
HE Plots for Multivariate Linear Models

Michael Friendly

Multivariate analysis of variance (MANOVA) extends the ideas and methods of uni-
variate ANOVA in simple and straightforward ways. But the familiar graphical methods
typically used for univariate ANOVA are inadequate for showing how measures in a
multivariate response vary with each other, and how their means vary with explanatory
factors. Similarly, the graphical methods commonly used in multiple regression are not
widely available or used in multivariate multiple regression (MMRA). We describe a
variety of graphical methods for multiple-response (MANOVA and MMRA) data aimed
at understanding what is being tested in a multivariate test, and how factor/predictor
effects are expressed across multiple response measures.

In particular, we describe and illustrate: (a) Data ellipses and biplots for multivariate
data; (b) HE plots, showing the hypothesis and error covariance matrices for a given
pair of responses, and a given effect; (c) HE plot matrices, showing all pairwise HE
plots; and (d) reduced-rank analogs of HE plots, showing all observations, group means,
and their relations to the response variables. All of these methods are implemented in a
collection of easily used SAS macro programs.

Key Words: Biplot; Canonical discriminant plot; Data ellipse; HE plot matrix; MANOVA;
Multivariate multiple regression; MMRA; Scatterplot matrix.

1. INTRODUCTION

Among all the inventions in the history of statistics, the classical univariate general
linear model (LM), yyy = XXXβββ + εεε, with εεε ∼ N (000, ���), has arguably been the most generally
useful, in terms of its range and frequency of use in applied research settings. It has also
been the most prolific, in terms of its progeny and extensions.

As is well known, the LM includes as special cases all forms of regression, ANOVA,
ANCOVA, and response surface models. Extensions of this basic model include generalized
linear models, g(yyy) = XXXβββ+εεε, such as Poisson regression, logistic regression, and loglinear
models, all with non-Gaussian, heteroscedastic error structures, and versions that substitute
robust estimation for standard least squares.

Equally remarkable is the range of diagnostic and graphical methods associated with
the LM family, both for assessing departures of the data from model assumptions, and for
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assisting the viewer in understanding and communicating the nature of effects, many of
which are now widely used in applied research.

As if this is not enough, the classical LM extends quite naturally to the multivariate re-
sponse setting, at least for a multivariate normal collection ofp responses, (yyy1, yyy2, . . . , yyyp)

≡ YYY . The multivariate linear model (MLM) then becomes YYY = XXXBBB+UUU . Thus, multivariate
analysis of variance (MANOVA) extends the ideas and methods of univariate analysis of
variance (ANOVA) in simple and straightforward ways, just as multivariate multiple re-
gression (MMRA) extends univariate multiple regression (MRA) to the multiple response
setting.

It is therefore surprising that corresponding graphical methods for multivariate responses
are not widely developed, or at least, are not widely known and used. This article describes
a variety of graphical methods for multivariate data in the context of the multivariate LM
aimed at understanding how variation is reflected in multivariate tests and showing how
factor/predictor effects are expressed across multiple response measures.

The outline of this article is as follows: Section 2 describes bivariate plots based on
the use of a data ellipse as a sufficient visual summary and extensions of this technique to
multivariate displays. Section 3 focuses on HE plots that provide a direct visual comparison
of the hypothesis and error covariance matrices involved in any general linear test for a
multivariate response. Finally, Section 4 describes a low-dimensional view for MANOVA
data based on canonical discriminant analysis. The Appendix describes software for SAS
and R that implement these displays.

2. BIVARIATE PLOTS FOR MULTIVARIATE DATA

The principal new ideas we introduce concern the use of ellipses to visualize covariation
against multivariate null hypotheses (HHH ) relative to error covariation (EEE), and their use in
low-rank approximations. To set the stage, we briefly describe the data ellipse and biplot
that provide simple conceptual bases for these ideas.

2.1 Data Ellipse

The data ellipse (Dempster 1969; Monette 1990) provides a remarkably simple and
effective display for viewing and understanding bivariate marginal relationships in multi-
variate data. It is typically used to add a visual summary to a scatterplot, indicating the
means, standard deviations, correlation, and slope of the regression line for two variables.

It is historically appropriate to illustrate the data ellipse and describe its properties using
Galton’s (1886, Table I) data (reproduced in Stigler (1986, Table 8.2, p. 286)) on the average
heights of parents and their children, shown in Figure 1, where the frequency at each point
is shown by a sunflower symbol. We also overlay the 40%, 68%, and 95% data ellipses, as
described below.

Galton smoothed the numbers by averaging each set of four adjacent cells, and noticed
that: (a) contours of equal frequency formed concentric ellipses, and (b) the locus of vertical
and horizontal tangent lines to these ellipses corresponded closely to the traces of the
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Figure 1. Sunflower plot of Galton’s data on heights of parents and their children (in.), with 40%, 68%, and 95%
data ellipses and the regression lines of y on x (black) and x on y (gray). The ratio of the vertical to the regression
line (labeled “r”) to the vertical to the top of the ellipse gives a visual estimate of the correlation (r = 0.46, here).
Plotting children’s height on the abscissa follows Galton.

conditional means, ȳ | x and x̄ | y that he called the regression lines of y on x and of x on y,
respectively. Galton’s graphical insight led directly to the development of correlation and
regression and the theory of the bivariate normal distribution (where the ellipses are exact
contours of equal density) and later to principal components (Pearson 1901), the major and
minor axes of these ellipses, and ultimately to much of the theory of multivariate correlation
and regression.

