
Selective Search for Object Recognition

J.R.R. Uijlings∗1,2, K.E.A. van de Sande†2, T. Gevers2, and A.W.M. Smeulders2

1University of Trento, Italy
2University of Amsterdam, the Netherlands

Technical Report 2012, submitted to IJCV

Abstract

This paper addresses the problem of generating possible object lo-
cations for use in object recognition. We introduce Selective Search
which combines the strength of both an exhaustive search and seg-
mentation. Like segmentation, we use the image structure to guide
our sampling process. Like exhaustive search, we aim to capture
all possible object locations. Instead of a single technique to gen-
erate possible object locations, we diversify our search and use a
variety of complementary image partitionings to deal with as many
image conditions as possible. Our Selective Search results in a
small set of data-driven, class-independent, high quality locations,
yielding 99% recall and a Mean Average Best Overlap of 0.879 at
10,097 locations. The reduced number of locations compared to
an exhaustive search enables the use of stronger machine learning
techniques and stronger appearance models for object recognition.
In this paper we show that our selective search enables the use of
the powerful Bag-of-Words model for recognition. The Selective
Search software is made publicly available 1.

1 Introduction

For a long time, objects were sought to be delineated before their
identification. This gave rise to segmentation, which aims for
a unique partitioning of the image through a generic algorithm,
where there is one part for all object silhouettes in the image. Re-
search on this topic has yielded tremendous progress over the past
years [3, 6, 13, 26]. But images are intrinsically hierarchical: In
Figure 1a the salad and spoons are inside the salad bowl, which in
turn stands on the table. Furthermore, depending on the context the
term table in this picture can refer to only the wood or include ev-
erything on the table. Therefore both the nature of images and the
different uses of an object category are hierarchical. This prohibits
the unique partitioning of objects for all but the most specific pur-
poses. Hence for most tasks multiple scales in a segmentation are a
necessity. This is most naturally addressed by using a hierarchical
partitioning, as done for example by Arbelaez et al. [3].

Besides that a segmentation should be hierarchical, a generic so-
lution for segmentation using a single strategy may not exist at all.
There are many conflicting reasons why a region should be grouped
together: In Figure 1b the cats can be separated using colour, but
their texture is the same. Conversely, in Figure 1c the chameleon

∗jrr@disi.unitn.it
†ksande@uva.nl
1http://disi.unitn.it/˜uijlings/SelectiveSearch.html

(a) (b)

(c) (d)

Figure 1: There is a high variety of reasons that an image region
forms an object. In (b) the cats can be distinguished by colour, not
texture. In (c) the chameleon can be distinguished from the sur-
rounding leaves by texture, not colour. In (d) the wheels can be part
of the car because they are enclosed, not because they are similar
in texture or colour. Therefore, to find objects in a structured way
it is necessary to use a variety of diverse strategies. Furthermore,
an image is intrinsically hierarchical as there is no single scale for
which the complete table, salad bowl, and salad spoon can be found
in (a).

is similar to its surrounding leaves in terms of colour, yet its tex-
ture differs. Finally, in Figure 1d, the wheels are wildly different
from the car in terms of both colour and texture, yet are enclosed
by the car. Individual visual features therefore cannot resolve the
ambiguity of segmentation.

And, finally, there is a more fundamental problem. Regions with
very different characteristics, such as a face over a sweater, can
only be combined into one object after it has been established that
the object at hand is a human. Hence without prior recognition it is
hard to decide that a face and a sweater are part of one object [29].

This has led to the opposite of the traditional approach: to do
localisation through the identification of an object. This recent ap-
proach in object recognition has made enormous progress in less
than a decade [8, 12, 16, 35]. With an appearance model learned
from examples, an exhaustive search is performed where every lo-
cation within the image is examined as to not miss any potential
object location [8, 12, 16, 35].

1

 !
!

Presented by Song Cao!
!

Computer vision seminar, 5/2/2013

Goal: generating possible
object locations

• Why is this hard?

