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Abstract

This paper proposes a Fast Region-based Convolutional
Network method (Fast R-CNN) for object detection. Fast
R-CNN builds on previous work to efficiently classify ob-
ject proposals using deep convolutional networks. Com-
pared to previous work, Fast R-CNN employs several in-
novations to improve training and testing speed while also
increasing detection accuracy. Fast R-CNN trains the very
deep VGG16 network 9× faster than R-CNN, is 213× faster
at test-time, and achieves a higher mAP on PASCAL VOC
2012. Compared to SPPnet, Fast R-CNN trains VGG16 3×
faster, tests 10× faster, and is more accurate. Fast R-CNN
is implemented in Python and C++ (using Caffe) and is
available under the open-source MIT License at https:
//github.com/rbgirshick/fast-rcnn.

1. Introduction
Recently, deep ConvNets [14, 16] have significantly im-

proved image classification [14] and object detection [9, 19]
accuracy. Compared to image classification, object detec-
tion is a more challenging task that requires more com-
plex methods to solve. Due to this complexity, current ap-
proaches (e.g., [9, 11, 19, 25]) train models in multi-stage
pipelines that are slow and inelegant.

Complexity arises because detection requires the ac-
curate localization of objects, creating two primary chal-
lenges. First, numerous candidate object locations (often
called “proposals”) must be processed. Second, these can-
didates provide only rough localization that must be refined
to achieve precise localization. Solutions to these problems
often compromise speed, accuracy, or simplicity.

In this paper, we streamline the training process for state-
of-the-art ConvNet-based object detectors [9, 11]. We pro-
pose a single-stage training algorithm that jointly learns to
classify object proposals and refine their spatial locations.

The resulting method can train a very deep detection
network (VGG16 [20]) 9× faster than R-CNN [9] and 3×
faster than SPPnet [11]. At runtime, the detection network
processes images in 0.3s (excluding object proposal time)

while achieving top accuracy on PASCAL VOC 2012 [7]
with a mAP of 66% (vs. 62% for R-CNN).1

1.1. R-CNN and SPPnet

The Region-based Convolutional Network method (R-
CNN) [9] achieves excellent object detection accuracy by
using a deep ConvNet to classify object proposals. R-CNN,
however, has notable drawbacks:

1. Training is a multi-stage pipeline. R-CNN first fine-
tunes a ConvNet on object proposals using log loss.
Then, it fits SVMs to ConvNet features. These SVMs
act as object detectors, replacing the softmax classi-
fier learnt by fine-tuning. In the third training stage,
bounding-box regressors are learned.

2. Training is expensive in space and time. For SVM
and bounding-box regressor training, features are ex-
tracted from each object proposal in each image and
written to disk. With very deep networks, such as
VGG16, this process takes 2.5 GPU-days for the 5k
images of the VOC07 trainval set. These features re-
quire hundreds of gigabytes of storage.

3. Object detection is slow. At test-time, features are
extracted from each object proposal in each test image.
Detection with VGG16 takes 47s / image (on a GPU).

R-CNN is slow because it performs a ConvNet forward
pass for each object proposal, without sharing computation.
Spatial pyramid pooling networks (SPPnets) [11] were pro-
posed to speed up R-CNN by sharing computation. The
SPPnet method computes a convolutional feature map for
the entire input image and then classifies each object pro-
posal using a feature vector extracted from the shared fea-
ture map. Features are extracted for a proposal by max-
pooling the portion of the feature map inside the proposal
into a fixed-size output (e.g., 6 × 6). Multiple output sizes
are pooled and then concatenated as in spatial pyramid pool-
ing [15]. SPPnet accelerates R-CNN by 10 to 100× at test
time. Training time is also reduced by 3× due to faster pro-
posal feature extraction.

1All timings use one Nvidia K40 GPU overclocked to 875 MHz.
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SPPnet also has notable drawbacks. Like R-CNN, train-
ing is a multi-stage pipeline that involves extracting fea-
tures, fine-tuning a network with log loss, training SVMs,
and finally fitting bounding-box regressors. Features are
also written to disk. But unlike R-CNN, the fine-tuning al-
gorithm proposed in [11] cannot update the convolutional
layers that precede the spatial pyramid pooling. Unsurpris-
ingly, this limitation (fixed convolutional layers) limits the
accuracy of very deep networks.

1.2. Contributions

We propose a new training algorithm that fixes the disad-
vantages of R-CNN and SPPnet, while improving on their
speed and accuracy. We call this method Fast R-CNN be-
cause it’s comparatively fast to train and test. The Fast R-
CNN method has several advantages:

1. Higher detection quality (mAP) than R-CNN, SPPnet

2. Training is single-stage, using a multi-task loss

3. Training can update all network layers

4. No disk storage is required for feature caching

Fast R-CNN is written in Python and C++ (Caffe
[13]) and is available under the open-source MIT Li-
cense at https://github.com/rbgirshick/
fast-rcnn.