In Figure 1 the ellipses have the mean vector (x̄, ȳ) as their center; the lengths of arms
of the central cross show the standard deviation of each variable, which may be seen to
correspond to the shadows of the 40% ellipse. In addition, the correlation coefficient may
be visually estimated as the fraction of a vertical tangent line from ȳ to the top of the ellipse
that is below the regression line ŷ|x, shown by the arrow labeled “r.” See Monette (1990,
Fig. 5.2) and Friendly (1991, p. 183) for illustrations and further discussion of the properties
of the data ellipse.

Formally, for two variables,Y1, Y2, the sample data ellipse Ec of size c is defined as the set
of pointsyyy = (y1, y2)

′ whose squared Mahalanobis distance,D2(yyy) = (yyy−ȳyy)′ SSS−1 (yyy−ȳyy),
from the means, ȳyy, is less than or equal to c2,

Ec(yyy; SSS, ȳyy) ≡ {yyy : (yyy − ȳyy)′ SSS−1 (yyy − ȳyy) ≤ c2} , (2.1)
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where SSS is the sample variance-covariance matrix, SSS = (n − 1)−1 ∑n
i=1(yyyi − ȳyy)′(yyyi − ȳyy).

When yyy is (at least approximately) bivariate normal, D2(yyy) has a large-sample χ2
2

distribution (χ2 with 2 df), so taking c2 = χ2
2 (0.68) = 2.28 gives a “1 standard deviation

bivariate ellipse,” an analog of the standard interval ȳ±1s, while c2 = χ2
2 (0.95) = 5.99 ≈ 6

gives a data ellipse of 95% coverage. A bivariate ellipse of ≈ 40% coverage has the property
that its shadow on the y1 or y2 axes (or any linear combination of y1 and y2) corresponds to a
univariate ȳ± 1s interval. In small samples, the distribution of D2(yyy) can be approximated
more closely by [2(n− 1)/(n− 2)]F2,n−2 ≈ 2F2,n−2; except in tiny samples (n < 10), the
difference is usually too small to be noticed in a graphical display.

The boundary of the data ellipse, Ec (where equality holds in Equation (2.1)) may easily
be computed as a transformation of a unit circle, U = (sin θθθ, cos θθθ) for θθθ = 0 to 2π
in radians. Let AAA = SSS1/2 be the Choleski square root of SSS in the sense that SSS = AAAAAA′,
whose columns form an orthonormal basis for the inner product (uuu, vvv) = uuuSSS−1vvv. Then
Ec = ȳyy + cAAAU is an ellipse centered at the means, ȳyy = (ȳ1, ȳ2), whose size reflects the
standard deviations of y1 and y2 and whose shape (eccentricity) reflects their correlation.
For bivariate normal data, the data ellipse is a level curve through the bivariate density.

All of the above results extend immediately to p variables, y1, y2, . . . , yp, giving a
p-dimensional (1 − α) data ellipsoid Ec with c2 = χ2

p(1 − α) or c2 = [p(n − 1)/(n −
p)]Fp,n−p(1 − α) in small samples.

As useful as the data ellipse might be for a single, unstructured sample, its value as a
visual summary increases with the complexity of the data. For example, Figure 2 shows
a scatterplot matrix of all pairwise plots of the variables from Anderson’s (1935) classic
data on three species of iris flowers found in the Gaspé Peninsula, later used by Fisher
(1936) in his development of discriminant analysis. The data ellipses show clearly that the
means, variances, correlations, and regression slopes differ systematically across the three
iris species in all pairwise plots. Exactly how they differ can be shown in several forms, as
explained below.

We recognize that a normal-theory summary (first and second moments), shown visually
or numerically, can be distorted by multivariate outliers, particularly in smaller samples.
Such effects can be countered by using robust covariance estimates such as multivariate
trimming (Gnanadesikan and Kettenring 1972) or the high-breakdown bound minimum
volume ellipsoid (MVE) and minimum covariance determinant (MCD) methods developed
by Rousseeuw and others (Rousseeuw and Leroy 1987; Rousseeuw and Van Driessen 1999).
In what follows, it should be noted that robust covariance estimates could, in principle, be
substituted for the classical, normal-theory estimates in all cases. To save space, we do not
explore these possibilities further here.

2.2 Biplots

The data ellipse, used within a scatterplot matrix as in Figure 2, may show quite effec-
tively the relations among a reasonably large number of variables. Yet there are even better
methods for display of complex, high-dimensional datasets.

Among these, the biplot (Gabriel 1971, 1981, 1995) must rank among the most gen-
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Figure 2. Scatterplot matrix of Anderson’s iris data, showing separate 68% data ellipses and regression lines for
each species. Key: Iris setosa: blue, �; Iris versicolor: red, +; Iris virginica: green, .

erally useful. The name “biplot” comes from the fact that this technique displays all the
observations and variables in the same plot, in a way that depicts their joint relationships.
For the present purposes, it is useful to explain how the ideas behind the biplot provide a
low-dimensional view of a dataset that contributes to an understanding of multivariate LMs,
particularly for MANOVA designs.

Biplots can be regarded as the multivariate analog of scatterplots (Gower and Hand
1996), obtained by projecting a multivariate sample into a low-dimensional space (typically
of two or three dimensions) accounting for the greatest variance in the data. The (symmetric)
scaling of the biplot described here is equivalent to a plot of principal component scores
for the observations (shown as points), together with principal component coefficients for
the variables (shown as vectors) in the same 2D (or 3D) space (see Figure 3). When there
are classification variables dividing the observations into groups, we may also overlay data
ellipses for the scores to provide a low-dimensional visual summary of differences among
groups in means and covariance matrices.

