
  'h2', 'h3', 'h4', 'h5', 'h6', 'h7', 'h8', 'h9', 'h10', 'h11', 'h12',
'h13',
  'h14'};
id={'O', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a',
  'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'm', 'n',
  'p'};
xlabel='Component 1';

title='GH Joint Plot for Sum of Core Matrices'; ylabel='Component
2';
reset clip;
call pgraf(xy,id, xlabel, ylabel,title);

*This code creates the plot of the scores of the geological variables on
the streamwater components.  One plot is created for each of the four
streamwater components, these are denoted by scr1, scr2, scr3 and scr4.;

D1=diag(d1); d2=diag(d2); D3=diag(d3); d4=diag(d4); D5=diag(d5);
d6=diag(d6);
scor1=K*(D1[,1]||D2[,1]||D3[,1]||D4[,1]||D5[,1]||D6[,1]);
scr1=(j(9,1,1)||scor1[,1])//(j(9,1,2)||scor1[,2])//(j(9,1,3)||scor1[,3])
 //(j(9,1,4)||scor1[,4])//(j(9,1,5)||scor1[,5])//(j(9,1,6)||scor1[,6]);
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scor2=K*(D1[,2]||D2[,2]||D3[,2]||D4[,2]||D5[,2]||D6[,2]);
scr2=(j(9,1,1)||scor2[,1])//(j(9,1,2)||scor2[,2])//(j(9,1,3)||scor2[,3])
 //(j(9,1,4)||scor2[,4])//(j(9,1,5)||scor2[,5])//(j(9,1,6)||scor2[,6]);

scor3=K*(D1[,3]||D2[,3]||D3[,3]||D4[,3]||D5[,3]||D6[,3]);
scr3=(j(9,1,1)||scor3[,1])//(j(9,1,2)||scor3[,2])//(j(9,1,3)||scor3[,3])
 //(j(9,1,4)||scor3[,4])//(j(9,1,5)||scor3[,5])//(j(9,1,6)||scor3[,6]);

scor4=K*(D1[,4]||D2[,4]||D3[,4]||D4[,4]||D5[,4]||D6[,4]);
scr4=(j(9,1,1)||scor4[,1])//(j(9,1,2)||scor4[,2])//(j(9,1,3)||scor4[,3])
 //(j(9,1,4)||scor4[,4])//(j(9,1,5)||scor4[,5])//(j(9,1,6)||scor4[,6]);

ylabel='score'; xlabel='occasion'; title='scores';

id={'1', '2', '3', '4', '5', '6', '7', '8', '9',
    '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '1', '2', '3', '4', '5', '6', '7', '8', '9',
    '1', '2', '3', '4', '5', '6', '7', '8', '9'};
options ls=72;  reset pagesize=50;
call pgraf(scr1,id, xlabel, ylabel,title);
options ls=72;  reset pagesize=35;
call pgraf(scr2,id, xlabel, ylabel,title);
options ls=72;  reset pagesize=28;
call pgraf(scr3,id, xlabel, ylabel,title);
options ls=72;  reset pagesize=40;
call pgraf(scr4,id, xlabel, ylabel,title);

*What follows is the code for the residual plots for the Tucker2.  For
the
 the PARAFAC model with orthogonality constraints set G=K and H=L;

*G=K; *H=L;
%macro sqres;
ssqres=j(9,14,0); sst=j(9,14,0); ssfit=j(9,14,0);
%do i=1 %to 6;
D&i=diag(d&i); Ce&i=G*D&i*H`;
sqres&i=(C&i-Ce&i)##2; sst&i=(C&i)##2; ssfit&i=sst&i-sqres&i;
ssqres=sqres&i+ssqres; sst=sst&i+sst; ssfit=ssfit&i+ssfit;

%end;
ssqrsvar=j(1,14,0); ssqftvar=j(1,14,0);
%do j=1 %to 9;
ssqrsvar=ssqres[&j,] + ssqrsvar;
ssqftvar=ssfit[&j,] + ssqftvar;

%end;

ssqrssb=j(9,1,0); ssqftsb=j(9,1,0);
%do j=1 %to 14;
ssqrssb=ssqres[,&j] + ssqrssb;
ssqftsb=ssfit[,&j] + ssqftsb;

%end;

%mend;
%sqres
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print ssqrsvar ssqftvar; print ssqrssb ssqftsb;

seev=sum(ssqrsvar); seeb=sum(ssqrssb); print seev seeb;
xy=ssqftvar`||ssqrsvar`;
options ls=70; reset pagesize=25;
id={ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'm', 'n',
'p'};
xlabel='Sums of Squares Explained';

title='Residual Plots'; ylabel='Sums of Squares Lack of Fit';
reset clip;
call pgraf(xy,id, xlabel, ylabel,title);
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APPENDIX FIVE

THE PROGRAM  CODE FOR THE COSAN M ODEL

The method outlined fixes certain values of V, the matrix of orthogonal variates, to be

zero, depending on how many canonical variates are to be modeled.  Those variates to be

estimated in the model are unrestricted.  The columns of V not modeled are dummy variates for

the purpose of making V orthogonal.  Suppose there are t of these dummy variates.  If t =1, then

the first p-1 columns of V determine the pth column and it is not necessary to fix any elements of

V to be zero.  If t = 2 , then the first p-2 columns are unrestricted.  Set an arbitrary element of the

( 1) th
p -  vector to be zero to fix it, and the and the pth vector follows.  If t = 3 , then set two

elements of the ( 2) th
p - column to be zero, and one element of the ( 1) th

p -  vector.  One

continues in this manner to constrain the desired number of variates.

Now in the COSAN model these elements of V cannot be directly set equal to zero

becauseV is not directly estimated.  Instead, H is directly estimated, where V is a function of H,

V I H I H= − ′ −−( ) ( )1 .  However, since specific elements of H do not correspond to specific

elements of V, the restrictions must be put on ( ) ( )I H I H− ′ −−1  indirectly.  This is done by

pre-multiplying and post-multiplying ( ) ( )I H I H− ′ −−1  by specific matrices to select for the

appropriate elements.  These are then set equal to zero by placing zeros in the data matrix.

Pre-multiplyV ( = + −−( ) ( )( ) ( )I H I Hp p

1 ) by a diagonal matrix with ones on the last t-1

diagonal elements and call this matrix J.  Post-multiplyV by a matrix with a 1 on the t
th

 diagonal

element, and zeros elsewhere and call this matrix K.  This yields a matrix with zeros in all

columns except the t
th

 column, which has the last t-1 elements of the t
th

 column of V.  Call this

U.  Then in the COSAN model set UU ′  equal to a p p×  matrix of zeros.

For example, to set three elements of the ( )p − 3 th column of V to zero, choose J and K

such that U JVK= , where:
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Now in the COSAN model one places UU Z′ = , where Z is a p p×  matrix of zeros.  Thus one

has set the three elements of V to zero, v p p− −4 3, , v p p− −5 3,  and v p p− −6 3, .  Such a statement must be

set up for each dummy variate in the model except the first.

To the data matrix, that is, the between groups covariance matrix S, append p rows and p

columns of zeros, so

S

S

∗ =
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In the code note the following.  The fit function is least squares.  There are 42 variables,

28 for the streamwater variables, 14 for the dummy variables.  The first line of the COSAN

statement is
t(42,gen,inv)*v(42,gen)*r(42,sym)*p1(42,sym).

The block diagonal matrices for V are t(42,gen,inv)*v(42,gen). r(42,sym) is a matrix whose

diagonal elements have the root variances explained.  The next lines in the COSAN statement,

starting with
s1a(42,sym)*ta(42,gen,inv)*va(42,gen)*s1b(42,sym)

restrict the selected elements of V to be zero as described earlier;Ta(42,gen,inv)*va(42,gen) is

a matrix with V in its bottom block diagonal; S1a(42,sym) and s1b(42,sym) correspond to the

matrices J and K from above.