2. Fast R-CNN architecture and training
Fig. 1 illustrates the Fast R-CNN architecture. A Fast

R-CNN network takes as input an entire image and a set
of object proposals. The network first processes the whole
image with several convolutional (conv) and max pooling
layers to produce a conv feature map. Then, for each ob-
ject proposal a region of interest (RoI) pooling layer ex-
tracts a fixed-length feature vector from the feature map.
Each feature vector is fed into a sequence of fully connected
(fc) layers that finally branch into two sibling output lay-
ers: one that produces softmax probability estimates over
K object classes plus a catch-all “background” class and
another layer that outputs four real-valued numbers for each
of theK object classes. Each set of 4 values encodes refined
bounding-box positions for one of the K classes.

2.1. The RoI pooling layer

The RoI pooling layer uses max pooling to convert the
features inside any valid region of interest into a small fea-
ture map with a fixed spatial extent of H ×W (e.g., 7× 7),
where H and W are layer hyper-parameters that are inde-
pendent of any particular RoI. In this paper, an RoI is a
rectangular window into a conv feature map. Each RoI is
defined by a four-tuple (r, c, h, w) that specifies its top-left
corner (r, c) and its height and width (h,w).

Deep
ConvNet

Conv
feature map

RoI
projection

RoI
pooling
layer FCs

RoI feature
vector

softmax
bbox

regressor

Outputs:

FC FC

For each RoI

Figure 1. Fast R-CNN architecture. An input image and multi-
ple regions of interest (RoIs) are input into a fully convolutional
network. Each RoI is pooled into a fixed-size feature map and
then mapped to a feature vector by fully connected layers (FCs).
The network has two output vectors per RoI: softmax probabilities
and per-class bounding-box regression offsets. The architecture is
trained end-to-end with a multi-task loss.

RoI max pooling works by dividing the h× w RoI win-
dow into an H ×W grid of sub-windows of approximate
size h/H × w/W and then max-pooling the values in each
sub-window into the corresponding output grid cell. Pool-
ing is applied independently to each feature map channel,
as in standard max pooling. The RoI layer is simply the
special-case of the spatial pyramid pooling layer used in
SPPnets [11] in which there is only one pyramid level. We
use the pooling sub-window calculation given in [11].

2.2. Initializing from pre-trained networks

We experiment with three pre-trained ImageNet [4] net-
works, each with five max pooling layers and between five
and thirteen conv layers (see Section 4.1 for network de-
tails). When a pre-trained network initializes a Fast R-CNN
network, it undergoes three transformations.

First, the last max pooling layer is replaced by a RoI
pooling layer that is configured by setting H and W to be
compatible with the net’s first fully connected layer (e.g.,
H = W = 7 for VGG16).

Second, the network’s last fully connected layer and soft-
max (which were trained for 1000-way ImageNet classifi-
cation) are replaced with the two sibling layers described
earlier (a fully connected layer and softmax over K+ 1 cat-
egories and category-specific bounding-box regressors).

Third, the network is modified to take two data inputs: a
list of images and a list of RoIs in those images.

2.3. Fine-tuning for detection

Training all network weights with back-propagation is an
important capability of Fast R-CNN. First, let’s elucidate
why SPPnet is unable to update weights below the spatial
pyramid pooling layer.

The root cause is that back-propagation through the SPP
layer is highly inefficient when each training sample (i.e.
RoI) comes from a different image, which is exactly how
R-CNN and SPPnet networks are trained. The inefficiency
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stems from the fact that each RoI may have a very large
receptive field, often spanning the entire input image. Since
the forward pass must process the entire receptive field, the
training inputs are large (often the entire image).

We propose a more efficient training method that takes
advantage of feature sharing during training. In Fast R-
CNN training, stochastic gradient descent (SGD) mini-
batches are sampled hierarchically, first by sampling N im-
ages and then by sampling R/N RoIs from each image.
Critically, RoIs from the same image share computation
and memory in the forward and backward passes. Making
N small decreases mini-batch computation. For example,
when using N = 2 and R = 128, the proposed training
scheme is roughly 64× faster than sampling one RoI from
128 different images (i.e., the R-CNN and SPPnet strategy).

One concern over this strategy is it may cause slow train-
ing convergence because RoIs from the same image are cor-
related. This concern does not appear to be a practical issue
and we achieve good results with N = 2 and R = 128
using fewer SGD iterations than R-CNN.

In addition to hierarchical sampling, Fast R-CNN uses a
streamlined training process with one fine-tuning stage that
jointly optimizes a softmax classifier and bounding-box re-
gressors, rather than training a softmax classifier, SVMs,
and regressors in three separate stages [9, 11]. The compo-
nents of this procedure (the loss, mini-batch sampling strat-
egy, back-propagation through RoI pooling layers, and SGD
hyper-parameters) are described below.