For brevity, we omit formal description of the biplot (see Gower and Hand 1996) and just
note that the row scores and variable vectors in a d-dimensional least-squares approximation
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Figure 3. Biplot for iris data, showing observations (points) and variables (vectors), together with the 68% data
ellipses (calculated in the reduced space) for each species (setosa: blue (1); versicolor: green (2); virginica: red
(3)) and for all species (in gray).

are easily obtained from a singular value decomposition of the mean-centered data matrix,
YYY $, of the form

YYY $ ≈
d∑

k=1

λkuuukvvv
′
k , (2.2)

The squared singular values, λ2
i measure the variance accounted for by each biplot di-

mension, so the goodness of fit of a d-dimensional solution is
∑d

λ2
k/

∑K
λ2
k where

K = min(n, p).
As a simple example, Figure 3 shows the biplot for the iris data. In the following

discussion it will be instructive for the reader to compare this figure with the bivariate,
marginal view of all pairwise plots shown in Figure 2. The 2D projection of the 4D dataset
accounts for 95% of the total variation, of which most (73%) is accounted for by the first
dimension.

In this plot: (a) the variable vectors have their origin at the mean on each variable,
and point in the direction of positive deviations from the mean on each variable. Negative
deviations from the mean may be imagined as vectors in the opposite direction for each
variable; (b) the angles between variable vectors portray the correlations between them, in
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the sense that the cosine of the angle between any two variable vectors approximates the
correlation between those variables (in the reduced space). Thus, vectors at right angles
reflect correlations of zero, while vectors in the same direction reflect perfect correlations;
(c) the relative length of each variable vector indicates the proportion of variance for that
variable represented in the low-rank approximation; (d) the orthogonal projections of the
observation points on the variable vectors show approximately the value of each observation
on each variable; (e) by construction, the observations, shown as principal component scores
are uncorrelated, as may be seen from the total sample ellipse (gray ellipse in Figure 3);
(f) within-sample correlations, means, and variances in the reduced space are shown by the
separate data ellipses, in relation to the grand mean Y·· at the origin, and in relation to the
variable vectors.

The interpretation of Figure 3 is as follows: In the total sample, petal width and petal
length are nearly perfectly correlated, and these are both highly correlated with sepal length;
the two sepal variables are nearly uncorrelated. As well, the three iris species differ primarily
along the first dimension, and so are ordered by increasing means on both petal variables
(see Figure 2, panel 3:4 in row 3, column 4), but the variances and covariances differ as
well.

In addition, several observations stand out as unusual for their species, in relation to
the total sample covariation: one “runt” setosa (1) with very small sepal size, one virginica
(3) that looks more like a versicolor (2), and perhaps several other virginica observations.
Robust estimation methods for the data ellipses would more effectively highlight potential
outliers. Canonical discriminant plots (Section 4) provide another low-dimensional view
for MANOVA data (see Figure 13, p. 21).

3. HE PLOTS

For the multivariate linear model, any hypothesis test may be calculated from an analog
of the univariate F , where p × p matrices, HHH and EEE play the roles of univariate sums of
squares, SSH and SSE . But, in the multivariate case, the variation against the null hypothesis
(HHH ) may be large in one or more dimensions relative to the error variation (EEE).

The HE plot provides a two-dimensional visualization of the size of theHHH matrix relative
to the size of the EEE matrix for any multivariate test. It does this, in several forms explained
below, in terms of the covariance ellipses for two response variables from the HHH and EEE

matrices. This is useful for understanding the differences among the various multivariate
test statistics, for visualizing the sizes of various model effects, and how predictive power
of a non-null model is distributed across the various responses.

In the MANOVA context the HE plot shows directly how the group means differ on the
two variables jointly, in relation to the within-group variation. The canonical discriminant
plot (Section 4) shows an alternative view for all variables, in a two-dimensional space that
maximizes the differences among groups. These methods extend directly to other cases of
the MLM.
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3.1 Brief Review of the Multivariate LM

To establish notation and context for HE plots, we begin with a capsule summary of the
multivariate LM and the general linear test for any hypothesis. For details, see, for example,
Timm (1975) or Muller, LaVange, Ramey, and Ramey (1992).

When there are p responses, (yyy1, yyy2, . . . , yyyp) = YYY , the multivariate LM

YYY
(n×p)

= XXX
(n×q)

BBB
(q×p)

+ UUU
(n×p)

, (3.1)

with vec(UUU) ∼ Np(000, IIIn ⊗ ���), where ⊗ is the Kronecker product, is a natural extension
of the univariate version. Except for the fact that hypotheses are tested using multivariate
tests, model Equation (3.1) is equivalent to the set of p models for each separate response,
yyyi = XXXβββi + εεεi for i = 1, 2, . . . p, where the columns of BBB = (βββ1, βββ2, . . . βββp) in Equa-
tion (3.1) are the model coefficients for the separate responses. In all cases, the least squares
estimates of the coefficients,BBB can be calculated as B̂BB = (XXX′XXX)−XXX′YYY , whereAAA− denotes a
generalized inverse. For simplicity, we do not distinguish here among various parameteriza-
tions for factor variables (e.g., sum-to-zero constraints, first/last parameter = 0, contrasts,
etc.) that provide different unique solutions for parameter estimates, but which all yield
identical overall tests for model effects.

Then, just as all linear models can be cast in the form of the LM all tests of hypotheses
(for null effects) can be represented in the form of a general linear test,

H0 : CCC
(h×q)

BBB
(q×p)

= 000
(h×p)

, (3.2)

where CCC is a matrix of constants whose rows specify h linear combinations or contrasts of
the parameters to be tested simultaneously by a multivariate test. (For repeated measures
designs, an extended form of the general linear test, CCCBBBAAA = 000, where AAA is a p × k matrix
of constants, provides analogous contrasts or linear combinations of the responses to be
tested. We do not pursue this straightforward extension here.)

