Selective Search for Object Recognition

J.R.R. Uijlings^{*1,2}, K.E.A. van de Sande^{†2}, T. Gevers², and A.W.M. Smeulders²

¹University of Trento, Italy ²University of Amsterdam, the Netherlands

Technical Report 2012, submitted to IJCV

Presented by Song Cao

Computer vision seminar, 5/2/2013

Goal: generating possible object locations

- Why is this hard?
- High variety of reasons of forming an object
 - (a) varied scales
 - (b) color
 - (c) texture
 - (d) enclosure

(a)

(c)

(b)

(d)

Solution - Diversify

- Two ends of the spectrum
 - Exhaustive Search (sliding window)
 - Examples: DPM, branch and bound
 - Pros: capture all possible locations
 - Cons: class dependent, limited to objects, too many proposals
 - Segmentation
 - Data-driven, exploit image structure for proposals

Key Questions

- 1. How do we use segmentation?
- 2. What is good diversification strategy?
- 3. How effective is selective search (small set of high-quality locations)?

1. How do we use segmentation?

- Fast segmentation algorithm based on pairwise region comparison (by Felzenszwalb etal.) -> initial regions
- Greedily group regions together by selecting the pair with highest similarity
- Until the whole image become a single region
- Generates a hierarchy of bounding boxes

Figure 2: A street scene (320 \times 240 color image), and the segmentation results produced by our algorithm ($\sigma = 0.8, k = 300$).

Figure 3: A baseball scene (432 \times 294 grey image), and the segmentation results produced by our algorithm ($\sigma = 0.8$, k = 300).

Figure 4: An indoor scene (image 320×240 , color), and the segmentation results produced by our algorithm ($\sigma = 0.8$, k = 300).

1. How do we use segmentation?

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image

Output: Set of object location hypotheses L

```
Obtain initial regions R = \{r_1, \dots, r_n\} using [13]
Initialise similarity set S = \emptyset
foreach Neighbouring region pair (r_i, r_j) do
Calculate similarity s(r_i, r_j)
S = S \cup s(r_i, r_j)
```

while $S \neq \emptyset$ do

Get highest similarity $s(r_i, r_j) = \max(S)$ Merge corresponding regions $r_t = r_i \cup r_j$ Remove similarities regarding $r_i : S = S \setminus s(r_i, r_*)$ Remove similarities regarding $r_j : S = S \setminus s(r_*, r_j)$ Calculate similarity set S_t between r_t and its neighbours $S = S \cup S_t$ $R = R \cup r_t$

Extract object location boxes L from all regions in R

Evaluation Metric

• Average Best Overlap (ABO)

$$ABO = \frac{1}{|G^c|} \sum_{g_i^c \in G^c} \max_{l_j \in L} Overlap(g_i^c, l_j).$$
$$Overlap(g_i^c, l_j) = \frac{\operatorname{area}(g_i^c) \cap \operatorname{area}(l_j)}{\operatorname{area}(g_i^c) \cup \operatorname{area}(l_j)}.$$

(a) Bike: 0.863

(b) Cow: 0.874

(c) Chair: 0.884

0.884

• Mean Average Best Overlap (MABO)

Hierarchy v.s. Flat

threshold k in [13]	MABO	# windows
Flat [13] $k = 50, 150, \cdots, 950$	0.659	387
Hierarchical (this paper) $k = 50$	0.676	395
Flat [13] $k = 50, 100, \dots, 1000$	0.673	597
Hierarchical (this paper) $k = 50,100$	0.719	625

Table 2: A comparison of multiple flat partitionings against hierarchical partitionings for generating box locations shows that for the hierarchical strategy the Mean Average Best Overlap (MABO) score is consistently higher at a similar number of locations.

- Hierarchical strategy works better than multiple flat partitions
- Hierarchy natural and effective

2.1 Using a variety of color spaces

colour channels	R	G	B	Ι	V	L	a	b	S	r	g	C	Η
Light Intensity	-	-	-	-	-	-	+/-	+/-	+	+	+	+	+
Shadows/shading	-	-	-	-	-	-	+/-	+/-	+	+	+	+	+
Highlights	-	-	-	-	-	-	-	-	-	-	-	+/-	+

colour spaces	RGB	Ι	Lab	rgI	HSV	rgb	C	Η
Light Intensity	-	-	+/-	2/3	2/3	+	+	+
Shadows/shading	-	-	+/-	2/3	2/3	+	+	+
Highlights	-	-	-	-	1/3	-	+/-	+

Table 1: The invariance properties of both the individual colour channels and the colour spaces used in this paper, sorted by degree of invariance. A "+/-" means partial invariance. A fraction 1/3 means that one of the three colour channels is invariant to said property.