Multi-task loss. A Fast R-CNN network has two sibling
output layers. The first outputs a discrete probability distri-
bution (per RoI), p = (p0, . . . , pK), over K + 1 categories.
As usual, p is computed by a softmax over theK+1 outputs
of a fully connected layer. The second sibling layer outputs
bounding-box regression offsets, tk =

(
tkx , t

k
y , t

k
w, t

k
h

)
, for

each of the K object classes, indexed by k. We use the pa-
rameterization for tk given in [9], in which tk specifies a
scale-invariant translation and log-space height/width shift
relative to an object proposal.

Each training RoI is labeled with a ground-truth class u
and a ground-truth bounding-box regression target v. We
use a multi-task loss L on each labeled RoI to jointly train
for classification and bounding-box regression:

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(t
u, v), (1)

in which Lcls(p, u) = − log pu is log loss for true class u.
The second task loss, Lloc, is defined over a tuple of

true bounding-box regression targets for class u, v =
(vx, vy, vw, vh), and a predicted tuple tu = (tux , t

u
y , t

u
w, t

u
h ),

again for class u. The Iverson bracket indicator function
[u ≥ 1] evaluates to 1 when u ≥ 1 and 0 otherwise. By
convention the catch-all background class is labeled u = 0.
For background RoIs there is no notion of a ground-truth

bounding box and hence Lloc is ignored. For bounding-box
regression, we use the loss

Lloc(t
u, v) =

∑
i∈{x,y,w,h}

smoothL1(tui − vi), (2)

in which

smoothL1
(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise,
(3)

is a robust L1 loss that is less sensitive to outliers than the
L2 loss used in R-CNN and SPPnet. When the regression
targets are unbounded, training with L2 loss can require
careful tuning of learning rates in order to prevent exploding
gradients. Eq. 3 eliminates this sensitivity.

The hyper-parameter λ in Eq. 1 controls the balance be-
tween the two task losses. We normalize the ground-truth
regression targets vi to have zero mean and unit variance.
All experiments use λ = 1.

We note that [6] uses a related loss to train a class-
agnostic object proposal network. Different from our ap-
proach, [6] advocates for a two-network system that sepa-
rates localization and classification. OverFeat [19], R-CNN
[9], and SPPnet [11] also train classifiers and bounding-box
localizers, however these methods use stage-wise training,
which we show is suboptimal for Fast R-CNN (Section 5.1).

Mini-batch sampling. During fine-tuning, each SGD
mini-batch is constructed from N = 2 images, chosen uni-
formly at random (as is common practice, we actually iter-
ate over permutations of the dataset). We use mini-batches
of size R = 128, sampling 64 RoIs from each image. As
in [9], we take 25% of the RoIs from object proposals that
have intersection over union (IoU) overlap with a ground-
truth bounding box of at least 0.5. These RoIs comprise
the examples labeled with a foreground object class, i.e.
u ≥ 1. The remaining RoIs are sampled from object pro-
posals that have a maximum IoU with ground truth in the in-
terval [0.1, 0.5), following [11]. These are the background
examples and are labeled with u = 0. The lower threshold
of 0.1 appears to act as a heuristic for hard example mining
[8]. During training, images are horizontally flipped with
probability 0.5. No other data augmentation is used.

Back-propagation through RoI pooling layers. Back-
propagation routes derivatives through the RoI pooling
layer. For clarity, we assume only one image per mini-batch
(N = 1), though the extension to N > 1 is straightforward
because the forward pass treats all images independently.

Let xi ∈ R be the i-th activation input into the RoI pool-
ing layer and let yrj be the layer’s j-th output from the r-
th RoI. The RoI pooling layer computes yrj = xi∗(r,j), in
which i∗(r, j) = argmaxi′∈R(r,j) xi′ . R(r, j) is the index



set of inputs in the sub-window over which the output unit
yrj max pools. A single xi may be assigned to several dif-
ferent outputs yrj .

The RoI pooling layer’s backwards function computes
partial derivative of the loss function with respect to each
input variable xi by following the argmax switches:

∂L

∂xi
=
∑
r

∑
j

[i = i∗(r, j)]
∂L

∂yrj
. (4)

In words, for each mini-batch RoI r and for each pooling
output unit yrj , the partial derivative ∂L/∂yrj is accumu-
lated if i is the argmax selected for yrj by max pooling.
In back-propagation, the partial derivatives ∂L/∂yrj are al-
ready computed by the backwards function of the layer
on top of the RoI pooling layer.