For any such hypothesis of the form Equation (3.2), the analogs of the univariate sums of
squares for hypothesis (SSH ) and error (SSE) are thep×p sum of squares and crossproducts
(SSCP) matrices (Timm 1975, chap. 3, 5)

HHH = (CCCB̂BB)′ [CCC(XXX′XXX)−CCC′]−1 (CCCB̂BB) , (3.3)

and

EEE = YYY ′YYY − B̂BB
′
(XXX′XXX)B̂BB = ÛUU

′
ÛUU . (3.4)

For example, in a one-way MANOVA, using the cell-means model for the vector of responses
of subject j in group i, yyyij = µµµi + eeeij , the HHH and EEE SSCP matrices for testing H0 : µµµ1 =
µµµ2 = · · ·µµµg are

HHH =
g∑
i=1

ni (ȳyyi. − ȳyy..) (ȳyyi. − ȳyy..)
′ , (3.5)
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and

EEE =
g∑
i=1

ni∑
j=1

(yyyij − ȳyyi.) (yyyij − ȳyyi.)
′ . (3.6)

Then, the multivariate analog of the univariate F statistic,

F = SSH/dfh
SSE/dfe

= MSH
MSE

, which implies (MSH − F MSE) = 0

is

det(HHH − λEEE) = 0 , (3.7)

where λ represents the s = min(p, dfh) nonzero latent roots of the HHH matrix relative to (“in
the metric of”) the EEE matrix, or equivalently, the ordinary latent roots of the matrix HHHEEE−1

det(HHHEEE−1 − λIII) = 0 . (3.8)

The ordered latent roots, λ1 ≥ λ2 ≥ · · · λs measure the “size” ofHHH relative to the “size”
ofEEE in up to s orthogonal directions, and are minimal sufficient statistics for all multivariate
tests. These tests can also be expressed in terms of the eigenvalues θi = λi/(1 + λi) of
HHHTTT −1, where TTT = HHH +EEE, and θi = ρ2

i are the generalized squared canonical correlations.
The various multivariate test statistics (Wilks’ 1, Pillai’s trace criterion, Hotelling-Lawley
trace criterion, Roy’s maximum root criterion) reflect different ways of combining this
information across the dimensions, ranging from functions of their product (Wilks’ 1), to
functions of their sum (Pilai, Hotelling-Lawley), to their maximum (Roy).

Thus, in univariate problems (p = 1), or for 1 degree-of-freedom hypotheses (dfh = 1),
there is s = 1 nonzero latent root, that has an exact relation to a univariate F . When s > 1,
the number of “large” dimensions indicate how many different aspects of the responses are
being explained by the hypothesized effect. These ideas can be illustrated conceptually, and
understood for data through plots of the HHH and EEE ellipses, as described below.

3.2 Didactic Displays for MANOVA Tests

From the description above, it is relatively easy to provide a visual explanation of the
essential ideas behind all multivariate tests, particularly in the MANOVA context, as shown
in Figure 4.

Figure 4(a) shows the individual-group data ellipses for two hypothetical variables,
Y1, Y2. The variation due to differences in the group means is captured by the HHH matrix,
while the pooled within-sample variation is captured by the EEE matrix, as illustrated in panel
(b). The answer to the question, “How big is HHH relative to EEE” is shown geometrically in
the last two panels.

The transformation from Equation (3.7) to Equation (3.8) can be represented (panel
(c)) as a rotation of the variable space to the principal components of EEE, giving the matrix
EEE$. The same transformation applied to the HHH matrix gives HHH$. The axes in panels (c)
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Figure 4. Conceptual plots showing the essential ideas behind multivariate tests, in terms of the hypothesis
(HHH ) and error (EEE) matrices, for a 1-way MANOVA design with two response variables (Y1, Y2): (a) Bivariate
means (points) and within-group variance-covariance matrices (ellipses); (b) The hypothesis (HHH ) matrix reflects
the variation of bivariate group means around the grand mean. The error (EEE) reflects the pooled within-group
dispersion and covariation. (c) Standardizing: The EEE matrix can be standardized, first to its principal components
(EEE$) and then normalized. The same transformations are applied to the HHH matrix, giving HHHEEE−1. (d) The ellipsoid
of HHHEEE−1 then shows the size and dimensionality of the variation in the group means in relation to a spherical
error ellipsoid.

and (d) turn out to be the canonical discriminant dimensions discussed in the following
section (Section 4). In this space, the errors (residuals) are all uncorrelated, that is, EEE$ is
diagonal, but with possibly different variances. Standardizing then transforms EEE$ �→ III and
HHH$ �→ HHHEEE−1.

Because the transformed errors are now uncorrelated and standardized to unit variance,
we can focus only on the ellipse for HHHEEE−1 as shown in panel (d), where the latent roots,
λ1, λ2 are the half-lengths of the major and minor axes.

3.3 Varieties of HE Plots

From Figure 4 and the preceding discussion it may be seen that there are several different
ways to display the HHH and EEE matrices for a given effect in a multivariate test, as illustrated
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Figure 5. Data and HE plots for iris data, showing the relation between sepal length and petal length in the iris
data. (a) data ellipses; (b) HHH and EEE matrices; (c) HHH +++ EEE and EEE matrices; (d) HHHEEE−1 and III matrices.

in Figure 5.
Panel (a) shows the observations and the data ellipses for sepal length and petal length,

as in panel (1:3) in Figure 2. The HHH and EEE matrices are shown in panel (b). The shape of
the HHH ellipse shows that the variation in the group means is essentially 1D, a dimension of
overall (petal + sepal) length.