The full code follows below.

libname shen 'c:\prg\shen';
proc calis cov data=shen.z11 method=U outest=cal
omethod=cg maxiter=1000 maxfunc=2000 nostderr privec; title ' ';

*The variables statement defines the variables.  Variables with an "a" as a
 suffix indicate the first occasion, those a "b" indicate the second
 occasion, and those with a "z" indicate the the dummies which are set to
 zero.;

var discha conda pha tempa caa mga naa ka alka so4a c1a sia no3a nh4a
dischb condb phb tempb cab mgb nab kb alkb so4b c1b sib no3b nh4b
dischz condz phz tempz caz mgz naz kz alkz so4z c1z siz no3z nh4z;
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*The "cosan" statement defines the model.  t, v, r and p are matrices.  In
 the model the inverse of t is modeled.;

cosan t(42,gen,inv)*v(42,gen)*r(42,sym)*p1(42,sym)+
      s1a(42,sym)*ta(42,gen,inv)*va(42,gen)*s1b(42,sym)+
      s2a(42,sym)*ta(42,gen,inv)*va(42,gen)*s2b(42,sym)+
      s3a(42,sym)*ta(42,gen,inv)*va(42,gen)*s3b(42,sym)+
      s4a(42,sym)*ta(42,gen,inv)*va(42,gen)*s4b(42,sym)+
      s5a(42,sym)*ta(42,gen,inv)*va(42,gen)*s5b(42,sym)+
      s6a(42,sym)*ta(42,gen,inv)*va(42,gen)*s6b(42,sym)+
      s7a(42,sym)*ta(42,gen,inv)*va(42,gen)*s7b(42,sym)+
      s8a(42,sym)*ta(42,gen,inv)*va(42,gen)*s8b(42,sym)+
      s9a(42,sym)*ta(42,gen,inv)*va(42,gen)*s9b(42,sym)+
      s10a(42,sym)*ta(42,gen,inv)*va(42,gen)*s10b(42,sym)+
      s11a(42,sym)*ta(42,gen,inv)*va(42,gen)*s11b(42,sym)+
      s12a(42,sym)*ta(42,gen,inv)*va(42,gen)*s12b(42,sym);

*The "matrix" statement sets the matrix elements equal to parameters or
 constants.  "{1,2}=v12"  sets the element in the first row and second
 column equal to the parameter v12.  Matrix elements not specified default
 to zero values.;

matrix t
 {1,1}=-1, {2,2}=-1, {3,3}=-1, {4,4}=-1, {5,5}=-1, {6,6}=-1, {7,7}=-1,
 {8,8}=-1, {9,9}=-1, {10,10}=-1, {11,11}=-1,{12,12}=-1,{13,13}=-1,{14,14}=-1,
 {15,15}=-1,{16,16}=-1,{17,17}=-1,{18,18}=-1,{19,19}=-1,{20,20}=-1,{21,21}=-1,
 {22,22}=-1,{23,23}=-1,{24,24}=-1,{25,25}=-1,{26,26}=-1,{27,27}=-1,{28,28}=-1,
 {29,29}=1,{30,30}=1,{31,31}=1,{32,32}=1,{33,33}=1,{34,34}=1,{35,35}=1,
 {36,36}=1,{37,37}=1,{38,38}=1,{39,39}=1,{40,40}=1,{41,41}=1,{42,42}=1,

 {1,2}=v1, {1,3}=v2, {1,4}=v3, {1,5}=v4, {1,6}=v5, {1,7}=v6, {1,8}=v7,
 {1,9}=v8,{1,10}=v9,{1,11}=v10,{1,12}=v11,{1,13}=v12,{1,14}=v13,
 {2,3}=v14, {2,4}=v15, {2,5}=v16, {2,6}=v17, {2,7}=v18, {2,8}=v19,{2,9}=v20,
 {2,10}=v21,{2,11}=v22,{2,12}=v23,{2,13}=v24,{2,14}=v25,
 {3,4}=v26, {3,5}=v27, {3,6}=v28, {3,7}=v29, {3,8}=v30, {3,9}=v31,
 {3,10}=v32,{3,11}=v33,{3,12}=v34,{3,13}=v35,{3,14}=v36,
 {4,5}=v37, {4,6}=v38, {4,7}=v39, {4,8}=v40, {4,9}=v41,
 {4,10}=v42,{4,11}=v43,{4,12}=v44,{4,13}=v45,{4,14}=v46,
 {5,6}=v47, {5,7}=v48, {5,8}=v49, {5,9}=v50,
 {5,10}=v51,{5,11}=v52,{5,12}=v53,{5,13}=v54,{5,14}=v55,
 {6,7}=v56, {6,8}=v57, {6,9}=v58,
 {6,10}=v59,{6,11}=v60,{6,12}=v61,{6,13}=v62,{6,14}=v63,
 {7,8}=v64,{7,9}=v65,{7,10}=v66,{7,11}=v67,{7,12}=v68,{7,13}=v69,{7,14}=v70,
 {8,9}=v71,{8,10}=v72,{8,11}=v73,{8,12}=v74,{8,13}=v75,{8,14}=v76,
 {9,10}=v77,{9,11}=v78,{9,12}=v79,{9,13}=v80,{9,14}=v81,
 {10,11}=v82,{10,12}=v83,{10,13}=v84,{10,14}=v85,
 {11,12}=v86,{11,13}=v87,{11,14}=v88,{12,13}=v89,{12,14}=v90,{13,14}=v91,

{15,16}=v1,{15,17}=v2,{15,18}=v3,{15,19}=v4,{15,20}=v5,{15,21}=v6,{15,22}=v7,
{15,23}=v8,{15,24}=v9,{15,25}=v10,{15,26}=v11,{15,27}=v12,{15,28}=v13,
{16,17}=v14,{16,18}=v15,{16,19}=v16,{16,20}=v17,{16,21}=v18,{16,22}=v19,
{16,23}=v20,{16,24}=v21,{16,25}=v22,{16,26}=v23,{16,27}=v24,{16,28}=v25,
{17,18}=v26, {17,19}=v27, {17,20}=v28, {17,21}=v29, {17,22}=v30, {17,23}=v31,
{17,24}=v32,{17,25}=v33,{17,26}=v34,{17,27}=v35,{17,28}=v36,
{18,19}=v37, {18,20}=v38, {18,21}=v39, {18,22}=v40, {18,23}=v41,
{18,24}=v42,{18,25}=v43,{18,26}=v44,{18,27}=v45,{18,28}=v46,
{19,20}=v47, {19,21}=v48, {19,22}=v49, {19,23}=v50,
{19,24}=v51,{19,25}=v52,{19,26}=v53,{19,27}=v54,{19,28}=v55,
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{20,21}=v56, {20,22}=v57, {20,23}=v58,
{20,24}=v59,{20,25}=v60,{20,26}=v61,{20,27}=v62,{20,28}=v63,
{21,22}=v64,{21,23}=v65,{21,24}=v66,{21,25}=v67,{21,26}=v68,{21,27}=v69,
{21,28}=v70,{22,23}=v71,{22,24}=v72,{22,25}=v73,{22,26}=v74,{22,27}=v75,
{22,28}=v76,{23,24}=v77,{23,25}=v78,{23,26}=v79,{23,27}=v80,{23,28}=v81,
{24,25}=v82,{24,26}=v83,{24,27}=v84,{24,28}=v85,
{25,26}=v86,{25,27}=v87,{25,28}=v88,{26,27}=v89,{26,28}=v90,{27,28}=v91,

 {2,1}=t1, {3,1}=t2, {4,1}=t3, {5,1}=t4, {6,1}=t5, {7,1}=t6, {8,1}=t7,
 {9,1}=t8,{10,1}=t9,{11,1}=t10,{12,1}=t11,{13,1}=t12,{14,1}=t13,
 {3,2}=t14, {4,2}=t15, {5,2}=t16, {6,2}=t17, {7,2}=t18, {8,2}=t19,{9,2}=t20,
 {10,2}=t21,{11,2}=t22,{12,2}=t23,{13,2}=t24,{14,2}=t25,
 {4,3}=t26, {5,3}=t27, {6,3}=t28, {7,3}=t29, {8,3}=t30, {9,3}=t31,
 {10,3}=t32,{11,3}=t33,{12,3}=t34,{13,3}=t35,{14,3}=t36,
 {5,4}=t37, {6,4}=t38, {7,4}=t39, {8,4}=t40, {9,4}=t41,
 {10,4}=t42,{11,4}=t43,{12,4}=t44,{13,4}=t45,{14,4}=t46,
 {6,5}=t47, {7,5}=t48, {8,5}=t49, {9,5}=t50,
 {10,5}=t51,{11,5}=t52,{12,5}=t53,{13,5}=t54,{14,5}=t55,
 {7,6}=t56, {8,6}=t57, {9,6}=t58,
 {10,6}=t59,{11,6}=t60,{12,6}=t61,{13,6}=t62,{14,6}=t63,
 {8,7}=t64,{9,7}=t65,{10,7}=t66,{11,7}=t67,{12,7}=t68,{13,7}=t69,{14,7}=t70,
 {9,8}=t71,{10,8}=t72,{11,8}=t73,{12,8}=t74,{13,8}=t75,{14,8}=t76,
 {10,9}=t77,{11,9}=t78,{12,9}=t79,{13,9}=t80,{14,9}=t81,
 {11,10}=t82,{12,10}=t83,{13,10}=t84,{14,10}=t85,
 {12,11}=t86,{13,11}=t87,{14,11}=t88,{13,12}=t89,{14,12}=t90,{14,13}=t91,