2.1 Using a variety of color spaces

Similarities	MABO	# box	Colours	MABO	# box
С	0.635	356	HSV	0.693	463
Т	0.581	303	I	0.670	399
S	0.640	466	RGB	0.676	395
F	0.634	449	rgI	0.693	362
C+T	0.635	346	Lab	0.690	328
C+S	0.660	383	Н	0.644	322
C+F	0.660	389	rgb	0.647	207
T+S	0.650	406	С	0.615	125
T+F	0.638	400	Thresholds	MABO	# box
S+F	0.638	449	50	0.676	395
C+T+S	0.662	377	100	0.671	239
C+T+F	0.659	381	150	0.668	168
C+S+F	0.674	401	250	0.647	102
T+S+F	0.655	427	500	0.585	46
C+T+S+F	0.676	395	1000	0.477	19

Table 3: Mean Average Best Overlap for box-based object hypotheses using a variety of segmentation strategies. (C)olour, (S)ize, and (F)ill perform similar. (T)exture by itself is weak. The best combination is as many diverse sources as possible.

2.1 Using a variety of color spaces

colour channels	R	G	B	Ι	V	L	a	b	S	r	g	C	Η
Light Intensity	-	-	-	-	-	-	+/-	+/-	+	+	+	+	+
Shadows/shading	-	-	-	-	-	-	+/-	+/-	+	+	+	+	+
Highlights	-	-	-	-	-	-	-	-	-	-	-	+/-	+

colour spaces	RGB	Ι	Lab	rgI	HSV	rgb	C	Η
Light Intensity	-	-	+/-	2/3	2/3	+	+	+
Shadows/shading	-	-	+/-	2/3	2/3	+	+	+
Highlights	-	-	-	-	1/3	-	+/-	+

Table 1: The invariance properties of both the individual colour channels and the colour spaces used in this paper, sorted by degree of invariance. A "+/-" means partial invariance. A fraction 1/3 means that one of the three colour channels is invariant to said property.

2.2 Using four different similarity measures

$$s_{colour}(r_i, r_j) = \sum_{k=1}^n \min(c_i^k, c_j^k).$$

$$s_{texture}(r_i, r_j) = \sum_{k=1}^n \min(t_i^k, t_j^k).$$

$$s_{size}(r_i, r_j) = 1 - \frac{\operatorname{size}(r_i) + \operatorname{size}(r_j)}{\operatorname{size}(im)},$$

$$fill(r_i, r_j) = 1 - \frac{\operatorname{size}(BB_{ij}) - \operatorname{size}(r_i) - \operatorname{size}(r_i)}{\operatorname{size}(im)}$$

- Size score encourages small regions to merge early
- Fill score encourage overlapping regions to avoid holes

$$s(r_i, r_j) = a_1 s_{colour}(r_i, r_j) + a_2 s_{texture}(r_i, r_j) + a_3 s_{size}(r_i, r_j) + a_4 s_{fill}(r_i, r_j),$$

- 2.3 Varying starting regions (given by Felzenszwalb etal.)
 - Using different color spaces
 - Varying the threshold parameter k
- Combining diversification strategies

	Diversification				
Version	Strategies	MABO	# win	# strategies	time (s)
Single	HSV				
Strategy	C+T+S+F	0.693	362	1	0.71
	k = 100				
Selective	HSV, Lab				
Search	C+T+S+F, T+S+F	0.799	2147	8	3.79
Fast	k = 50,100				
Selective	HSV, Lab, rgI, H, I				
Search	C+T+S+F, T+S+F, F, S	0.878	10,108	80	17.15
Quality	k = 50, 100, 150, 300				

- Bounding box quality evaluation
 - VOC 2007 TEST Set

- Object recognition performance
 - VOC 2010 detection task

Bounding box quality evaluation

method	recall	MABO	# windows
Arbelaez et al. [3]	0.752	0.649 ± 0.193	418
Alexe et al. [2]	0.944	0.694 ± 0.111	1,853
Harzallah <i>et al</i> . [16]	0.830	-	200 per class
Carreira and Sminchisescu [4]	0.879	0.770 ± 0.084	517
Endres and Hoiem [9]	0.912	0.791 ± 0.082	790
Felzenszwalb et al. [12]	0.933	0.829 ± 0.052	100,352 per class
Vedaldi et al. [34]	0.940	-	10,000 per class
Single Strategy	0.840	0.690 ± 0.171	289
Selective search "Fast"	0.980	0.804 ± 0.046	2,134
Selective search "Quality"	0.991	0.879 ± 0.039	10,097

Table 5: Comparison of recall, Mean Average Best Overlap(MABO) and number of window locations for a variety of meth-
ods on the Pascal 2007 TEST set.