Alternatively, it is sometimes useful to plot the ellipses for HHH +++ EEE and EEE as shown in
panel (c). This form is particularly useful for multiway designs, so that each effect (e.g.,
HHHA, HHHB , HHHAB ) can be seen in relation to error (EEE) variation (see Figure 9, p. 15). When
the variation due to a given hypothesis is small relative to error—leading to acceptance of
H0—the HHH and EEE ellipses will nearly coincide. The lengths of the major/minor axes of
HHH +++ EEE are 1 + λi , and Wilks’ 1 = ∏s

i=1(1 + λi)
−1 is inversely proportional to the area

(volume when s > 2) of the HHH +++ EEE ellipse.
In these plots, EEE in Equation (3.4) is scaled to a covariance matrix (giving SSSpooled =

EEE/dfe for a MANOVA), so that it is on the same scale as the data ellipses, and the same
scaling is applied to HHH (or HHH +++EEE), so we plot Ec(yyy;HHH/dfe, ȳyy) and Ec(yyy;EEE/dfe, ȳyy). This
also allows us to show the group means on the plot as an aid to interpretation, and the H matrix
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Figure 6. HE plot matrix for iris data. Each panel displays the HHH (solid, black) and EEE (dashed, red) bivariate
ellipsoids.

then reflects the effect size (similar to the square of Cohen’s (1977) d = (x̄1 − x̄2)/spooled)
as well as its orientation and shape.

Finally, one may plot the ellipse for HHHEEE−1 (or the equivalent, symmetric matrix,
EEE−1/2HHHEEE−1/2) in relation to the identity matrix, III , representing uncorrelated errors of unit
variance, as shown in panel (d). The Hotelling-Lawley trace statistic, HLT = tr(HHHEEE−1−1−1) =∑

λi , reflects the sum of lengths of the major and minor axes; the length of the major axis
reflects Roy’s criterion, θ1 = λ1/(1+λ1). This does not allow the group means to be shown
on the same plot, however.

We resist the temptation (suggested by a reviewer) to provide a scaling or visual guides
to whether a multivariate hypothesis test would lead to “rejection,” because different mul-
tivariate tests focus on different aspects of the “size” of the matrices displayed, and this
cannot be done in a general and unambiguous way. Rather, we regard the HE plot as show-
ing the size and shape of predictive variation for a hypothesized effect relative to a reduced
model in which that effect is null, with the representation of EEE providing the metric.

To simplify discussion, we illustrate HE plots below using HHH and EEE, and standard 1
s.d. (68%) coverage, unless otherwise noted.
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Figure 7. HE plot for pottery data, showing iron and aluminum. H matrix: (solid); E matrix: (dashed).

3.4 HE Plot Matrices

The HE plots described above show the variation due to hypothesis relative to error for
two response variables. But it is not hard to show the pairwise relations for all response
variables, using the framework of a scatterplot matrix, plotting all pairs of response variables,
in an HE plot matrix.

Figure 6 shows a simple example, again for the iris data, and displaying the separate
HHH and EEE bivariate ellipses in each panel. Comparing this with the full scatterplot matrix
(Figure 2, p. 5) one can regard the HE plot matrix as a “visual thinning” of the data, here
focused on the predictive variation due to group mean differences relative to within-group
variation. As well, the negative relations of species means on sepal width again stand out,
compared with the strong positive relations for all other variables (see Figure 3, p. 6).

3.5 MANOVA Examples

Tubb, Parker, and Nickless (1980) used atomic absorption spectrophotometry to analyze
data on the element composition of 26 samples of Romano-British pottery found at four
different kiln sites in Britain with a view to determining if the chemical content of aluminium,
iron, magnesium, calcium, and sodium could differentiate those sites; see also Hand et al.
(1994, p. 252). If so, the chemical content of pottery of unknown origin might be used
for classification purposes. The data thus comprise a one-way MANOVA design with four
groups and five variates.

Figure 7 shows the plot of the HHH and EEE matrices for two of the variables, iron and
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Figure 8. HE plot matrix for pottery data. Group means for the sites are labeled by their initial letters: Ashley
Rails, Caldicot, Isle Thorns, Llanedryn.

aluminum, and the means for the four sites. It is clear that the sites differ primarily in terms
of a contrast between Caldicot and Llanedryn versus Ashley Rails and Isle Thorns, and
that the means on these two chemical components are negatively related, while the pooled
within group scatter shows a weak positive relation.

The variation across sites on all chemical components may be seen in the HE plot matrix
in Figure 8. Quite a lot may be read directly from this plot. For example: the site means
for magnesium and iron are nearly perfectly correlated, and have the same pattern with all
other variables, while all mean differences for aluminium are in the opposite direction; the
relations for calcium and sodium also differ somewhat from those for magnesium and iron
in that Caldicot samples are quite high on calcium, while Llanedryn is high on sodium.

For two-way and higher-order MANOVA designs, HE plots provide a compact, visual
summary of the multivariate tests for various main effects and interactions. To illustrate,
Figure 9 uses a textbook example (Morrison 1990, p. 217, Table 5.5) dealing with possible
toxic effects of three drugs (A, B, C) on rats, also classified by sex (M, F), where the
responses are weight losses on two consecutive weeks (Week1, Week2), treated here as a
two-way MANOVA design.
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Figure 9. Data ellipses and HE plots for two-way design: Sex (M, F) × Drug (A, B, C). (a) Data ellipses; (b)
Sex effect; (c) Drug effect; (d) Sex * Drug interaction.