• High variety of reasons of
forming an object

• (a) varied scales

• (b) color

• (c) texture

• (d) enclosure

Selective Search for Object Recognition

J.R.R. Uijlings∗1,2, K.E.A. van de Sande†2, T. Gevers2, and A.W.M. Smeulders2

1University of Trento, Italy
2University of Amsterdam, the Netherlands

Technical Report 2012, submitted to IJCV

Abstract

This paper addresses the problem of generating possible object lo-
cations for use in object recognition. We introduce Selective Search
which combines the strength of both an exhaustive search and seg-
mentation. Like segmentation, we use the image structure to guide
our sampling process. Like exhaustive search, we aim to capture
all possible object locations. Instead of a single technique to gen-
erate possible object locations, we diversify our search and use a
variety of complementary image partitionings to deal with as many
image conditions as possible. Our Selective Search results in a
small set of data-driven, class-independent, high quality locations,
yielding 99% recall and a Mean Average Best Overlap of 0.879 at
10,097 locations. The reduced number of locations compared to
an exhaustive search enables the use of stronger machine learning
techniques and stronger appearance models for object recognition.
In this paper we show that our selective search enables the use of
the powerful Bag-of-Words model for recognition. The Selective
Search software is made publicly available 1.

1 Introduction

For a long time, objects were sought to be delineated before their
identification. This gave rise to segmentation, which aims for
a unique partitioning of the image through a generic algorithm,
where there is one part for all object silhouettes in the image. Re-
search on this topic has yielded tremendous progress over the past
years [3, 6, 13, 26]. But images are intrinsically hierarchical: In
Figure 1a the salad and spoons are inside the salad bowl, which in
turn stands on the table. Furthermore, depending on the context the
term table in this picture can refer to only the wood or include ev-
erything on the table. Therefore both the nature of images and the
different uses of an object category are hierarchical. This prohibits
the unique partitioning of objects for all but the most specific pur-
poses. Hence for most tasks multiple scales in a segmentation are a
necessity. This is most naturally addressed by using a hierarchical
partitioning, as done for example by Arbelaez et al. [3].

Besides that a segmentation should be hierarchical, a generic so-
lution for segmentation using a single strategy may not exist at all.
There are many conflicting reasons why a region should be grouped
together: In Figure 1b the cats can be separated using colour, but
their texture is the same. Conversely, in Figure 1c the chameleon

∗jrr@disi.unitn.it
†ksande@uva.nl
1http://disi.unitn.it/˜uijlings/SelectiveSearch.html

(a) (b)

(c) (d)

Figure 1: There is a high variety of reasons that an image region
forms an object. In (b) the cats can be distinguished by colour, not
texture. In (c) the chameleon can be distinguished from the sur-
rounding leaves by texture, not colour. In (d) the wheels can be part
of the car because they are enclosed, not because they are similar
in texture or colour. Therefore, to find objects in a structured way
it is necessary to use a variety of diverse strategies. Furthermore,
an image is intrinsically hierarchical as there is no single scale for
which the complete table, salad bowl, and salad spoon can be found
in (a).

is similar to its surrounding leaves in terms of colour, yet its tex-
ture differs. Finally, in Figure 1d, the wheels are wildly different
from the car in terms of both colour and texture, yet are enclosed
by the car. Individual visual features therefore cannot resolve the
ambiguity of segmentation.

And, finally, there is a more fundamental problem. Regions with
very different characteristics, such as a face over a sweater, can
only be combined into one object after it has been established that
the object at hand is a human. Hence without prior recognition it is
hard to decide that a face and a sweater are part of one object [29].

This has led to the opposite of the traditional approach: to do
localisation through the identification of an object. This recent ap-
proach in object recognition has made enormous progress in less
than a decade [8, 12, 16, 35]. With an appearance model learned
from examples, an exhaustive search is performed where every lo-
cation within the image is examined as to not miss any potential
object location [8, 12, 16, 35].

1

Solution - Diversify
• Two ends of the spectrum

• Exhaustive Search (sliding window)
• Examples: DPM, branch and bound

• Pros: capture all possible locations

• Cons: class dependent, limited to objects, too many proposals

• Segmentation
• Data-driven, exploit image structure for proposals

Key Questions

• 1. How do we use segmentation?

• 2. What is good diversification strategy?

• 3. How effective is selective search (small set of
high-quality locations)?

1. How do we use
segmentation?

• Fast segmentation algorithm
based on pairwise region
comparison (by Felzenszwalb
etal.) -> initial regions

• Greedily group regions
together by selecting the pair
with highest similarity!

• Until the whole image become
a single region

• Generates a hierarchy of
bounding boxes

Figure 2: A street scene (320 × 240 color image), and the segmentation results pro-

duced by our algorithm (σ = 0.8, k = 300).

Figure 3: A baseball scene (432 × 294 grey image), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

Figure 4: An indoor scene (image 320 × 240, color), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

17

1. How do we use
segmentation?

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.