SGD hyper-parameters. The fully connected layers used
for softmax classification and bounding-box regression are
initialized from zero-mean Gaussian distributions with stan-
dard deviations 0.01 and 0.001, respectively. Biases are ini-
tialized to 0. All layers use a per-layer learning rate of 1 for
weights and 2 for biases and a global learning rate of 0.001.
When training on VOC07 or VOC12 trainval we run SGD
for 30k mini-batch iterations, and then lower the learning
rate to 0.0001 and train for another 10k iterations. When
we train on larger datasets, we run SGD for more iterations,
as described later. A momentum of 0.9 and parameter decay
of 0.0005 (on weights and biases) are used.

2.4. Scale invariance

We explore two ways of achieving scale invariant ob-
ject detection: (1) via “brute force” learning and (2) by us-
ing image pyramids. These strategies follow the two ap-
proaches in [11]. In the brute-force approach, each image
is processed at a pre-defined pixel size during both training
and testing. The network must directly learn scale-invariant
object detection from the training data.

The multi-scale approach, in contrast, provides approx-
imate scale-invariance to the network through an image
pyramid. At test-time, the image pyramid is used to ap-
proximately scale-normalize each object proposal. During
multi-scale training, we randomly sample a pyramid scale
each time an image is sampled, following [11], as a form of
data augmentation. We experiment with multi-scale train-
ing for smaller networks only, due to GPU memory limits.

3. Fast R-CNN detection
Once a Fast R-CNN network is fine-tuned, detection

amounts to little more than running a forward pass (assum-
ing object proposals are pre-computed). The network takes
as input an image (or an image pyramid, encoded as a list
of images) and a list of R object proposals to score. At

test-time, R is typically around 2000, although we will con-
sider cases in which it is larger (≈ 45k). When using an
image pyramid, each RoI is assigned to the scale such that
the scaled RoI is closest to 2242 pixels in area [11].

For each test RoI r, the forward pass outputs a class
posterior probability distribution p and a set of predicted
bounding-box offsets relative to r (each of the K classes
gets its own refined bounding-box prediction). We assign a
detection confidence to r for each object class k using the
estimated probability Pr(class = k | r) ∆

= pk. We then
perform non-maximum suppression independently for each
class using the algorithm and settings from R-CNN [9].

3.1. Truncated SVD for faster detection

For whole-image classification, the time spent comput-
ing the fully connected layers is small compared to the conv
layers. On the contrary, for detection the number of RoIs
to process is large and nearly half of the forward pass time
is spent computing the fully connected layers (see Fig. 2).
Large fully connected layers are easily accelerated by com-
pressing them with truncated SVD [5, 23].

In this technique, a layer parameterized by the u × v
weight matrix W is approximately factorized as

W ≈ UΣtV
T (5)

using SVD. In this factorization, U is a u × t matrix com-
prising the first t left-singular vectors of W , Σt is a t × t
diagonal matrix containing the top t singular values of W ,
and V is v × t matrix comprising the first t right-singular
vectors of W . Truncated SVD reduces the parameter count
from uv to t(u + v), which can be significant if t is much
smaller than min(u, v). To compress a network, the single
fully connected layer corresponding to W is replaced by
two fully connected layers, without a non-linearity between
them. The first of these layers uses the weight matrix ΣtV

T

(and no biases) and the second uses U (with the original bi-
ases associated with W ). This simple compression method
gives good speedups when the number of RoIs is large.

4. Main results
Three main results support this paper’s contributions:

1. State-of-the-art mAP on VOC07, 2010, and 2012

2. Fast training and testing compared to R-CNN, SPPnet

3. Fine-tuning conv layers in VGG16 improves mAP

4.1. Experimental setup

Our experiments use three pre-trained ImageNet models
that are available online.2 The first is the CaffeNet (essen-
tially AlexNet [14]) from R-CNN [9]. We alternatively refer

2https://github.com/BVLC/caffe/wiki/Model-Zoo
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method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

SPPnet BB [11]† 07 \ diff 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1

R-CNN BB [10] 07 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0

FRCN [ours] 07 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9

FRCN [ours] 07 \ diff 74.6 79.0 68.6 57.0 39.3 79.5 78.6 81.9 48.0 74.0 67.4 80.5 80.7 74.1 69.6 31.8 67.1 68.4 75.3 65.5 68.1

FRCN [ours] 07+12 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4 70.0

Table 1. VOC 2007 test detection average precision (%). All methods use VGG16. Training set key: 07: VOC07 trainval, 07 \ diff: 07
without “difficult” examples, 07+12: union of 07 and VOC12 trainval. †SPPnet results were prepared by the authors of [11].