From the data ellipses (Figure 9 (a)) it is apparent that groups given drug C differ
substantially from the remaining groups, which do not appear to differ among themselves,
with the possible exception of group M:A. These are very small samples (n = 4 per cell);
with larger samples, the assumption of equal within-group covariance matrices might be
questioned. The HE plots (Figure 9 (b)–(d)) show that differences among drugs are quite
large; the main effect of sex is inconsequential, and any hint of a sex*drug interaction is
confined to the larger and opposite sex difference with drug C than the other two. Note
that for a one degree-of-freedom test (s = 1), such as sex in this example, the H ellipse
degenerates to a line, a result we exploit below.

3.6 Contrasts

Just as in univariate ANOVA designs, important overall effects (dfh > 1)) in MANOVA
may be usefully explored and interpreted by the use of contrasts among the levels of the
factors involved. In the general linear test Equation (3.2), contrasts are easily specified as
one or more (hi × q) CCC matrices, CCC1, CCC2, . . . , each of whose rows sum to zero.

As an important special case, for an overall effect with dfh degrees of freedom (and
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Figure 10. HHH and EEE matrices for sepal width and sepal length in the iris data, together with HHH matrices for
testing two orthogonal contrasts in the species effect.

balanced sample sizes), a set of dfh pairwise orthogonal (1 × q) CCC matrices (CCC′
iCCCj = 0)

gives rise to a set of dfh rank 1HHHi matrices that additively decompose the overall hypothesis
SSCP matrix,

HHH = HHH 1 + HHH 2 + · · · + HHH dfh ,

exactly as the univariate SSH may be decomposed in an ANOVA. Each of these rank 1 HHHi

matrices will plot as a vector in an HE plot, and their collection provides a visual summary
of the overall test, as partitioned by these orthogonal contrasts.

To illustrate, we show in Figure 10 an HE plot for the sepal width and sepal length
variables in the iris data, corresponding to panel (1:2) in Figure 2 (p. 5). Overlayed on this
plot are the 1 df HHH matrices obtained from testing two orthogonal contrasts among the
iris species: setosa versus the average of versicolor and virginica (labeled “S:VV”), and
versicolor versus virginica (“V:V”), for which the contrast matrices are

CCC1 = ( −2 1 1 )

CCC2 = ( 0 1 −1 )

where the species (columns) are taken in alphabetical order.
This HE plot shows that, for the two sepal variables, the greatest between-species vari-

ation is accounted for by the contrast between setosa and the others, for which the effect
is very large in relation to error (co-)variation. The second contrast, between the versicolor
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and virginica species is relatively smaller, but still explains some variation of the sepal
variables among the species.

The general method described above applies more widely than we have illustrated.
Multiple-df tests may be expressed in terms of CCC matrices with hi > 1 rows. In a bivariate
HE plot, their HHH matrices will appear as ellipses for these contrasts contained within the H
ellipse for the overall test.

3.7 HE Plots for MMRA

The ideas behind HE plots extend naturally to multivariate multiple regression, with
the only difference that the XXX matrix in the MLM model (Equation (3.1)) consists only of
quantitative regressors (possibly transformed, or with polynomial terms). In this context,
several types of hypotheses are of interest, all of which can be espressed in the form of a
multivariate general linear test Equation (3.1), and shown visually in an HE plot.

In MMRA, it is typical to carry out an initial overall multivariate test of the hypothesis
BBB = 000 that all regression coefficients for all responses are zero, analogous to the use
of an overall test in a univariate analysis to control for multiple tests. But as well, the
multivariate test takes the correlations of responses into account, so it is possible that an
overall multivariate test can show significance, while some or even none of the univariate
overall or individual MRA tests do so. The converse is also sometimes true: an overall
multivariate test may fail significance, while tests for individual predictors may prevail. HE
plots for these tests can help to make these results understandable.

For MMRA, the overall test,BBB = 000, of no linear relation between theX and Y variables
collectively corresponds to CCC = III in Equation (3.3) and the (p × p) H matrix becomes

HHH = B̂BB
′
(XXX′XXX) B̂BB = ŶYY

′
ŶYY ,

where HHH is of rank s = min(p, q) and therefore has s nonzero latent roots. (For simplicity,
we assume that all response variables are expressed in terms of deviations from their means,
so all intercepts are zero and can be ignored here.)

For any two responses, the overall test can be shown as an HE plot as we have shown
before. TheHHH ellipse is simply the data ellipse of the fitted values ŶYY ; theEEE ellipse is the data
ellipse of the residuals, UUU = YYY − ŶYY (shifted to the centroid). For an individual regressor,
the test of H0 : βββi = 000 for the ith row of BBB also gives rise to a (p × p) H matrix, obtained
using the 1 × q matrix CCC = (0, 0, . . . 1, 0, . . . 0), with a 1 in the ith position. In this case
HHHi = β̂ββ

′
i (XXX

′XXX)β̂ββi , is a matrix of rank 1, with one non-zero latent root, so the ellipse for
the H matrix degenerates to a line.

Thus, in an HE plot for multivariate multiple regression, the overall H ellipse shows
how the predictors relate collectively to the two chosen response variables. The H ellipse
for an individual predictor appears as a vector, whose orientation shows how that variable
is related and whose relative length shows the strength of the relations to the response
variables displayed.