Our grouping procedure now works as follows. We first use [13]
to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.

Complementary Colour Spaces. We want to account for dif-
ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.

Of course, for images that are black and white a change of colour
space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.

In this paper we always use a single colour space throughout
the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.

Complementary Similarity Measures. We define four comple-
mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

• Average Best Overlap (ABO)

!

!

!

!

• Mean Average Best Overlap (MABO)

Evaluation Metric

Figure 3: The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives
we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

by our selective search that have an overlap of 20% to 50% with
a positive example. To avoid near-duplicate negative examples,
a negative example is excluded if it has more than 70% overlap
with another negative. To keep the number of initial negatives per
class below 20,000, we randomly drop half of the negatives for the
classes car, cat, dog and person. Intuitively, this set of examples
can be seen as difficult negatives which are close to the positive ex-
amples. This means they are close to the decision boundary and are
therefore likely to become support vectors even when the complete
set of negatives would be considered. Indeed, we found that this
selection of training examples gives reasonably good initial classi-
fication models.

Then we enter a retraining phase to iteratively add hard negative
examples (e.g. [12]): We apply the learned models to the training
set using the locations generated by our selective search. For each
negative image we add the highest scoring location. As our initial
training set already yields good models, our models converge in
only two iterations.

For the test set, the final model is applied to all locations gener-
ated by our selective search. The windows are sorted by classifier
score while windows which have more than 30% overlap with a
higher scoring window are considered near-duplicates and are re-
moved.

5 Evaluation

In this section we evaluate the quality of our selective search. We
divide our experiments in four parts, each spanning a separate sub-
section:

Diversification Strategies. We experiment with a variety of
colour spaces, similarity measures, and thresholds of the ini-
tial regions, all which were detailed in Section 3.2. We seek a
trade-off between the number of generated object hypotheses,
computation time, and the quality of object locations. We do
this in terms of bounding boxes. This results in a selection of
complementary techniques which together serve as our final
selective search method.

Quality of Locations. We test the quality of the object location
hypotheses resulting from the selective search.

Object Recognition. We use the locations of our selective search
in the Object Recognition framework detailed in Section 4.
We evaluate performance on the Pascal VOC detection chal-
lenge.

An upper bound of location quality. We investigate how well
our object recognition framework performs when using an ob-
ject hypothesis set of “perfect” quality. How does this com-
pare to the locations that our selective search generates?

To evaluate the quality of our object hypotheses we define
the Average Best Overlap (ABO) and Mean Average Best Over-
lap (MABO) scores, which slightly generalises the measure used
in [9]. To calculate the Average Best Overlap for a specific class c,
we calculate the best overlap between each ground truth annotation
gci ∈ Gc and the object hypotheses L generated for the correspond-
ing image, and average:

ABO =
1

|Gc| ∑
gci ∈G

c

max
l j∈L

Overlap(gci , l j). (7)

The Overlap score is taken from [11] and measures the area of the
intersection of two regions divided by its union:

Overlap(gci , l j) =
area(gci)∩ area(lj)

area(gci)∪ area(lj)
. (8)

Analogously to Average Precision and Mean Average Precision,
Mean Average Best Overlap is now defined as the mean ABO over
all classes.

Other work often uses the recall derived from the Pascal Overlap
Criterion to measure the quality of the boxes [1, 16, 34]. This crite-
rion considers an object to be found when the Overlap of Equation
8 is larger than 0.5. However, in many of our experiments we ob-
tain a recall between 95% and 100% for most classes, making this
measure too insensitive for this paper. However, we do report this
measure when comparing with other work.

To avoid overfitting, we perform the diversification strategies ex-
periments on the Pascal VOC 2007 TRAIN+VAL set. Other exper-
iments are done on the Pascal VOC 2007 TEST set. Additionally,
our object recognition system is benchmarked on the Pascal VOC
2010 detection challenge, using the independent evaluation server.

5.1 Diversification Strategies

In this section we evaluate a variety of strategies to obtain good
quality object location hypotheses using a reasonable number of
boxes computed within a reasonable amount of time.

5.1.1 Flat versus Hierarchy

In the description of our method we claim that using a full hierar-
chy is more natural than using multiple flat partitionings by chang-

6

Figure 3: The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives
we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

by our selective search that have an overlap of 20% to 50% with
a positive example. To avoid near-duplicate negative examples,
a negative example is excluded if it has more than 70% overlap
with another negative. To keep the number of initial negatives per
class below 20,000, we randomly drop half of the negatives for the
classes car, cat, dog and person. Intuitively, this set of examples
can be seen as difficult negatives which are close to the positive ex-
amples. This means they are close to the decision boundary and are
therefore likely to become support vectors even when the complete
set of negatives would be considered. Indeed, we found that this
selection of training examples gives reasonably good initial classi-
fication models.