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 77.7 73.8 62.3 48.8 45.4 67.3 67.0 80.3 41.3 70.8 49.7 79.5 74.7 78.6 64.5 36.0 69.9 55.7 70.4 61.7 63.8

R-CNN BB [10] 12 79.3 72.4 63.1 44.0 44.4 64.6 66.3 84.9 38.8 67.3 48.4 82.3 75.0 76.7 65.7 35.8 66.2 54.8 69.1 58.8 62.9

SegDeepM 12+seg 82.3 75.2 67.1 50.7 49.8 71.1 69.6 88.2 42.5 71.2 50.0 85.7 76.6 81.8 69.3 41.5 71.9 62.2 73.2 64.6 67.2

FRCN [ours] 12 80.1 74.4 67.7 49.4 41.4 74.2 68.8 87.8 41.9 70.1 50.2 86.1 77.3 81.1 70.4 33.3 67.0 63.3 77.2 60.0 66.1

FRCN [ours] 07++12 82.0 77.8 71.6 55.3 42.4 77.3 71.7 89.3 44.5 72.1 53.7 87.7 80.0 82.5 72.7 36.6 68.7 65.4 81.1 62.7 68.8

Table 2. VOC 2010 test detection average precision (%). BabyLearning uses a network based on [17]. All other methods use VGG16.
Training set key: 12: VOC12 trainval, Prop.: proprietary dataset, 12+seg: 12 with segmentation annotations, 07++12: union of VOC07
trainval, VOC07 test, and VOC12 trainval.

method train set aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

BabyLearning Prop. 78.0 74.2 61.3 45.7 42.7 68.2 66.8 80.2 40.6 70.0 49.8 79.0 74.5 77.9 64.0 35.3 67.9 55.7 68.7 62.6 63.2

NUS NIN c2000 Unk. 80.2 73.8 61.9 43.7 43.0 70.3 67.6 80.7 41.9 69.7 51.7 78.2 75.2 76.9 65.1 38.6 68.3 58.0 68.7 63.3 63.8

R-CNN BB [10] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4

FRCN [ours] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7

FRCN [ours] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4

Table 3. VOC 2012 test detection average precision (%). BabyLearning and NUS NIN c2000 use networks based on [17]. All other
methods use VGG16. Training set key: see Table 2, Unk.: unknown.

to this CaffeNet as model S, for “small.” The second net-
work is VGG CNN M 1024 from [3], which has the same
depth as S, but is wider. We call this network model M,
for “medium.” The final network is the very deep VGG16
model from [20]. Since this model is the largest, we call
it model L. In this section, all experiments use single-scale
training and testing (s = 600; see Section 5.2 for details).

4.2. VOC 2010 and 2012 results

On these datasets, we compare Fast R-CNN (FRCN, for
short) against the top methods on the comp4 (outside data)
track from the public leaderboard (Table 2, Table 3).3 For
the NUS NIN c2000 and BabyLearning methods, there are
no associated publications at this time and we could not
find exact information on the ConvNet architectures used;
they are variants of the Network-in-Network design [17].
All other methods are initialized from the same pre-trained
VGG16 network.

Fast R-CNN achieves the top result on VOC12 with a
mAP of 65.7% (and 68.4% with extra data). It is also two
orders of magnitude faster than the other methods, which
are all based on the “slow” R-CNN pipeline. On VOC10,

3http://host.robots.ox.ac.uk:8080/leaderboard
(accessed April 18, 2015)

SegDeepM [25] achieves a higher mAP than Fast R-CNN
(67.2% vs. 66.1%). SegDeepM is trained on VOC12 train-
val plus segmentation annotations; it is designed to boost
R-CNN accuracy by using a Markov random field to reason
over R-CNN detections and segmentations from the O2P
[1] semantic-segmentation method. Fast R-CNN can be
swapped into SegDeepM in place of R-CNN, which may
lead to better results. When using the enlarged 07++12
training set (see Table 2 caption), Fast R-CNN’s mAP in-
creases to 68.8%, surpassing SegDeepM.

4.3. VOC 2007 results

On VOC07, we compare Fast R-CNN to R-CNN and
SPPnet. All methods start from the same pre-trained
VGG16 network and use bounding-box regression. The
VGG16 SPPnet results were computed by the authors of
[11]. SPPnet uses five scales during both training and test-
ing. The improvement of Fast R-CNN over SPPnet illus-
trates that even though Fast R-CNN uses single-scale train-
ing and testing, fine-tuning the conv layers provides a large
improvement in mAP (from 63.1% to 66.9%). R-CNN
achieves a mAP of 66.0%. As a minor point, SPPnet was
trained without examples marked as “difficult” in PASCAL.
Removing these examples improves Fast R-CNN mAP to
68.1%. All other experiments use “difficult” examples.

http://host.robots.ox.ac.uk:8080/leaderboard


4.4. Training and testing time

Fast training and testing times are our second main re-
sult. Table 4 compares training time (hours), testing rate
(seconds per image), and mAP on VOC07 between Fast R-
CNN, R-CNN, and SPPnet. For VGG16, Fast R-CNN pro-
cesses images 146× faster than R-CNN without truncated
SVD and 213× faster with it. Training time is reduced by
9×, from 84 hours to 9.5. Compared to SPPnet, Fast R-
CNN trains VGG16 2.7× faster (in 9.5 vs. 25.5 hours) and
tests 7× faster without truncated SVD or 10× faster with it.
Fast R-CNN also eliminates hundreds of gigabytes of disk
storage, because it does not cache features.