The collection of these individual vectors helps to show how the various predictors
contribute to the overall test. For example, when the predictors are related in the same or
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Figure 11. HE plot for MMRA, showing the H ellipse for an overall test,BBB = 000, and the H ellipses for individual
predictors.

similar way to the responses, only the first λi will be large, the overall H ellipse will be
highly eccentric, and the individual predictor ellipse vectors will be aligned. In this case,
there is nearly one dimension (linear combination) of the responses being predicted (and
Roy’s maximum root test will be most powerful). Alternatively, when two or more λi are
large, the H ellipsoid will have several large dimensions, reflecting the fact that two or more
different aspects of the responses are being predicted (and the other multivariate tests will
be more powerful).

To illustrate, we use data from a study by Rohwer (Timm 1975, Table 4.7.1) on n = 37
children designed to determine how well a set of paired-associate (PA) tasks predicted
performance on the Peabody Picture Vocabulary test (PPVT), a student achievement test
(SAT), and the Raven Progressive matrices test. The PA tasks varied in how the stimuli
were presented, and are called named (N), still (S), named still (NS), named action (NA),
and sentence still (SS).

For this data, univariate multiple regressions carried out for each response variable show
that the SAT and RAVEN fail significance on an overall test for the q = 5 predictors (SAT:
F(5, 31) = 1.63, R2 = 0.201; RAVEN: F(5, 31) = 1.77, R2 = 0.222). For the PPVT, the
overall univariate test is significant (F(5, 31) = 6.47, R2 = 0.510), but among the partial
tests for individual predictors, only one (NA) attains significance.

From these results, one might conclude that PA tasks are at best marginally related to the
intellectual and achievement tests. However, the overall multivariate test, BBB = 000, is highly
significant. The HE plot for SAT and PPVT in Figure 11 helps to understand these results.
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It may be seen that although the error covariance for these variables is nearly circular, the
H matrix structure is more highly concentrated, with generally positive correlations among
the predictors, particularly for the N and NA tasks. This allows the multivariate tests to
“pool strength” across predictors, resulting in greater power for overall test.

4. REDUCED RANK HE PLOTS

The HE plot shows the relation of variation in the group means on two variables relative
to error variance. To visualize these relations on more than two variables, we have used the
framework of the scatterplot matrix.

However, just as with the biplot, we can see all variables together in a single plot by
projecting the data and variable vectors into a two-dimensional subspace that captures most
of the variation due to hypothesis relative to error. Canonical discriminant analysis (CDA)
is a dimension-reduction technique intimately related to MANOVA, canonical correlation
and linear discriminant analysis that provides the basis for such a view.

CDA may be characterized as a method for finding linear combinations of the variables
which maximally discriminate among the group mean vectors, in the sense of giving the
largest possible univariateF statistics. It is also equivalent to a canonical correlation analysis
between the set of response variables and a set of dummy variables representing group
membership.

To illustrate this idea, consider the HE plot matrix of the pottery data shown in Figure 8
(p. 14). Each pairwise plot shows a marginal 2D projection of the 5DHHH andEEE matrices and
corresponding group means. But in fact theHHH andEEE matrices are of rank s = min(p, dfh) =
3, and so can be embedded perfectly in a 3D space. The 2D canonical discriminant projection
that accounts for the greatest variation between group means relative to error is shown in
Figure 12, an HE plot of the first two canonical variates. In this case, it turns out that two
dimensions account for 99.92% of the between-group variation, so the plot may be regarded
as a much simpler portrayal of the differences among groups on all variables with no loss
of information.

From this plot, it can be seen that most (96.4%) of the between-group variance may be
accounted for by the difference between two pairs of sites: (Caldicot, Llanedyrn) versus
(Ashley Rails, Isle Thorns), where the latter is higher on aluminum (Al) content and the
former is higher on all others, but principally on magnesium (Mg) and iron (Fe) content.
There is little difference between Ashley Rails and Isle Thorns on any of these variables,
but Caldicot and Llanedyrn differ somewhat on the second canonical dimension (3.5%),
with Caldicot higher on calcium (Ca). This type of display provides an optimally compact
low-dimensional summary of the MLM in the MANOVA setting. We briefly describe some
of the theory below; see Seber (1984) for more statistical details and Friendly (1991) for
computational methods.

Formally, for a one-way design with g groups and p-variate observations yyyij , CDA
finds a set of s = min(p, g− 1) linear combinations, z1 = ccc′

1yyy, z2 = ccc′
2yyy, . . . , zs = ccc′

syyy,
so that: (a) all zk are mutually uncorrelated; (b) the vector of weights ccc1 maximizes the
univariate F -statistic for the linear combination z1; (c) each successive vector of weights,
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Figure 12. HE plot in 2D canonical discriminant space for the pottery data. Variable vectors indicate the corre-
lations with the linear combinations that best discriminate among groups.

ccck, k = 2, . . . , s maximizes the univariate F -statistic for zk , subject to being uncorrelated
with all other linear combinations.

The canonical weights, ccci are simply the eigenvectors of HHH EEE−1 associated with the
ordered eigenvalues, λi, i = 1, . . . , s, and a MANOVA of all s linear combinations is
statistically equivalent to that of the raw data. The λi are proportional to the fractions of
between-group variation expressed by these linear combinations. Hence, to the extent that
the first one or two eigenvalues are relatively large, a two-dimensional display will capture
the bulk of between group differences. The canonical discriminant HE plot is then simply
an HE plot of the scores zzz1 and zzz2 on the first two canonical dimensions.

Because the zzz scores are all uncorrelated, the HHH and EEE matrices will always have their
axes aligned with the canonical dimensions; when, as here, the zzz scores are standardized,
the EEE ellipse will be circular, assuming that the axes are equated so that a unit data length
has the same physical length on both axes, as in Figure 12.