{16,15}=t1, {17,15}=t2, {18,15}=t3, {19,15}=t4, {20,15}=t5, {21,15}=t6,
{22,15}=t7,
{23,15}=t8,{24,15}=t9,{25,15}=t10,{26,15}=t11,{27,15}=t12,{28,15}=t13,
{17,16}=t14, {18,16}=t15, {19,16}=t16, {20,16}=t17, {21,16}=t18,
{22,16}=t19,{23,16}=t20,
{24,16}=t21,{25,16}=t22,{26,16}=t23,{27,16}=t24,{28,16}=t25,
{18,17}=t26, {19,17}=t27, {20,17}=t28, {21,17}=t29, {22,17}=t30, {23,17}=t31,
{24,17}=t32,{25,17}=t33,{26,17}=t34,{27,17}=t35,{28,17}=t36,
{19,18}=t37, {20,18}=t38, {21,18}=t39, {22,18}=t40, {23,18}=t41,
{24,18}=t42,{25,18}=t43,{26,18}=t44,{27,18}=t45,{28,18}=t46,
{20,19}=t47, {21,19}=t48, {22,19}=t49, {23,19}=t50,
{24,19}=t51,{25,19}=t52,{26,19}=t53,{27,19}=t54,{28,19}=t55,
{21,20}=t56, {22,20}=t57, {23,20}=t58,
{24,20}=t59,{25,20}=t60,{26,20}=t61,{27,20}=t62,{28,20}=t63,
{22,21}=t64,{23,21}=t65,{24,21}=t66,{25,21}=t67,{26,21}=t68,{27,21}=t69,
{28,21}=t70,{23,22}=t71,{24,22}=t72,{25,22}=t73,{26,22}=t74,{27,22}=t75,
{28,22}=t76,{24,23}=t77,{25,23}=t78,{26,23}=t79,{27,23}=t80,{28,23}=t81,
{25,24}=t82,{26,24}=t83,{27,24}=t84,{28,24}=t85,
{26,25}=t86,{27,25}=t87,{28,25}=t88,{27,26}=t89,{28,26}=t90,{28,27}=t91;

Matrix v
 {1,1}=-1, {2,2}=-1, {3,3}=-1, {4,4}=-1, {5,5}=-1, {6,6}=-1, {7,7}=-1,
 {8,8}=-1, {9,9}=-1, {10,10}=-1, {11,11}=-1,{12,12}=-1,{13,13}=-1,{14,14}=-1,
 {15,15}=-1,{16,16}=-1,{17,17}=-1,{18,18}=-1,{19,19}=-1,{20,20}=-1,{21,21}=-1,
 {22,22}=-1,{23,23}=-1,{24,24}=-1,{25,25}=-1,{26,26}=-1,{27,27}=-1,{28,28}=-1,
 {29,29}=1,{30,30}=1,{31,31}=1,{32,32}=1,{33,33}=1,{34,34}=1,{35,35}=1,
 {36,36}=1,{37,37}=1,{38,38}=1,{39,39}=1,{40,40}=1,{41,41}=1,{42,42}=1,

 {2,1}=v1, {3,1}=v2, {4,1}=v3, {5,1}=v4, {6,1}=v5, {7,1}=v6, {8,1}=v7,
 {9,1}=v8,{10,1}=v9,{11,1}=v10,{12,1}=v11,{13,1}=v12,{14,1}=v13,
 {3,2}=v14, {4,2}=v15, {5,2}=v16, {6,2}=v17, {7,2}=v18, {8,2}=v19,{9,2}=v20,
 {10,2}=v21,{11,2}=v22,{12,2}=v23,{13,2}=v24,{14,2}=v25,
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 {4,3}=v26, {5,3}=v27, {6,3}=v28, {7,3}=v29, {8,3}=v30, {9,3}=v31,
 {10,3}=v32,{11,3}=v33,{12,3}=v34,{13,3}=v35,{14,3}=v36,
 {5,4}=v37, {6,4}=v38, {7,4}=v39, {8,4}=v40, {9,4}=v41,
 {10,4}=v42,{11,4}=v43,{12,4}=v44,{13,4}=v45,{14,4}=v46,
 {6,5}=v47, {7,5}=v48, {8,5}=v49, {9,5}=v50,
 {10,5}=v51,{11,5}=v52,{12,5}=v53,{13,5}=v54,{14,5}=v55,
 {7,6}=v56, {8,6}=v57, {9,6}=v58,
 {10,6}=v59,{11,6}=v60,{12,6}=v61,{13,6}=v62,{14,6}=v63,
 {8,7}=v64,{9,7}=v65,{10,7}=v66,{11,7}=v67,{12,7}=v68,{13,7}=v69,{14,7}=v70,
 {9,8}=v71,{10,8}=v72,{11,8}=v73,{12,8}=v74,{13,8}=v75,{14,8}=v76,
 {10,9}=v77,{11,9}=v78,{12,9}=v79,{13,9}=v80,{14,9}=v81,
 {11,10}=v82,{12,10}=v83,{13,10}=v84,{14,10}=v85,
 {12,11}=v86,{13,11}=v87,{14,11}=v88,{13,12}=v89,{14,12}=v90,{14,13}=v91,

{16,15}=v1, {17,15}=v2, {18,15}=v3, {19,15}=v4, {20,15}=v5, {21,15}=v6,
{22,15}=v7,
{23,15}=v8,{24,15}=v9,{25,15}=v10,{26,15}=v11,{27,15}=v12,{28,15}=v13,
{17,16}=v14, {18,16}=v15, {19,16}=v16, {20,16}=v17, {21,16}=v18,
{22,16}=v19,{23,16}=v20,
{24,16}=v21,{25,16}=v22,{26,16}=v23,{27,16}=v24,{28,16}=v25,
{18,17}=v26, {19,17}=v27, {20,17}=v28, {21,17}=v29, {22,17}=v30, {23,17}=v31,
{24,17}=v32,{25,17}=v33,{26,17}=v34,{27,17}=v35,{28,17}=v36,
{19,18}=v37, {20,18}=v38, {21,18}=v39, {22,18}=v40, {23,18}=v41,
{24,18}=v42,{25,18}=v43,{26,18}=v44,{27,18}=v45,{28,18}=v46,
{20,19}=v47, {21,19}=v48, {22,19}=v49, {23,19}=v50,
{24,19}=v51,{25,19}=v52,{26,19}=v53,{27,19}=v54,{28,19}=v55,
{21,20}=v56, {22,20}=v57, {23,20}=v58,
{24,20}=v59,{25,20}=v60,{26,20}=v61,{27,20}=v62,{28,20}=v63,
{22,21}=v64,{23,21}=v65,{24,21}=v66,{25,21}=v67,{26,21}=v68,{27,21}=v69,
{28,21}=v70,{23,22}=v71,{24,22}=v72,{25,22}=v73,{26,22}=v74,{27,22}=v75,
{28,22}=v76,{24,23}=v77,{25,23}=v78,{26,23}=v79,{27,23}=v80,{28,23}=v81,
{25,24}=v82,{26,24}=v83,{27,24}=v84,{28,24}=v85,
{26,25}=v86,{27,25}=v87,{28,25}=v88,{27,26}=v89,{28,26}=v90,{28,27}=v91,

{1,2}=t1, {1,3}=t2, {1,4}=t3, {1,5}=t4, {1,6}=t5, {1,7}=t6, {1,8}=t7,
 {1,9}=t8,{1,10}=t9,{1,11}=t10,{1,12}=t11,{1,13}=t12,{1,14}=t13,
 {2,3}=t14, {2,4}=t15, {2,5}=t16, {2,6}=t17, {2,7}=t18, {2,8}=t19,{2,9}=t20,
 {2,10}=t21,{2,11}=t22,{2,12}=t23,{2,13}=t24,{2,14}=t25,
 {3,4}=t26, {3,5}=t27, {3,6}=t28, {3,7}=t29, {3,8}=t30, {3,9}=t31,
 {3,10}=t32,{3,11}=t33,{3,12}=t34,{3,13}=t35,{3,14}=t36,
 {4,5}=t37, {4,6}=t38, {4,7}=t39, {4,8}=t40, {4,9}=t41,
 {4,10}=t42,{4,11}=t43,{4,12}=t44,{4,13}=t45,{4,14}=t46,
 {5,6}=t47, {5,7}=t48, {5,8}=t49, {5,9}=t50,
 {5,10}=t51,{5,11}=t52,{5,12}=t53,{5,13}=t54,{5,14}=t55,
 {6,7}=t56, {6,8}=t57, {6,9}=t58,
 {6,10}=t59,{6,11}=t60,{6,12}=t61,{6,13}=t62,{6,14}=t63,
 {7,8}=t64,{7,9}=t65,{7,10}=t66,{7,11}=t67,{7,12}=t68,{7,13}=t69,{7,14}=t70,
 {8,9}=t71,{8,10}=t72,{8,11}=t73,{8,12}=t74,{8,13}=t75,{8,14}=t76,
 {9,10}=t77,{9,11}=t78,{9,12}=t79,{9,13}=t80,{9,14}=t81,
 {10,11}=t82,{10,12}=t83,{10,13}=t84,{10,14}=t85,
 {11,12}=t86,{11,13}=t87,{11,14}=t88,{12,13}=t89,{12,14}=t90,{13,14}=t91,