Then we enter a retraining phase to iteratively add hard negative
examples (e.g. [12]): We apply the learned models to the training
set using the locations generated by our selective search. For each
negative image we add the highest scoring location. As our initial
training set already yields good models, our models converge in
only two iterations.

For the test set, the final model is applied to all locations gener-
ated by our selective search. The windows are sorted by classifier
score while windows which have more than 30% overlap with a
higher scoring window are considered near-duplicates and are re-
moved.

5 Evaluation

In this section we evaluate the quality of our selective search. We
divide our experiments in four parts, each spanning a separate sub-
section:

Diversification Strategies. We experiment with a variety of
colour spaces, similarity measures, and thresholds of the ini-
tial regions, all which were detailed in Section 3.2. We seek a
trade-off between the number of generated object hypotheses,
computation time, and the quality of object locations. We do
this in terms of bounding boxes. This results in a selection of
complementary techniques which together serve as our final
selective search method.

Quality of Locations. We test the quality of the object location
hypotheses resulting from the selective search.

Object Recognition. We use the locations of our selective search
in the Object Recognition framework detailed in Section 4.
We evaluate performance on the Pascal VOC detection chal-
lenge.

An upper bound of location quality. We investigate how well
our object recognition framework performs when using an ob-
ject hypothesis set of “perfect” quality. How does this com-
pare to the locations that our selective search generates?

To evaluate the quality of our object hypotheses we define
the Average Best Overlap (ABO) and Mean Average Best Over-
lap (MABO) scores, which slightly generalises the measure used
in [9]. To calculate the Average Best Overlap for a specific class c,
we calculate the best overlap between each ground truth annotation
gci ∈ Gc and the object hypotheses L generated for the correspond-
ing image, and average:

ABO =
1

|Gc| ∑
gci ∈G

c

max
l j∈L

Overlap(gci , l j). (7)

The Overlap score is taken from [11] and measures the area of the
intersection of two regions divided by its union:

Overlap(gci , l j) =
area(gci)∩ area(lj)

area(gci)∪ area(lj)
. (8)

Analogously to Average Precision and Mean Average Precision,
Mean Average Best Overlap is now defined as the mean ABO over
all classes.

Other work often uses the recall derived from the Pascal Overlap
Criterion to measure the quality of the boxes [1, 16, 34]. This crite-
rion considers an object to be found when the Overlap of Equation
8 is larger than 0.5. However, in many of our experiments we ob-
tain a recall between 95% and 100% for most classes, making this
measure too insensitive for this paper. However, we do report this
measure when comparing with other work.

To avoid overfitting, we perform the diversification strategies ex-
periments on the Pascal VOC 2007 TRAIN+VAL set. Other exper-
iments are done on the Pascal VOC 2007 TEST set. Additionally,
our object recognition system is benchmarked on the Pascal VOC
2010 detection challenge, using the independent evaluation server.

5.1 Diversification Strategies

In this section we evaluate a variety of strategies to obtain good
quality object location hypotheses using a reasonable number of
boxes computed within a reasonable amount of time.

5.1.1 Flat versus Hierarchy

In the description of our method we claim that using a full hierar-
chy is more natural than using multiple flat partitionings by chang-

6

0 500 1000 1500 2000 2500 3000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Object Boxes

R
e

ca
ll

Harzallah et al.
Vedaldi et al.
Alexe et al.
Carreira and Sminchisescu
Endres and Hoiem
Selective search Fast
Selective search Quality

(a) Trade-off between number of object locations and the Pascal Recall criterion.

0 500 1000 1500 2000 2500 3000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Object Boxes

M
e

a
n

 A
ve

ra
g

e
 B

e
st

 O
ve

rl
a

p

Alexe et al.
Carreira and Sminchisescu
Endres and Hoiem
Selective search Fast
Selective search Quality

(b) Trade-off between number of object locations and the MABO score.

Figure 4: Trade-off between quality and quantity of the object hypotheses in terms of bounding boxes on the Pascal 2007 TEST set. The
dashed lines are for those methods whose quantity is expressed is the number of boxes per class. In terms of recall “Fast” selective
search has the best trade-off. In terms of Mean Average Best Overlap the “Quality” selective search is comparable with [4, 9] yet is
much faster to compute and goes on longer resulting in a higher final MABO of 0.879.