In this plot, the order and separation of the group means on each canonical variable
indicates how that linear combination of the responses discriminates among the groups. As
an additional aid to interpretation we also draw vectors on the plot indicating the correlation
of each of the observed variables with the canonical dimensions. For a given response, a
vector is drawn from the origin (representing the grand mean on the canonical variates)
to a point proportional to the correlation (canonical structure coefficients) of that variable
with each canonical variate, (ryiz1 , ryiz2). With axes equated, the relative length of each
variable vector will be proportional to its contribution to discriminating among the groups.
As well, the angles between the variable vectors approximately indicate the correlations
among group mean differences, based on the standardizedHHH matrix projected into the space
of the canonical dimensions.
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Figure 13. Canonical HE plot for the iris data.

Figure 13 presents the canonical discriminant HE plot for the iris data. With g = 3
groups, the two-dimensional plot is exact, but it is apparent that the structure of group
means is essentially one-dimensional, with 99.1% of between-species variation accounted
for by the large differences among the species on all variables except sepal width. These
same effects may be observed in the scatterplot matrix (Figure 2, p. 5), but the canonical
discriminant HE plot is a more compact summary. This plot is also similar to the biplot
(Figure 3, p. 6), however the biplot displays the dimensions that account for total varia-
tion, whereas the dimensions in the canonical discriminant plot account for between-group
variation.

This method can be extended to two-way (and higher) designs in two different ways.
First, one may simply code the combinations of all factors interactively, so thatHHH expresses
all group differences, for example, HHH = HHHA +HHHB +HHHAB in a two-way design. Second,
the method may be applied to adjusted response variate vectors, which are essentially the
residuals (deviations from the means) of the model effects adjusted for. In the two-way
setting, for example, the reduced-rank HE plot for the AB effect, HHHAB , is equivalent to the
analysis of yyy | (A,B), that is, yyyijk − ȳyyA(i) − ȳyyB(j).

5. DISCUSSION

Formally, the MLM is a direct extension of the univariate LM so that all univariate
response models (ANOVA, ANCOVA, MRA) and test statistics have straightforward gen-
eralizations to the multivariate response case. Paradoxically, the extensive collection of
plots and graphical methods for univariate models do not, at first glance, translate easily to
multivariate responses.

In particular, the methods we have presented are largely distinct from the kinds of plots
one thinks of for univariate response models: plots of means (± standard errors) for n-way
ANOVA designs; response-surface plots for bivariate regression models; the generalization
of these in “effect plots” (Fox 1987) for the generalized linear model. Diagnostic plots in the
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univariate response setting include: (a) QQ plots of residuals; (b) spread-level plots to diag-
nose nonconstant variance; (c) influence-leverage plots to detect influential observations;
(d) partial regression and added-variable plots to show conditional relations (controlling
for other predictors) and diagnose nonlinear relations, for both the classical and general-
ized linear models; see Fox (1991, 1997); Friendly (1991) for descriptions and examples of
these.

In the multivariate response setting, the graphical methods listed above can, of course,
be usefully applied to each response individually, but information about the correlations
among responses is thereby lost. The more general extension of these ideas to the MLM
therefore provides interesting, and as yet unsolved, topics for future research.

In this article we have described and illustrated a variety of graphical displays for
multivariate GLMs, designed to focus on the relationships between two sets of variables:
predictors (regressors) and responses. Some of these methods are new (HE plots), some are
old (biplots), and some have been extended here to a wider context (data ellipse). There are
several general themes, statistical ideas, and graphical notions that connect the cases we
have described here.

First, the data ellipse, as used here, provides a visual summary of bivariate relations, de-
picting means, variances, and covariances (or correlations), for either the classical, normal-
theory estimators, or any robust estimator. These provide useful exploratory and confir-
matory displays in a variety of multivariate contexts, can be used to show multiple-group
MANOVA data, and can be embedded in a scatterplot matrix form to show all pairwise,
bivariate relations.

Second, the idea of HE plots provides ways to visualize and understand the results of
multivariate tests in both the MANOVA and MMRA contexts. Group means (for MANOVA)
or 1-df H matrix vectors (for MMRA) can be overlayed on these plots to aid interpretation,
and the pairwise relations for all responses can be seen in the HE plot matrix.

Third, we have used several dimension-reduction techiques (biplot, canonical discrimi-
nant analysis) to display two-dimensional summaries of the salient characteristics of multi-
variate data related to various aspects of the MLM. Overlaying variable vectors, data ellipses,
and reduced-rank scores for observations, helps to make these plots more interpretable in
relation to both the original data and the low-dimensional summary.

APPENDIX: SOFTWARE

All of the plots shown here were produced using macro programs for SAS software,
many of which originated in Friendly (1991, 2000). These are described in a companion
article (Friendly 2006) and are also available with documentation and examples at http:
// www.math.yorku.ca/ SCS/ sasmac/ . The principal programs used here are:

biplot Generalized biplot display of variables and observations

canplot Canonical discriminant structure plots

ellipses Plot bivariate data ellipses

heplot Plot H and E matrices for a bivariate MANOVA effect
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hemat HE plots for all pairs of response variables

hemreg Extract H and E matrices for multivariate regression

scatmat Scatterplot matrices

For R users, the heplots package, available at http:// www.r-project.org/ , provides
equivalent functionality and more for formlmobjects via theAnova andlinear.hypothesis
functions in the car package (Fox 2006).

ACKNOWLEDGMENTS

This work is supported by Grant 8150 from the Natural Sciences and Engineering Research Council of Canada.
I am grateful to John Fox, Ernest Kwan, and Georges Monette for comments on earlier drafts. Several reviewers
and especially the editor helped to strengthen and focus the article.

[Received February 2004. Revised October 2006.]

REFERENCES
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