{15,16}=t1,{15,17}=t2,{15,18}=t3,{15,19}=t4,{15,20}=t5,{15,21}=t6,{15,22}=t7,
{15,23}=t8,{15,24}=t9,{15,25}=t10,{15,26}=t11,{15,27}=t12,{15,28}=t13,
{16,17}=t14,{16,18}=t15,{16,19}=t16,{16,20}=t17,{16,21}=t18,{16,22}=t19,
{16,23}=t20,{16,24}=t21,{16,25}=t22,{16,26}=t23,{16,27}=t24,{16,28}=t25,
{17,18}=t26, {17,19}=t27, {17,20}=t28, {17,21}=t29, {17,22}=t30, {17,23}=t31,
{17,24}=t32,{17,25}=t33,{17,26}=t34,{17,27}=t35,{17,28}=t36,
{18,19}=t37, {18,20}=t38, {18,21}=t39, {18,22}=t40, {18,23}=t41,
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{18,24}=t42,{18,25}=t43,{18,26}=t44,{18,27}=t45,{18,28}=t46,
{19,20}=t47, {19,21}=t48, {19,22}=t49, {19,23}=t50,
{19,24}=t51,{19,25}=t52,{19,26}=t53,{19,27}=t54,{19,28}=t55,
{20,21}=t56, {20,22}=t57, {20,23}=t58,
{20,24}=t59,{20,25}=t60,{20,26}=t61,{20,27}=t62,{20,28}=t63,
{21,22}=t64,{21,23}=t65,{21,24}=t66,{21,25}=t67,{21,26}=t68,{21,27}=t69,
{21,28}=t70,{22,23}=t71,{22,24}=t72,{22,25}=t73,{22,26}=t74,{22,27}=t75,
{22,28}=t76,{23,24}=t77,{23,25}=t78,{23,26}=t79,{23,27}=t80,{23,28}=t81,
{24,25}=t82,{24,26}=t83,{24,27}=t84,{24,28}=t85,
{25,26}=t86,{25,27}=t87,{25,28}=t88,{26,27}=t89,{26,28}=t90,{27,28}=t91;

matrix p1
{1,1}=1, {2,2}=1, {3,3}=1, {4,4}=1, {5,5}=1, {6,6}=1, {7,7}=1,{8,8}=1,{9,9}=1,
{10,10}=1,{11,11}=1,{12,12}=1,{13,13}=1,{14,14}=1,

{1,15}=1, {2,16}=1, {3,17}=1, {4,18}=1, {5,19}=1, {6,20}=1, {7,21}=1,{8,22}=1,
{9,23}=1,{10,24}=1,{11,25}=1,{12,26}=1,{13,27}=1,{14,28}=1,

{1,29}=1, {2,30}=1, {3,31}=1, {4,32}=1, {5,33}=1, {6,34}=1, {7,35}=1,{8,36}=1,
{9,37}=1,{10,38}=1,{11,39}=1,{12,40}=1,{13,41}=1,{14,42}=1,

{15,1}=1, {16,2}=1, {17,3}=1, {18,4}=1, {19,5}=1, {20,6}=1, {21,7}=1,{22,8}=1,
{23,9}=1,{24,10}=1,{25,11}=1,{26,12}=1,{27,13}=1,{28,14}=1,

{15,15}=1, {16,16}=1, {17,17}=1, {18,18}=1, {19,19}=1, {20,20}=1, {21,21}=1,
{22,22}=1,{23,23}=1,{24,24}=1,{25,25}=1,{26,26}=1,{27,27}=1,{28,28}=1,

{15,29}=1, {16,30}=1, {17,31}=1, {18,32}=1, {19,33}=1, {20,34}=1, {21,35}=1,
{22,36}=1,{23,37}=1,{24,38}=1,{25,39}=1,{26,40}=1,{27,41}=1,{28,42}=1,

{29,1}=1, {30,2}=1, {31,3}=1, {32,4}=1, {33,5}=1, {34,6}=1, {35,7}=1,{36,8}=1,
{37,9}=1,{38,10}=1,{39,11}=1,{40,12}=1,{41,13}=1,{42,14}=1,

{29,15}=1, {30,16}=1, {31,17}=1, {32,18}=1, {33,19}=1, {34,20}=1, {35,21}=1,
{36,22}=1,{37,23}=1,{38,24}=1,{39,25}=1,{40,26}=1,{41,27}=1,{42,28}=1,

{29,29}=1, {30,30}=1, {31,31}=1, {32,32}=1, {33,33}=1, {34,34}=1, {35,35}=1,
{36,36}=1,{37,37}=1,{38,38}=1,{39,39}=1,{40,40}=1,{41,41}=1,{42,42}=1;

matrix r
{1,1}=d1d1,{2,2}=d1d2,{3,3}=d1d3,{4,4}=d1d4,{5,5}=d1d5,{6,6}=d1d6,{7,7}=d1d7,
{8,8}=d1d8,{9,9}=d1d9,{10,10}=d1d10,

{15,15}=d2d1,{16,16}=d2d2,{17,17}=d2d3,{18,18}=d2d4,{19,19}=d2d5,
{20,20}=d2d6,{21,21}=d2d7,{22,22}=d2d8,{23,23}=d2d9,{24,24}=d2d10;

matrix ta
 {1,1}=1, {2,2}=1, {3,3}=1, {4,4}=1, {5,5}=1, {6,6}=1, {7,7}=1,
 {8,8}=1, {9,9}=1, {10,10}=1, {11,11}=1,{12,12}=1,{13,13}=1,{14,14}=1,
 {15,15}=1,{16,16}=1,{17,17}=1,{18,18}=1,{19,19}=1,{20,20}=1,{21,21}=1,
 {22,22}=1,{23,23}=1,{24,24}=1,{25,25}=1,{26,26}=1,{27,27}=1,{28,28}=1,

{29,30}=v1,{29,31}=v2,{29,32}=v3,{29,33}=v4,{29,34}=v5,{29,35}=v6,{29,36}=v7,
{29,37}=v8,{29,38}=v9,{29,39}=v10,{29,40}=v11,{29,41}=v12,{29,42}=v13,
{30,31}=v14,{30,32}=v15,{30,33}=v16,{30,34}=v17,{30,35}=v18,{30,36}=v19,
{30,37}=v20,{30,38}=v21,{30,39}=v22,{30,40}=v23,{30,41}=v24,{30,42}=v25,
{31,32}=v26, {31,33}=v27, {31,34}=v28, {31,35}=v29, {31,36}=v30, {31,37}=v31,
{31,38}=v32,{31,39}=v33,{31,40}=v34,{31,41}=v35,{31,42}=v36,
{32,33}=v37, {32,34}=v38, {32,35}=v39, {32,36}=v40, {32,37}=v41,
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{32,38}=v42,{32,39}=v43,{32,40}=v44,{32,41}=v45,{32,42}=v46,
{33,34}=v47, {33,35}=v48, {33,36}=v49, {33,37}=v50,
{33,38}=v51,{33,39}=v52,{33,40}=v53,{33,41}=v54,{33,42}=v55,
{34,35}=v56, {34,36}=v57, {34,37}=v58,
{34,38}=v59,{34,39}=v60,{34,40}=v61,{34,41}=v62,{34,42}=v63,
{35,36}=v64,{35,37}=v65,{35,38}=v66,{35,39}=v67,{35,40}=v68,{35,41}=v69,
{35,42}=v70,{36,37}=v71,{36,38}=v72,{36,39}=v73,{36,40}=v74,{36,41}=v75,
{36,42}=v76,{37,38}=v77,{37,39}=v78,{37,40}=v79,{37,41}=v80,{37,42}=v81,
{38,39}=v82,{38,40}=v83,{38,41}=v84,{38,42}=v85,
{39,40}=v86,{39,41}=v87,{39,42}=v88,{40,41}=v89,{40,42}=v90,{41,42}=v91,