Fast R-CNN R-CNN SPPnet
S M L S M L †L

train time (h) 1.2 2.0 9.5 22 28 84 25
train speedup 18.3× 14.0× 8.8× 1× 1× 1× 3.4×
test rate (s/im) 0.10 0.15 0.32 9.8 12.1 47.0 2.3
B with SVD 0.06 0.08 0.22 - - - -

test speedup 98× 80× 146× 1× 1× 1× 20×
B with SVD 169× 150× 213× - - - -

VOC07 mAP 57.1 59.2 66.9 58.5 60.2 66.0 63.1
B with SVD 56.5 58.7 66.6 - - - -

Table 4. Runtime comparison between the same models in Fast R-
CNN, R-CNN, and SPPnet. Fast R-CNN uses single-scale mode.
SPPnet uses the five scales specified in [11]. †Timing provided by
the authors of [11]. Times were measured on an Nvidia K40 GPU.

Truncated SVD. Truncated SVD can reduce detection
time by more than 30% with only a small (0.3 percent-
age point) drop in mAP and without needing to perform
additional fine-tuning after model compression. Fig. 2 il-
lustrates how using the top 1024 singular values from the
25088× 4096 matrix in VGG16’s fc6 layer and the top 256
singular values from the 4096×4096 fc7 layer reduces run-
time with little loss in mAP. Further speed-ups are possi-
ble with smaller drops in mAP if one fine-tunes again after
compression.

roi_pool5
5.4% (17ms)

other

3.5% (11ms)

fc6

38.7% (122ms)

conv

46.3% (146ms)

fc7
6.2% (20ms)

Forward pass timing
mAP 66.9% @ 320ms / image

roi_pool5
7.9% (17ms)

other

5.1% (11ms)

fc6

17.5% (37ms)

conv

67.8% (143ms)

fc71.7% (4ms)

Forward pass timing (SVD)
mAP 66.6% @ 223ms / image

Figure 2. Timing for VGG16 before and after truncated SVD. Be-
fore SVD, fully connected layers fc6 and fc7 take 45% of the time.

4.5. Which layers to fine-tune?

For the less deep networks considered in the SPPnet pa-
per [11], fine-tuning only the fully connected layers ap-
peared to be sufficient for good accuracy. We hypothesized
that this result would not hold for very deep networks. To
validate that fine-tuning the conv layers is important for
VGG16, we use Fast R-CNN to fine-tune, but freeze the
thirteen conv layers so that only the fully connected layers
learn. This ablation emulates single-scale SPPnet training
and decreases mAP from 66.9% to 61.4% (Table 5). This
experiment verifies our hypothesis: training through the RoI
pooling layer is important for very deep nets.

layers that are fine-tuned in model L SPPnet L
≥ fc6 ≥ conv3 1 ≥ conv2 1 ≥ fc6

VOC07 mAP 61.4 66.9 67.2 63.1
test rate (s/im) 0.32 0.32 0.32 2.3

Table 5. Effect of restricting which layers are fine-tuned for
VGG16. Fine-tuning ≥ fc6 emulates the SPPnet training algo-
rithm [11], but using a single scale. SPPnet L results were ob-
tained using five scales, at a significant (7×) speed cost.

Does this mean that all conv layers should be fine-tuned?
In short, no. In the smaller networks (S and M) we find
that conv1 is generic and task independent (a well-known
fact [14]). Allowing conv1 to learn, or not, has no mean-
ingful effect on mAP. For VGG16, we found it only nec-
essary to update layers from conv3 1 and up (9 of the 13
conv layers). This observation is pragmatic: (1) updating
from conv2 1 slows training by 1.3× (12.5 vs. 9.5 hours)
compared to learning from conv3 1; and (2) updating from
conv1 1 over-runs GPU memory. The difference in mAP
when learning from conv2 1 up was only +0.3 points (Ta-
ble 5, last column). All Fast R-CNN results in this paper
using VGG16 fine-tune layers conv3 1 and up; all experi-
ments with models S and M fine-tune layers conv2 and up.

5. Design evaluation
We conducted experiments to understand how Fast R-

CNN compares to R-CNN and SPPnet, as well as to eval-
uate design decisions. Following best practices, we per-
formed these experiments on the PASCAL VOC07 dataset.