- Evaluation on object recognition
- Selective search + SIFT + bag-of-words + SVMs

- Evaluation on object recognition
- Selective search + SIFT + bag-of-words + SVMs

Sys	stem		plane	bike	bird	boat	bottle	bus	car	cat	chair	COW
NL	PR	_	.533	.553	.192	<u>.210</u>	.300	.544	.467	.412	.200	.315
Μľ	T UCLA	[38]	.542	.485	.157	.192	.292	.555	.435	.417	.169	.285
NU	S		.491	.524	.178	.120	.306	.535	.328	.373	.177	.306
Uo	CTTI [12	2]	.524	.543	.130	.156	<u>.351</u>	.542	<u>.491</u>	.318	.155	.262
Thi	s paper		<u>.562</u>	.424	.153	.126	.218	.493	.368	<u>.461</u>	.129	<u>.321</u>
	table	dog	hor	se n	notor	person	plar	nt sh	eep	sofa	train	tv
-	.207	.303	.48	6.	553	.465	.102	2.3	344	.265	.503	.403
	.267	.309	.48	3.	550	.417	.09′	7.3	858	.308	.472	.408
	.277	.295	<u>.51</u>	<u>9</u>	563	.442	.09	6.1	48	.279	.495	.384
	.135	.215	.45	4.	516	<u>.475</u>	.09	1.3	351	.194	.466	.380
	<u>.300</u>	<u>.365</u>	.43	5.	529	.329	.15	<u>3</u> .4	11	<u>.318</u>	.470	<u>.448</u>

- SIFT based feature enabled by this method
- Performs well on non-rigid object categories

Sys	stem		plane	bike	bird	boat	bottle	bus	car	cat	chair	cow
NL	PR		.533	.553	<u>.192</u>	<u>.210</u>	.300	.544	.467	.412	<u>.200</u>	.315
Μľ	T UCLA	[38]	.542	.485	.157	.192	.292	.555	.435	.417	.169	.285
NU	S		.491	.524	.178	.120	.306	.535	.328	.373	.177	.306
Uo	CTTI [12	2]	.524	.543	.130	.156	<u>.351</u>	.542	<u>.491</u>	.318	.155	.262
Thi	s paper		<u>.562</u>	.424	.153	.126	.218	.493	.368	<u>.461</u>	.129	<u>.321</u>
	table	dog	hors	se m	otor	person	plar	nt sh	eep	sofa	train	tv
	.207	.303	.48	6.	553	.465	.102	2.3	44	.265	.503	.403
	.267	.309	.48	3.	550	.417	.09′	7.3	58	.308	.472	.408
	.277	.295	<u>.51</u>	<u>9</u> .	<u>563</u>	.442	.09	6.1	48	.279	.495	.384
	.135	.215	.45	4.	516	<u>.475</u>	.09	1.3	51	.194	.466	.380
	<u>.300</u>	.365	.43	5.	529	.329	.15	<u>3</u> .4	11	<u>.318</u>	.470	<u>.448</u>

Rich feature hierarchies for accurate object detection and semantic segmentation Tech report

Ross Girshick¹ Jeff Donahue^{1,2} Trevor Darrell^{1,2} Jitendra Malik¹ ¹UC Berkeley and ²ICSI

{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Presentec

Computer visio

Background

- Deep learning (Convolutional Neural Network) is best performing image-classification method for *ImageNet (Krizhevsky et al. ECCV 2012)*
- Debate (War?)
- What about Object Recognition/Detection (PASCAL)?

They did it!

VOC 2010 test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table
DPM HOG [19]	45.6	49.0	11.0	11.6	27.2	50.5	43.1	23.6	17.2	23.2	10.7
SegDPM [18]	56.4	48.0	24.3	21.8	31.3	51.3	47.3	48.2	16.1	29.4	19.0
UVA [36]	56.2	42.4	15.3	12.6	21.8	49.3	36.8	46.1	12.9	32.1	30.0
ours (R-CNN FT fc ₇)	65.4	56.5	45.1	28.5	24.0	50.1	49.1	58.3	20.6	38.5	31.1

dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
20.5	42.5	44.5	41.3	8.7	29.0	18.7	40.0	34.5	29.6
37.5	44.1	51.5	44.4	12.6	32.1	28.8	48.9	39.1	36.6
36.5	43.5	52.9	32.9	15.3	41.1	31.8	47.0	44.8	35.1
57.5	50.7	60.3	44.7	21.6	48.5	24.9	48.0	46.5	43.5

- On PASCAL 2007 improves upon DPM by 40%
- Faster than UVA

Object Recognition using Deep Learning

Image features are the engine of recognition.