{30,29}=t1, {31,29}=t2, {32,29}=t3, {33,29}=t4, {34,29}=t5, {35,29}=t6,
{36,29}=t7,
{37,29}=t8,{38,29}=t9,{39,29}=t10,{40,29}=t11,{41,29}=t12,{42,29}=t13,
{31,30}=t14, {32,30}=t15, {33,30}=t16, {34,30}=t17, {35,30}=t18,
{36,30}=t19,{37,30}=t20,
{38,30}=t21,{39,30}=t22,{40,30}=t23,{41,30}=t24,{42,30}=t25,
{32,31}=t26, {33,31}=t27, {34,31}=t28, {35,31}=t29, {36,31}=t30, {37,31}=t31,
{38,31}=t32,{39,31}=t33,{40,31}=t34,{41,31}=t35,{42,31}=t36,
{33,32}=t37, {34,32}=t38, {35,32}=t39, {36,32}=t40, {37,32}=t41,
{38,32}=t42,{39,32}=t43,{40,32}=t44,{41,32}=t45,{42,32}=t46,
{34,33}=t47, {35,33}=t48, {36,33}=t49, {37,33}=t50,
{38,33}=t51,{39,33}=t52,{40,33}=t53,{41,33}=t54,{42,33}=t55,
{35,34}=t56, {36,34}=t57, {37,34}=t58,
{38,34}=t59,{39,34}=t60,{40,34}=t61,{41,34}=t62,{42,34}=t63,
{36,35}=t64,{37,35}=t65,{38,35}=t66,{39,35}=t67,{40,35}=t68,{41,35}=t69,
{42,35}=t70,{37,36}=t71,{38,36}=t72,{39,36}=t73,{40,36}=t74,{41,36}=t75,
{42,36}=t76,{38,37}=t77,{39,37}=t78,{40,37}=t79,{41,37}=t80,{42,37}=t81,
{39,38}=t82,{40,38}=t83,{41,38}=t84,{42,38}=t85,
{40,39}=t86,{41,39}=t87,{42,39}=t88,{41,40}=t89,{42,40}=t90,{42,41}=t91;

matrix va
 {1,1}=1, {2,2}=1, {3,3}=1, {4,4}=1, {5,5}=1, {6,6}=1, {7,7}=1,
 {8,8}=1, {9,9}=1, {10,10}=1, {11,11}=1,{12,12}=1,{13,13}=1,{14,14}=1,
 {15,15}=1,{16,16}=1,{17,17}=1,{18,18}=1,{19,19}=1,{20,20}=1,{21,21}=1,
 {22,22}=1,{23,23}=1,{24,24}=1,{25,25}=1,{26,26}=1,{27,27}=1,{28,28}=1,

{30,29}=v1, {31,29}=v2, {32,29}=v3, {33,29}=v4, {34,29}=v5, {35,29}=v6,
{36,29}=v7,
{37,29}=v8,{38,29}=v9,{39,29}=v10,{40,29}=v11,{41,29}=v12,{42,29}=v13,
{31,30}=v14, {32,30}=v15, {33,30}=v16, {34,30}=v17, {35,30}=v18,
{36,30}=v19,{37,30}=v20,
{38,30}=v21,{39,30}=v22,{40,30}=v23,{41,30}=v24,{42,30}=v25,
{32,31}=v26, {33,31}=v27, {34,31}=v28, {35,31}=v29, {36,31}=v30, {37,31}=v31,
{38,31}=v32,{39,31}=v33,{40,31}=v34,{41,31}=v35,{42,31}=v36,
{33,32}=v37, {34,32}=v38, {35,32}=v39, {36,32}=v40, {37,32}=v41,
{38,32}=v42,{39,32}=v43,{40,32}=v44,{41,32}=v45,{42,32}=v46,
{34,33}=v47, {35,33}=v48, {36,33}=v49, {37,33}=v50,
{38,33}=v51,{39,33}=v52,{40,33}=v53,{41,33}=v54,{42,33}=v55,
{35,34}=v56, {36,34}=v57, {37,34}=v58,
{38,34}=v59,{39,34}=v60,{40,34}=v61,{41,34}=v62,{42,34}=v63,
{36,35}=v64,{37,35}=v65,{38,35}=v66,{39,35}=v67,{40,35}=v68,{41,35}=v69,
{42,35}=v70,{37,36}=v71,{38,36}=v72,{39,36}=v73,{40,36}=v74,{41,36}=v75,
{42,36}=v76,{38,37}=v77,{39,37}=v78,{40,37}=v79,{41,37}=v80,{42,37}=v81,
{39,38}=v82,{40,38}=v83,{41,38}=v84,{42,38}=v85,
{40,39}=v86,{41,39}=v87,{42,39}=v88,{41,40}=v89,{42,40}=v90,{42,41}=v91,

{29,30}=t1,{29,31}=t2,{29,32}=t3,{29,33}=t4,{29,34}=t5,{29,35}=t6,{29,36}=t7,
{29,37}=t8,{29,38}=t9,{29,39}=t10,{29,40}=t11,{29,41}=t12,{29,42}=t13,
{30,31}=t14,{30,32}=t15,{30,33}=t16,{30,34}=t17,{30,35}=t18,{30,36}=t19,
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{30,37}=t20,{30,38}=t21,{30,39}=t22,{30,40}=t23,{30,41}=t24,{30,42}=t25,
{31,32}=t26, {31,33}=t27, {31,34}=t28, {31,35}=t29, {31,36}=t30, {31,37}=t31,
{31,38}=t32,{31,39}=t33,{31,40}=t34,{31,41}=t35,{31,42}=t36,
{32,33}=t37, {32,34}=t38, {32,35}=t39, {32,36}=t40, {32,37}=t41,
{32,38}=t42,{32,39}=t43,{32,40}=t44,{32,41}=t45,{32,42}=t46,
{33,34}=t47, {33,35}=t48, {33,36}=t49, {33,37}=t50,
{33,38}=t51,{33,39}=t52,{33,40}=t53,{33,41}=t54,{33,42}=t55,
{34,35}=t56, {34,36}=t57, {34,37}=t58,
{34,38}=t59,{34,39}=t60,{34,40}=t61,{34,41}=t62,{34,42}=t63,
{35,36}=t64,{35,37}=t65,{35,38}=t66,{35,39}=t67,{35,40}=t68,{35,41}=t69,
{35,42}=t70,{36,37}=t71,{36,38}=t72,{36,39}=t73,{36,40}=t74,{36,41}=t75,
{36,42}=t76,{37,38}=t77,{37,39}=t78,{37,40}=t79,{37,41}=t80,{37,42}=t81,
{38,39}=t82,{38,40}=t83,{38,41}=t84,{38,42}=t85,
{39,40}=t86,{39,41}=t87,{39,42}=t88,{40,41}=t89,{40,42}=t90,{41,42}=t91;

matrix s1a
{42,42}=1;
matrix s1b
{41,41}=1;
matrix s2a
{42,42}=1, {41,41}=1;
matrix s2b
{40,40}=1;
matrix s3a
{42,42}=1,{41,41}=1,{40,40}=1;
matrix s3b
{39,39}=1;
matrix s4a
{42,42}=1,{41,41}=1,{40,40}=1,{39,39}=1;
matrix s4b
{38,38}=1;
matrix s5a
{42,42}=1,{41,41}=1,{40,40}=1,{39,39}=1,{38,38}=1;
matrix s5b
{37,37}=1;
matrix s6a
{42,42}=1,{41,41}=1,{40,40}=1,{39,39}=1,{38,38}=1,{37,37}=1;
matrix s6b
{36,36}=1;
matrix s7a
{42,42}=1,{41,41}=1,{40,40}=1,{39,39}=1,{38,38}=1,{37,37}=1,{36,36}=1;
matrix s7b
{35,35}=1;
matrix s8a
{42,42}=1,{41,41}=1,{40,40}=1,{39,39}=1,{38,38}=1,{37,37}=1,{36,36}=1,
{35,35}=1;
matrix s8b
{34,34}=1;
matrix s9a
{42,42}=1,{41,41}=1,{40,40}=1,{39,39}=1,{38,38}=1,{37,37}=1,{36,36}=1,
{35,35}=1,{34,34}=1;
matrix s9b
{33,33}=1;
matrix s10a
{42,42}=1,{41,41}=1,{40,40}=1,{39,39}=1,{38,38}=1,{37,37}=1,{36,36}=1,
{35,35}=1,{34,34}=1,{33,33}=1;
matrix s10b
{32,32}=1;
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matrix s11a
{42,42}=1,{41,41}=1,{40,40}=1,{39,39}=1,{38,38}=1,{37,37}=1,{36,36}=1,
{35,35}=1,{34,34}=1,{33,33}=1,{32,32}=1;
matrix s11b
{31,31}=1;
matrix s12a
{42,42}=1,{41,41}=1,{40,40}=1,{39,39}=1,{38,38}=1,{37,37}=1,{36,36}=1,
{35,35}=1,{34,34}=1,{33,33}=1,{32,32}=1,{31,31}=1;
matrix s12b
{30,30}=1;