5.1. Does multi-task training help?

Multi-task training is convenient because it avoids man-
aging a pipeline of sequentially-trained tasks. But it also has
the potential to improve results because the tasks influence
each other through a shared representation (the ConvNet)
[2]. Does multi-task training improve object detection ac-
curacy in Fast R-CNN?

To test this question, we train baseline networks that
use only the classification loss, Lcls, in Eq. 1 (i.e., setting



S M L
multi-task training? X X X X X X
stage-wise training? X X X
test-time bbox reg? X X X X X X
VOC07 mAP 52.2 53.3 54.6 57.1 54.7 55.5 56.6 59.2 62.6 63.4 64.0 66.9

Table 6. Multi-task training (forth column per group) improves mAP over piecewise training (third column per group).

λ = 0). These baselines are printed for models S, M, and L
in the first column of each group in Table 6. Note that these
models do not have bounding-box regressors. Next (second
column per group), we take networks that were trained with
the multi-task loss (Eq. 1, λ = 1), but we disable bounding-
box regression at test time. This isolates the networks’ clas-
sification accuracy and allows an apples-to-apples compar-
ison with the baseline networks.

Across all three networks we observe that multi-task
training improves pure classification accuracy relative to
training for classification alone. The improvement ranges
from +0.8 to +1.1 mAP points, showing a consistent posi-
tive effect from multi-task learning.

Finally, we take the baseline models (trained with only
the classification loss), tack on the bounding-box regression
layer, and train them with Lloc while keeping all other net-
work parameters frozen. The third column in each group
shows the results of this stage-wise training scheme: mAP
improves over column one, but stage-wise training under-
performs multi-task training (forth column per group).

5.2. Scale invariance: to brute force or finesse?

We compare two strategies for achieving scale-invariant
object detection: brute-force learning (single scale) and im-
age pyramids (multi-scale). In either case, we define the
scale s of an image to be the length of its shortest side.

All single-scale experiments use s = 600 pixels; s may
be less than 600 for some images as we cap the longest im-
age side at 1000 pixels and maintain the image’s aspect ra-
tio. These values were selected so that VGG16 fits in GPU
memory during fine-tuning. The smaller models are not
memory bound and can benefit from larger values of s; how-
ever, optimizing s for each model is not our main concern.
We note that PASCAL images are 384 × 473 pixels on av-
erage and thus the single-scale setting typically upsamples
images by a factor of 1.6. The average effective stride at the
RoI pooling layer is thus ≈ 10 pixels.

In the multi-scale setting, we use the same five scales
specified in [11] (s ∈ {480, 576, 688, 864, 1200}) to facili-
tate comparison with SPPnet. However, we cap the longest
side at 2000 pixels to avoid exceeding GPU memory.

Table 7 shows models S and M when trained and tested
with either one or five scales. Perhaps the most surpris-
ing result in [11] was that single-scale detection performs
almost as well as multi-scale detection. Our findings con-

SPPnet ZF S M L
scales 1 5 1 5 1 5 1
test rate (s/im) 0.14 0.38 0.10 0.39 0.15 0.64 0.32
VOC07 mAP 58.0 59.2 57.1 58.4 59.2 60.7 66.9

Table 7. Multi-scale vs. single scale. SPPnet ZF (similar to model
S) results are from [11]. Larger networks with a single-scale offer
the best speed / accuracy tradeoff. (L cannot use multi-scale in our
implementation due to GPU memory constraints.)

firm their result: deep ConvNets are adept at directly learn-
ing scale invariance. The multi-scale approach offers only
a small increase in mAP at a large cost in compute time
(Table 7). In the case of VGG16 (model L), we are lim-
ited to using a single scale by implementation details. Yet it
achieves a mAP of 66.9%, which is slightly higher than the
66.0% reported for R-CNN [10], even though R-CNN uses
“infinite” scales in the sense that each proposal is warped to
a canonical size.

Since single-scale processing offers the best tradeoff be-
tween speed and accuracy, especially for very deep models,
all experiments outside of this sub-section use single-scale
training and testing with s = 600 pixels.

5.3. Do we need more training data?

A good object detector should improve when supplied
with more training data. Zhu et al. [24] found that DPM [8]
mAP saturates after only a few hundred to thousand train-
ing examples. Here we augment the VOC07 trainval set
with the VOC12 trainval set, roughly tripling the number
of images to 16.5k, to evaluate Fast R-CNN. Enlarging the
training set improves mAP on VOC07 test from 66.9% to
70.0% (Table 1). When training on this dataset we use 60k
mini-batch iterations instead of 40k.