(a) Bike: 0.863 (b) Cow: 0.874 (c) Chair: 0.884 (d) Person: 0.882 (e) Plant: 0.873

Figure 5: Examples of locations for objects whose Best Overlap score is around our Mean Average Best Overlap of 0.879. The green
boxes are the ground truth. The red boxes are created using the “Quality” selective search.

9

• Hierarchical strategy works better than multiple flat partitions

• Hierarchy - natural and effective

ing a threshold. In this section we test whether the use of a hier-
archy also leads to better results. We therefore compare the use
of [13] with multiple thresholds against our proposed algorithm.
Specifically, we perform both strategies in RGB colour space. For
[13], we vary the threshold from k = 50 to k = 1000 in steps of 50.
This range captures both small and large regions. Additionally, as a
special type of threshold, we include the whole image as an object
location because quite a few images contain a single large object
only. Furthermore, we also take a coarser range from k = 50 to
k = 950 in steps of 100. For our algorithm, to create initial regions
we use a threshold of k = 50, ensuring that both strategies have
an identical smallest scale. Additionally, as we generate fewer re-
gions, we combine results using k = 50 and k = 100. As similarity
measure S we use the addition of all four similarities as defined in
Equation 6. Results are in table 2.

threshold k in [13] MABO # windows

Flat [13] k = 50,150, · · · ,950 0.659 387
Hierarchical (this paper) k = 50 0.676 395

Flat [13] k = 50,100, · · · ,1000 0.673 597
Hierarchical (this paper) k = 50,100 0.719 625

Table 2: A comparison of multiple flat partitionings against hier-
archical partitionings for generating box locations shows that for
the hierarchical strategy the Mean Average Best Overlap (MABO)
score is consistently higher at a similar number of locations.

As can be seen, the quality of object hypotheses is better for
our hierarchical strategy than for multiple flat partitionings: At a
similar number of regions, our MABO score is consistently higher.
Moreover, the increase in MABO achieved by combining the lo-
cations of two variants of our hierarchical grouping algorithm is
much higher than the increase achieved by adding extra thresholds
for the flat partitionings. We conclude that using all locations from
a hierarchical grouping algorithm is not only more natural but also
more effective than using multiple flat partitionings.

5.1.2 Individual Diversification Strategies

In this paper we propose three diversification strategies to obtain
good quality object hypotheses: varying the colour space, vary-
ing the similarity measures, and varying the thresholds to obtain
the starting regions. This section investigates the influence of each
strategy. As basic settings we use the RGB colour space, the com-
bination of all four similarity measures, and threshold k= 50. Each
time we vary a single parameter. Results are given in Table 3.

We start examining the combination of similarity measures on
the left part of Table 3. Looking first at colour, texture, size, and fill
individually, we see that the texture similarity performs worst with
a MABO of 0.581, while the other measures range between 0.63
and 0.64. To test if the relatively low score of texture is due to our
choice of feature, we also tried to represent texture by Local Binary
Patterns [24]. We experimented with 4 and 8 neighbours on dif-
ferent scales using different uniformity/consistency of the patterns
(see [24]), where we concatenate LBP histograms of the individual
colour channels. However, we obtained similar results (MABO of
0.577). We believe that one reason of the weakness of texture is be-
cause of object boundaries: When two segments are separated by
an object boundary, both sides of this boundary will yield similar
edge-responses, which inadvertently increases similarity.

Similarities MABO # box Colours MABO # box

C 0.635 356 HSV 0.693 463
T 0.581 303 I 0.670 399
S 0.640 466 RGB 0.676 395
F 0.634 449 rgI 0.693 362
C+T 0.635 346 Lab 0.690 328
C+S 0.660 383 H 0.644 322
C+F 0.660 389 rgb 0.647 207
T+S 0.650 406 C 0.615 125

T+F 0.638 400 Thresholds MABO # box
S+F 0.638 449 50 0.676 395
C+T+S 0.662 377 100 0.671 239
C+T+F 0.659 381 150 0.668 168
C+S+F 0.674 401 250 0.647 102
T+S+F 0.655 427 500 0.585 46
C+T+S+F 0.676 395 1000 0.477 19

Table 3: Mean Average Best Overlap for box-based object hy-
potheses using a variety of segmentation strategies. (C)olour,
(S)ize, and (F)ill perform similar. (T)exture by itself is weak. The
best combination is as many diverse sources as possible.