*What follows are SAS programming statements that constrain the
 parameters.  t1=-v1 constrains t1 to be the additive inverse of v1.;

t1=-v1;t2=-v2;t3=-v3;t4=-v4;t5=-v5;t6=-v6;t7=-v7;t8=-v8;t9=-v9;t10=-v10;
t11=-v11;t12=-v12;t13=-v13;t14=-v14;t15=-v15;t16=-v16;t17=-v17;t18=-v18;
t19=-v19;t20=-v20;t21=-v21;t22=-v22;t23=-v23;t24=-v24;t25=-v25;t26=-v26;
t27=-v27;t28=-v28;t29=-v29;t30=-v30;t31=-v31;t32=-v32;t33=-v33;t34=-v34;
t35=-v35;t36=-v36;t37=-v37;t38=-v38;t39=-v39;t40=-v40;t41=-v41;t42=-v42;
t43=-v43;t44=-v44;t45=-v45;t46=-v46;t47=-v47;t48=-v48;t49=-v49;t50=-v50;
t51=-v51;t52=-v52;t53=-v53;t54=-v54;t55=-v55;t56=-v56;t57=-v57;t58=-v58;
t59=-v59;t60=-v60;t61=-v60;t62=-v62;t63=-v63;t64=-v64;t65=-v65;t66=-v66;
t67=-v67;t68=-v68;t69=-v69;t70=-v70;t71=-v71;t72=-v72;t73=-v73;t74=-v74;
t75=-v75;t76=-v76;t77=-v77;t78=-v78;t79=-v79;t80=-v80;t81=-v81;t82=-v82;
t83=-v83;t84=-v84;t85=-v85;t86=-v86;t87=-v87;t88=-v88;t89=-v89;t90=-v90;
t91=-v91;

d1d2=0;d1d3=0;d1d4=0;d1d5=0;d1d6=0;d1d7=0;d1d8=0;d1d9=0;d1d10=0;
d2d2=0;d2d3=0;d2d4=0;d2d5=0;d2d6=0;d2d7=0;d2d8=0;d2d9=0;d2d10=0;

run;

*The subsequent code calculates V.;

proc iml; use cal; read point 4
var {v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15
 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26 v27 v28 v29 v30 v31 v32 v33 v34
 v35 v36 v37 v38 v39 v40
 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 v51 v52 v53 v54 v55 v56 v57 v58 v59
 v60 v61 v62 v63 v64 v65
 v66 v67 v68 v69 v70 v71 v72 v73 v74 v75 v76 v77 v78 v79 v80 v81 v82 v83 v84
 v85 v86 v87 v88 v89 v90 v91} into K;

v=J(14,14,0);
 v[1,2]=K[,1]; v[1,3]=K[,2]; v[1,4]=K[,3];    v[1,5]=K[,4];  v[1,6]=K[,5];
 v[1,7]=K[6]; v[1,8]=K[7];
 v[1,9]=K[,8]; v[1,10]=K[,9];v[1,11]=K[,10];  v[1,12]=K[,11];v[1,13]=K[,12];
 v[1,14]=K[,13];
 v[2,3]=K[,14]; v[2,4]=K[,15]; v[2,5]=K[,16]; v[2,6]=K[,17]; v[2,7]=K[,18];
 v[2,8]=K[,19];v[2,9]=K[,20];
 v[2,10]=K[,21];v[2,11]=K[,22];v[2,12]=K[,23];v[2,13]=K[,24];v[2,14]=K[,25];
 v[3,4]=K[,26]; v[3,5]=K[,27]; v[3,6]=K[,28]; v[3,7]=K[,29]; v[3,8]=K[,30];
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 v[3,9]=K[,31];
 v[3,10]=K[,32];v[3,11]=K[,33];v[3,12]=K[,34];v[3,13]=K[,35];v[3,14]=K[,36];
 v[4,5]=K[,37]; v[4,6]=K[,38]; v[4,7]=K[,39]; v[4,8]=K[,40]; v[4,9]=K[,41];
 v[4,10]=K[,42];v[4,11]=K[,43];v[4,12]=K[,44];v[4,13]=K[,45];v[4,14]=K[,46];
 v[5,6]=K[,47]; v[5,7]=K[,48]; v[5,8]=K[,49]; v[5,9]=K[,50];
 v[5,10]=K[,51];v[5,11]=K[,52];v[5,12]=K[,53];v[5,13]=K[,54];v[5,14]=K[,55];
 v[6,7]=K[,56]; v[6,8]=K[,57]; v[6,9]=K[,58];
 v[6,10]=K[,59];v[6,11]=K[,60];v[6,12]=K[,61];v[6,13]=K[,62];v[6,14]=K[,63];
 v[7,8]=K[,64]; v[7,9]=K[,65]; v[7,10]=K[,66];v[7,11]=K[,67];v[7,12]=K[,68];
 v[7,13]=K[,69];v[7,14]=K[,70];
 v[8,9]=K[,71]; v[8,10]=K[,72];v[8,11]=K[,73];v[8,12]=K[,74];v[8,13]=K[,75];
 v[8,14]=K[,76];
 v[9,10]=K[,77];v[9,11]=K[,78];v[9,12]=K[,79];v[9,13]=K[,80];v[9,14]=K[,81];
 v[10,11]=K[,82];v[10,12]=K[,83];v[10,13]=K[,84];v[10,14]=K[,85];
 v[11,12]=K[,86];v[11,13]=K[,87];v[11,14]=K[,88];v[12,13]=K[,89];
 v[12,14]=K[,90];v[13,14]=K[,91];
Vo=v-v`-I(14); To=-v+v`-I(14);
Orth=inv(Vo)*To; print orth;

*The matrix of canonical variates, V, is called “orth”.;
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APPENDIX SIX

SAS CODE FOR THE SIM ULATION OF THE COM M ON

VARIATES M ODEL

*Programming code for simulating 5000 datasets of size 4000 and then
 estimating the CVA/time model.  P=3 is the number of variables, t=3 is the
 number of occasions, and m=4 is the number of groups.  tn=4000 is the total
 sample size and gn=1000 is the sample size in each group.;

%let P=3; %let t=3; %let m=4;
%let count=5000;  %let tn=4000;   %let gn=1000;

*The code generates a dataset, then estimates both the common variate model
 and the unique variate model.  The global do loop invokes several macros
 repeatedly.  Hence the macros are discussed first.;

*fititu and fititc are macros that calculate the fit of the estimates for
 the unique variates and the common variates models, respectively.  These
 fits are used in the calculation of the maximum likelihood test statistic.;

%macro fititu;
fit=j(9,9,0);v1=b[1:3,];v2=b[4:6,];v3=b[7:9];
  %do g=1 %to &m;
    %do s=1 %to &t;

res&g&s=x&g&s-e[&g,&s]*v&s;
    %end;
    res&g=res&g.1//res&g.2//res&g.3;

res&g.res=res&g*res&g`;
fit=&gn*res&g.res+fit;

  %end;
%mend;

%macro fititc;
fit=j(9,9,0); v=b[1:3,];
  %do g=1 %to &m;
    %do s=1 %to &t;

res&g&s=x&g&s-e[&g,&s]*v;
    %end;
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    res&g=res&g.1//res&g.2//res&g.3;
res&g.res=res&g*res&g`;
fit=&gn*res&g.res+fit;

  %end;
%mend;

*The macros makmat and xbar set up the data matrices that are used in the
 algorithm. Makmat inverts S (the sample covariance) and then breaks it
 into smaller submatrices. xbar sets up the group means.;

%macro makmat;
Si=inv(S);

  %do i=1 %to &t;
    %do j=1 %to &t;

a=&i*&t-(&t-1); k=&i*&t; g=&j*&t-(&t-1); d=&j*&t;
Si&i&j=Si[a:k,g:d];

    %end;
  %end;
%mend;