We perform similar experiments for VOC10 and 2012,
for which we construct a dataset of 21.5k images from the
union of VOC07 trainval, test, and VOC12 trainval. When
training on this dataset, we use 100k SGD iterations and
lower the learning rate by 0.1× each 40k iterations (instead
of each 30k). For VOC10 and 2012, mAP improves from
66.1% to 68.8% and from 65.7% to 68.4%, respectively.

5.4. Do SVMs outperform softmax?

Fast R-CNN uses the softmax classifier learnt during
fine-tuning instead of training one-vs-rest linear SVMs



post-hoc, as was done in R-CNN and SPPnet. To under-
stand the impact of this choice, we implemented post-hoc
SVM training with hard negative mining in Fast R-CNN.
We use the same training algorithm and hyper-parameters
as in R-CNN.

method classifier S M L
R-CNN [9, 10] SVM 58.5 60.2 66.0
FRCN [ours] SVM 56.3 58.7 66.8
FRCN [ours] softmax 57.1 59.2 66.9

Table 8. Fast R-CNN with softmax vs. SVM (VOC07 mAP).

Table 8 shows softmax slightly outperforming SVM for
all three networks, by +0.1 to +0.8 mAP points. This ef-
fect is small, but it demonstrates that “one-shot” fine-tuning
is sufficient compared to previous multi-stage training ap-
proaches. We note that softmax, unlike one-vs-rest SVMs,
introduces competition between classes when scoring a RoI.

5.5. Are more proposals always better?

There are (broadly) two types of object detectors: those
that use a sparse set of object proposals (e.g., selective
search [21]) and those that use a dense set (e.g., DPM [8]).
Classifying sparse proposals is a type of cascade [22] in
which the proposal mechanism first rejects a vast number of
candidates leaving the classifier with a small set to evaluate.
This cascade improves detection accuracy when applied to
DPM detections [21]. We find evidence that the proposal-
classifier cascade also improves Fast R-CNN accuracy.

Using selective search’s quality mode, we sweep from 1k
to 10k proposals per image, each time re-training and re-
testing model M. If proposals serve a purely computational
role, increasing the number of proposals per image should
not harm mAP.
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Figure 3. VOC07 test mAP and AR for various proposal schemes.

We find that mAP rises and then falls slightly as the pro-
posal count increases (Fig. 3, solid blue line). This exper-
iment shows that swamping the deep classifier with more
proposals does not help, and even slightly hurts, accuracy.

This result is difficult to predict without actually running
the experiment. The state-of-the-art for measuring object
proposal quality is Average Recall (AR) [12]. AR correlates
well with mAP for several proposal methods using R-CNN,
when using a fixed number of proposals per image. Fig. 3
shows that AR (solid red line) does not correlate well with
mAP as the number of proposals per image is varied. AR
must be used with care; higher AR due to more proposals
does not imply that mAP will increase. Fortunately, training
and testing with model M takes less than 2.5 hours. Fast
R-CNN thus enables efficient, direct evaluation of object
proposal mAP, which is preferable to proxy metrics.

We also investigate Fast R-CNN when using densely
generated boxes (over scale, position, and aspect ratio), at
a rate of about 45k boxes / image. This dense set is rich
enough that when each selective search box is replaced by
its closest (in IoU) dense box, mAP drops only 1 point (to
57.7%, Fig. 3, blue triangle).

The statistics of the dense boxes differ from those of
selective search boxes. Starting with 2k selective search
boxes, we test mAP when adding a random sample of
1000× {2, 4, 6, 8, 10, 32, 45} dense boxes. For each exper-
iment we re-train and re-test model M. When these dense
boxes are added, mAP falls more strongly than when adding
more selective search boxes, eventually reaching 53.0%.

We also train and test Fast R-CNN using only dense
boxes (45k / image). This setting yields a mAP of 52.9%
(blue diamond). Finally, we check if SVMs with hard nega-
tive mining are needed to cope with the dense box distribu-
tion. SVMs do even worse: 49.3% (blue circle).

5.6. Preliminary MS COCO results

We applied Fast R-CNN (with VGG16) to the MS
COCO dataset [18] to establish a preliminary baseline. We
trained on the 80k image training set for 240k iterations and
evaluated on the “test-dev” set using the evaluation server.
The PASCAL-style mAP is 35.9%; the new COCO-style
AP, which also averages over IoU thresholds, is 19.7%.

6. Conclusion
This paper proposes Fast R-CNN, a clean and fast update

to R-CNN and SPPnet. In addition to reporting state-of-the-
art detection results, we present detailed experiments that
we hope provide new insights. Of particular note, sparse
object proposals appear to improve detector quality. This
issue was too costly (in time) to probe in the past, but be-
comes practical with Fast R-CNN. Of course, there may ex-
ist yet undiscovered techniques that allow dense boxes to
perform as well as sparse proposals. Such methods, if de-
veloped, may help further accelerate object detection.
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