R-CNN: *Regions with CNN features*

Region Proposal

Sliding window + CNN = High computational cost

Selective Search!

Region Warping

Regardless of size and aspect ratio

Feature Extraction

4096-dimensional feature vector

their own implementation of the CNN of (Krizhevsky et al. ECCV 2012)

Inference

Training + Testing using SVMs (with negative mining)

Efficient: shared CNN parameters + low dimensional features

CNN Training

- Pre-training + fine-tuning
- Overlap threshold to define positive/negative: 0.3
 - Performance is quite sensitive to this value
- What feature exactly did CNN learn?
- Visualization method: single out a unit and treat it as a detector

Feature Visualization

Figure 3: Top activations for six $pool_5$ units. Receptive fields and activation values are drawn in white. From top to bottom: (1) positive and (2) negative weight for cats; positive weight for (3) sheep and (4) person; selectivity for (5) diagonal bars and (6) red blobs.

0001 HEIPS (40.170 - 240.470 VOC 2007 0H 106)

VOC 2007 test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
R-CNN pool ₅	49.3	58.0	29.7	22.2	20.6	47.7	56.8	43.6	16.0	39.7	37.7	39.6	49.6	55.6	37.5	20.6	40.5	37.4	47.8	51.3	40.1
R-CNN fc ₆	56.1	58.8	34.4	29.6	22.6	50.4	58.0	52.5	18.3	40.1	41.3	46.8	49.5	53.5	39.7	23.0	46.4	36.4	50.8	59.0	43.4
R-CNN fc7	53.1	58.9	35.4	29.6	22.3	50.0	57.7	52.4	19.1	43.5	40.8	43.6	47.6	54.0	39.1	23.0	42.3	33.6	51.4	55.2	42.6
$\overline{\text{R-CNN FT pool}_5}$	55.6	57.5	31.5	23.1	23.2	46.3	59.0	49.2	16.5	43.1	37.8	39.7	51.5	55.4	40.4	23.9	46.3	37.9	49.7	54.1	42.1
R-CNN FT fc ₆	61.8	62.0	38.8	35.7	29.4	52.5	61.9	53.9	22.6	49.7	40.5	48.8	49.9	57.3	44.5	28.5	50.4	40.2	54.3	61.2	47.2
R-CNN FT fc ₇	60.3	62.5	41.4	37.9	29.0	52.6	61.6	56.3	24.9	52.3	41.9	48.1	54.3	57.0	45.0	26.9	51.8	38.1	56.6	62.2	48.0
DPM HOG [19]	33.2	60.3	10.2	16.1	27.3	54.3	58.2	23.0	20.0	24.1	26.7	12.7	58.1	48.2	43.2	12.0	21.1	36.1	46.0	43.5	33.7
DPM ST [29]	23.8	58.2	10.5	8.5	27.1	50.4	52.0	7.3	19.2	22.8	18.1	8.0	55.9	44.8	32.4	13.3	15.9	22.8	46.2	44.9	29.1
DPM HSC [32]	32.2	58.3	11.5	16.3	30.6	49.9	54.8	23.5	21.5	27.7	34.0	13.7	58.1	51.6	39.9	12.4	23.5	34.4	47.4	45.2	34.3

VOC Segmentation

- Segmentation by region classification
- Feature same as before + foreground mask

VOC 2011 test	bg	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow
R&P [2]	83.4	46.8	18.9	36.6	31.2	42.7	57.3	47.4	44.1	8.1	39.4
O ₂ P [5]	85.4	69.7	22.3	45.2	44.4	46.9	66.7	57.8	56.2	13.5	46.1
ours (<i>full+fg</i> R-CNN fc_6)	84.2	66.9	23.7	58.3	37.4	55.4	73.3	58.7	56.5	9.7	45.5

table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mean
36.1	36.3	49.5	48.3	50.7	26.3	47.2	22.1	42.0	43.2	40.8
32.3	41.2	59.1	55.3	51.0	36.2	50.4	27.8	46.9	44.6	47.6
29.5	49.3	40.1	57.8	53.9	33.8	60.7	22.7	47.1	41.3	47.9

Take aways

- Large CNN is highly effective in feature learning
- Classical computer vision tools and deep learning are partners, not enemies