%macro xbar;
%do g=1 %to 4;
  %do s=1 %to 3;
     j1=&s*3-2; j2=&s*3;

x&g&s= fava[&g,j1:j2]`;
  %end;
%end;
%mend;

*The macros normalF and normalu evaluate the normal equations for the
 common variates and the unique variates models respectively.;

%macro normalF; v=B[1:&p,]; lm=B[L,1]; e=j(&m,&t,0);
  %do g=1 %to &m;
    j1=&P+(&g-1)*&t+1;  j2=&P+&g*&t;
    e[&g,]=B[j1:j2,]`;
  %end;
F&w=j(L,1,0); wr=j(&P,1,0);

  %do g=1 %to &m;
    %do q=1 %to &t;
      %do s=1 %to &t;

wn=e[&g,&q]*e[&g,&s]*Si&q&s*v - e[&g,&q]*Si&q&s*x&g&s +lm*v;
wr=wr+wn;

      %end;
    %end;
  %end;
D=j(&m,&t,0);

  %do g=1 %to &m;
    %do q=1 %to &t;
       %do s=1 %to &t;
         D[&g,&q]=D[&g,&q]+(0.5)*e[&g,&s]*v`*Si&q&s*v+
                    (0.5)*e[&g,&s]*v`*Si&s&q*v - v`*Si&q&s*x&g&s;
       %end;
    %end;
  %end;
norm=ssq(v)-1;
F&w=wr//D[1,]`//D[2,]`//D[3,]`//D[4,]`//norm;
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%mend;

%macro normalu; nv=&p*&t; v=B[1:nv,]; e=j(&m,&t,0);
  %do r=1 %to &t;
    j1=&p*&r-&p+1;      j2=&p*&r;

v&r=v[j1:j2,];      j3=&p*&t + &t*&m + &r;
lm&r=B[j3,1];

  %end;
  %do g=1 %to &m;
    j1=(&p-1)*&t + &g*&t + 1;  j2=(&p-1)*&t + &g*&t + &t;
    e[&g,]=B[j1:j2,]`;
  %end;
F&w=j(L,1,0);

  %do r=1 %to &t; w&r=j(&P,1,0);
    %do g=1 %to &m;
      %do s=1 %to &t;

wn=-e[&g,&r]*e[&g,&s]*Si&r&s*v&s + e[&g,&r]*Si&r&s*x&g&s +
        e[&g,&r]*e[&g,&s]*v&r`*Si&r&s*v&s*v&r-e[&g,&r]*v&r`*Si&r&s*x&g&s*v&r;

w&r=w&r+wn;
      %end;
    %end;

w&r=w&r+lm&r*v&r;
  %end;
D=j(&m,&t,0);

  %do g=1 %to &m;
    %do r=1 %to &t;
       %do s=1 %to &P;
         D[&g,&r]=D[&g,&r] + e[&g,&s]*v&r`*Si&r&s*v&s - v&r`*Si&r&s*x&g&s;
       %end;
    %end;
  %end;
norm=j(&t,1,0);

  %do s=1 %to &t;
    norm[&s,1]=ssq(v&s)-1;
  %end;
  F&w=w1//w2//w3//D[1,]`//D[2,]`//D[3,]`//D[4,]`//norm;
%mend;

proc iml;
BigBc=j(&count,15,0);BigBu=j(&count,23,0);
devmatc=j(&count,1,0); devmatu=j(&count,1,0); llcm=j(&count,5,0);
llum=j(&count,5,0); testy=j(&count,2,0); llc=j(1,5,0); llu=j(1,5,0);
test=j(1,2,0);

do ttt=1 to &count;

*First a data set is created.  W is the covariance matrix of the data, v is
 the common canonical variate, and e is the matrix of group scores.  seed is
 is a 4000 by 9 matrix of zeros which serve as seeds for the random number
 generator.  The random numbers follow the normal distribution.  The matrix
 of random numbers, data, is treated as a matrix of residuals.;

seed=j(&tn,9,0); data=normal(seed);

W={  4.8   2.1   1.0   2.4  1.05 0.5  1.2   0.525 0.25,
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     2.1   3.3   1.4   1.05 1.65 0.7  0.525 0.825 0.35,
     1.0   1.4   2.9   0.5  0.7  1.45 0.25  0.35  0.725,
     2.4   1.05  0.5   4.8  2.1  1.0  2.4   1.05  0.5,
     1.05  1.65  0.7   2.1  3.3  1.4  1.05  1.65  0.7,
     0.5   0.7   1.45  1.0  1.4  2.9  0.5   0.7   1.45,
     1.2   0.525 0.25  2.4  1.05 0.5  4.8   2.1   1.0,
     0.525 0.825 0.35  1.05 1.65 0.7  2.1   3.3   1.4,
     0.25  0.35  0.725 0.5  0.7  1.45 1.0   1.4   2.9};

  call svd(a,b,c,W);
tdata=data*(diag(b)##0.5)*c`;

rhalf=(0.5)##(0.5);
v={0.5, 0.5, 0};    v[3,1]=rhalf;

                     e={1.0 0.0 1.0,
                        0.5 1.0 -.5,
                        -.5 0.0 0.5,
                        -1  -1  -1 };

*The subsequent statements center the data and create a matrix of group
 means and a within-groups error matrix.;

u1=e[1,]`@v;
u2=e[2,]`@v;
u3=e[3,]`@v;
u4=e[4,]`@v;
    u=u1||u2||u3||u4;
d1=j(&gn,1,1)@u1`;
d2=j(&gn,1,1)@u2`;
d3=j(&gn,1,1)@u3`;
d4=j(&gn,1,1)@u4`;
d=d1//d2//d3//d4; bt=d`*d;
f=d+tdata;

ftot=j(1,9,0);
do i=1 to &tn;
ftot=ftot+f[i,];

end;
fmean=ftot/&tn;
m=j(&tn,1,1);
fmeans=m@fmean;
fad=f-fmeans;
sstot=fad`*fad;

f1tot=j(1,9,0);  f2tot=j(1,9,0);  f3tot=j(1,9,0);  f4tot=j(1,9,0);
f1=f[1:1000,]; f2=f[1001:2000,]; f3=f[2001:3000,]; f4=f[3001:&tn,];
do i=1 to &gn;
  f1tot=f1tot+f1[i,];
  f2tot=f2tot+f2[i,];
  f3tot=f3tot+f3[i,];
  f4tot=f4tot+f4[i,];
end;
f1ave=f1tot/&gn;
f2ave=f2tot/&gn;
f3ave=f3tot/&gn;
f4ave=f4tot/&gn;
ftot=(f1ave+f2ave+f3ave+f4ave)/4;
f1ava=f1ave-ftot; f2ava=f2ave-ftot; f3ava=f3ave-ftot; f4ava=f4ave-ftot;
fava=f1ava//f2ava//f3ava//f4ava;      *print fava;
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bhat=(fava`*fava)*&gn;

f1ad=j(&gn,9,0); f2ad=j(&gn,9,0); f3ad=j(&gn,9,0); f4ad=j(&gn,9,0);
do i=1 to &gn;
  f1ad[i,]=f1[i,]-f1ave;
  f2ad[i,]=f2[i,]-f2ave;
  f3ad[i,]=f3[i,]-f3ave;
  f4ad[i,]=f4[i,]-f4ave;
end;
ss1=f1ad`*f1ad; ss2=f2ad`*f2ad; ss3=f3ad`*f3ad; ss4=f4ad`*f4ad;
sst=ss1 + ss2 + ss3 + ss4;
sstotal=bhat + sst;

%xbar

within=sst/&tn; S=within;

%let P=3; %let t=3; %let m=4;  L=&P+&t*&m+1;

%makmat

*The following set of lines is the code that finds the maximum likelihood
 estimate for the common variate model by solving the normal equations.
 The algorithm is a Gauss-Newton.;

  delta=0.000001; epsilon=1;   a=0;   r=10;   h=-2; con=0.01;   dev=0;
  B={.5,0.5,.707,1.0,0.0,1.0,0.5,1.0,-.5,-.5, 0.0, 0.5, -1, -1, -1,0 };
bold=B;

  do until(alpha<0.000001);
    a=a+1;

Hessian=j(L,L,0);
rold=r;

    %let w=1;
    %NormalF
    do co=1 to 16;

B=bold; devold=dev;
      B[co,1]=bold[co,1]+delta;
      %let w=2;
      %NormalF

Hessian[,co]=(F2-F1)/delta;
    end;

B=bold-epsilon*inv(Hessian+I(16)*con)*F1;
    %let w=3;
    %NormalF

bdiff=b-bold; dev=sum(abs(f3));
    *print  a h epsilon f3 f1 dev B;

sumabsd=sum(abs(f3)-abs(f1));
    ralpha=0;
    if sumabsd<0 then do; epsilon=1; bold=b; h=-2; con=0.01; devold=dev;end;
    else do;

b=bold; dev=devold;
      if epsilon=1 then epsilon=0.1;
      else do;
        h=h+1;
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con=r**h; epsilon=1;
      end;
    end;

alpha=abs(sum(f3));            if h=3 then alpha=0;
  end;

*The following lines of code generate the maximum likelihood test
 statistics.;

%fititc
n={&tn};
Sh=within + fit*(1/&tn); iw=inv(within);
invSh=inv(Sh);

lrscapx=trace(iw*fit);
lrs=n*log(det(Sh))+n*trace(invSh*within)+trace(invSh*fit);
lrs1=n*log(det(Sh)); lrs2=trace(invSh*within); lrs3=trace(invSh*fit);
llc[,1]=lrs1;llc[,2]=lrs2;llc[,3]=lrs3;llc[,4]=lrs;llc[,5]=lrscapx;

BigBc[ttt,]=B[1:15,]`; devmatc[ttt,]=dev;

Lu=&t*(&P+&m+1);

*The following set of lines is the code that finds the maximum likelihood
 estimate for the unique variate model by solving the normal equations.;

  delta=0.000001; epsilon=1;   a=0;   r=10;   h=-2; con=0.01;   dev=0;
balt=b; b=j(24,1,0);

  B[1:3,]=Balt[1:3,]; B[4:6,]=Balt[1:3,]; B[7:9,]=Balt[1:3,];
  B[10:21,]=Balt[4:15,]; B[22:24,]={0, 0, 0};
bold=B;

  do until(alpha<0.000001);
    a=a+1;

Hessian=j(Lu,Lu,0);
rold=r;

    %let w=1;
    %Normalu
    do co=1 to 24;

B=bold; devold=dev;
      B[co,1]=bold[co,1]+delta;
      %let w=2;
      %Normalu

Hessian[,co]=(F2-F1)/delta;
    end;

B=bold-epsilon*inv(Hessian+I(24)*con)*F1;
    %let w=3;
    %Normalu

bdiff=b-bold; dev=sum(abs(f3));
sumabsd=sum(abs(f3)-abs(f1));

    ralpha=0;
    if sumabsd<0 then do; epsilon=1; bold=b; h=-2; con=0.01; devold=dev;end;
    else do;

b=bold; dev=devold;
      if epsilon=1 then epsilon=0.1;
      else do;
        h=h+1;

con=r**h; epsilon=1;
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      end;
    end;

alpha=abs(sum(f3));            if h=3 then alpha=0;
  end;

*The following lines of code generate the maximum likelihood test
 statistics.;

%fititu
n={&tn};
Sh=within + fit*(1/&tn); iw=inv(within);
invSh=inv(Sh);

lrsuapx=trace(iw*fit);
lrus=n*log(det(Sh))+n*trace(invSh*within)+trace(invSh*fit);
lrsu1=n*log(det(Sh)); lrsu2=trace(invSh*within); lrsu3=trace(invSh*fit);
llu[,1]=lrsu1;llu[,2]=lrsu2;llu[,3]=lrsu3;llu[,4]=lrus;llu[,5]=lrsuapx;
test[,1]=lrs-lrus;
test[,2]=lrscapx-lrsuapx;

BigBu[ttt,]=B[1:23,]`; devmatu[ttt,]=dev;
llum[ttt,1:5]=llu; llcm[ttt,1:5]=llc;  testy[ttt,1:2]=test;

end;

libname wat 'c:\prg'; reset storage=wat.simk5k;
store bigbc bigbu llum llcm testy devmatc devmatu;
quit iml;
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APPENDIX SEVEN

M ATHEM ATICA CODE FOR CALCULATING THE

ASYM PTOTIC COVARIANCE M ATRIX OF THE

ESTIM ATES

*pm is a matrix of parameters.

bb=Table[0,{11},{11}];

pm={{v1},{v2},{e[1,1]},{e[1,2]},{e[1,3]},{e[2,1]},

{e[2,2]},{e[2,3]},{e[3,1]},{e[3,2]},{e[3,3]}};

e[4,1]=-e[3,1]-e[2,1]-e[1,1];e[4,2]=-e[3,2]-e[2,2]-e[1,2];

e[4,3]=-e[3,3]-e[2,3]-e[1,3];

*Next the covariance matrix w is created.

 h={{4.8, 2.1, 1.0},

    {2.1, 3.3, 1.4},

    {1.0, 1.4, 2.9}};

hw=h*0.5;

qw=h*0.25;

w=Join[Transpose[Join[h,hw,qw]],Transpose[Join[hw,h,hw]],

  Transpose[Join[qw,hw,h]]];

ssi=Inverse[w];

Do[si[i,j]=ssi[[Range[3i-2,3i],Range[3j-2,3j] ]],{i,3},{j,3}];

*The group means are set up.

v={{v1},{v2},{(1-v1^2-v2^2)^0.5}};

eg={{1,0,1},{0.5,1,-0.5},{-0.5,0,0.5},{-1,-1,-1}};

vf={0.5,0.5,(0.5^0.5)};

Do[x[i,j]=eg[[i,j]]vf,{i,4},{j,3}];
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*The maximum likelihood equations are set up.

bb=Table[0,{11},{11}];
f=e[g,q]e[g,s]Transpose[v].si[q,s].v-
  2e[g,q]Transpose[v].si[q,s].x[g,s];
kk=Sum[f,{g,1,4},{q,1,3},{s,1,3}];

*The matrix of second order derivatives is obtained, then evaluated.

Do[bb[[i,j]]=D[kk,pm[[i,1]],pm[[j,1]]],{i,11},{j,11}];
tt=bb /. {v1->0.5, v2->0.5, e[1,1]->1, e[1,2]->0, e[1,3]->1,
    e[2,1]->0.5, e[2,2]->1, e[2,3]->-0.5, e[3,1]->-0.5,
    e[3,2]->0, e[3,3]->0.5};

*In the remaining code the information matrix is inverted and the asymptotic covariances are

printed.

bbbb=tt;
bflat=Flatten[bbbb];
cd=Table[0,{11},{11}];
Do[cd[[i,j]]=bflat[[11(i-1)+j]], {i,11},{j,11}];
cdinv=Inverse[50cd];
Do[Print[cdinv[[i,i]]],{i,11}];
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APPENDIX EIGHT

ASYM PTOTIC COVARIANCE M ATRIX FOR THE

PARAM ETER ESTIM ATES

Below is the matrix of asymptotic covariances between the parameter estimates based on the

inverse of the information matrix for the model simulated in Section 8.4.  Since v3  is a function of

v1 and v 2  it is not a free parameter and was not included.  The same is true for e41 , e42  and e43 .

v1 v2 e11 e12 e13 e21 e22 e23 e31 e32 e33

v1
0.002998 -0.00037 0.001426 0 0.001426 0.000713 0.001426 -0.00071 -0.00071 0 0.000713

v2
-0.00037 0.001589 0.000789 0 0.000789 0.000395 0.000789 -0.00040 -0.00040 0 0.000395

e11
0.001426 0.000789 0.040908 0.019814 0.011187 -0.01257 -0.00533 -0.00394 -0.01385 -0.00661 -0.00266

e12
0 0 0.019814 0.039628 0.019814 -0.00661 -0.01321 -0.00661 -0.00661 -0.01321 -0.00661

e13
0.001426 0.000789 0.011187 0.019814 0.040908 -0.00266 -0.00533 -0.01385 -0.00394 -0.00661 -0.01257

e21
0.000713 0.000395 -0.01257 -0.00661 -0.00266 0.039948 0.020454 0.009587 -0.01353 -0.00661 -0.00298

e22
0.001426 0.000789 -0.00533 -0.01321 -0.00533 0.020454 0.040908 0.019174 -0.00724 -0.01321 -0.00597

e23
-0.00071 -0.00040 -0.00394 -0.00661 -0.01385 0.009587 0.019174 0.039948 -0.00298 -0.00661 -0.01353

e31
-0.00071 -0.00040 -0.01385 -0.00661 -0.00394 -0.01353 -0.00724 -0.00298 0.039948 0.019814 0.009587

e32
0 0 -0.00661 -0.01321 -0.00661 -0.00661 -0.01321 -0.00661 0.019814 0.039628 0.019814

e33
0.000713 0.000395 -0.00266 -0.00661 -0.01257 -0.00298 -0.00597 -0.01353 0.009587 0.019814 0.039948