While the texture similarity yields relatively few object loca-
tions, at 300 locations the other similarity measures still yield a
MABO higher than 0.628. This suggests that when comparing
individual strategies the final MABO scores in table 3 are good
indicators of trade-off between quality and quantity of the object
hypotheses. Another observation is that combinations of similarity
measures generally outperform the single measures. In fact, us-
ing all four similarity measures perform best yielding a MABO of
0.676.

Looking at variations in the colour space in the top-right of Table
3, we observe large differences in results, ranging from a MABO
of 0.615 with 125 locations for the C colour space to a MABO of
0.693 with 463 locations for the HSV colour space. We note that
Lab-space has a particularly goodMABO score of 0.690 using only
328 boxes. Furthermore, the order of each hierarchy is effective:
using the first 328 boxes of HSV colour space yields 0.690 MABO,
while using the first 100 boxes yields 0.647 MABO. This shows
that when comparing single strategies we can use only the MABO
scores to represent the trade-off between quality and quantity of
the object hypotheses set. We will use this in the next section when
finding good combinations.

Experiments on the thresholds of [13] to generate the starting
regions show, in the bottom-right of Table 3, that a lower initial
threshold results in a higher MABO using more object locations.

5.1.3 Combinations of Diversification Strategies

We combine object location hypotheses using a variety of com-
plementary grouping strategies in order to get a good quality set
of object locations. As a full search for the best combination is
computationally expensive, we perform a greedy search using the
MABO score only as optimization criterion. We have earlier ob-
served that this score is representative for the trade-off between the
number of locations and their quality.

From the resulting ordering we create three configurations: a
single best strategy, a fast selective search, and a quality selective
search using all combinations of individual components, i.e. colour

7

Hierarchy v.s. Flat

2. What is good diversification
strategy?

2.1 Using a variety of color spaces
the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.

Our grouping procedure now works as follows. We first use [13]
to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.

Complementary Colour Spaces. We want to account for dif-
ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.

Of course, for images that are black and white a change of colour
space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.

In this paper we always use a single colour space throughout
the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.

Complementary Similarity Measures. We define four comple-
mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

2. What is good diversification
strategy?

2.1 Using a variety of color spaces
the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

ing a threshold. In this section we test whether the use of a hier-
archy also leads to better results. We therefore compare the use
of [13] with multiple thresholds against our proposed algorithm.
Specifically, we perform both strategies in RGB colour space. For
[13], we vary the threshold from k = 50 to k = 1000 in steps of 50.
This range captures both small and large regions. Additionally, as a
special type of threshold, we include the whole image as an object
location because quite a few images contain a single large object
only. Furthermore, we also take a coarser range from k = 50 to
k = 950 in steps of 100. For our algorithm, to create initial regions
we use a threshold of k = 50, ensuring that both strategies have
an identical smallest scale. Additionally, as we generate fewer re-
gions, we combine results using k = 50 and k = 100. As similarity
measure S we use the addition of all four similarities as defined in
Equation 6. Results are in table 2.

threshold k in [13] MABO # windows

Flat [13] k = 50,150, · · · ,950 0.659 387
Hierarchical (this paper) k = 50 0.676 395

Flat [13] k = 50,100, · · · ,1000 0.673 597
Hierarchical (this paper) k = 50,100 0.719 625

Table 2: A comparison of multiple flat partitionings against hier-
archical partitionings for generating box locations shows that for
the hierarchical strategy the Mean Average Best Overlap (MABO)
score is consistently higher at a similar number of locations.

As can be seen, the quality of object hypotheses is better for
our hierarchical strategy than for multiple flat partitionings: At a
similar number of regions, our MABO score is consistently higher.
Moreover, the increase in MABO achieved by combining the lo-
cations of two variants of our hierarchical grouping algorithm is
much higher than the increase achieved by adding extra thresholds
for the flat partitionings. We conclude that using all locations from
a hierarchical grouping algorithm is not only more natural but also
more effective than using multiple flat partitionings.

5.1.2 Individual Diversification Strategies

In this paper we propose three diversification strategies to obtain
good quality object hypotheses: varying the colour space, vary-
ing the similarity measures, and varying the thresholds to obtain
the starting regions. This section investigates the influence of each
strategy. As basic settings we use the RGB colour space, the com-
bination of all four similarity measures, and threshold k= 50. Each
time we vary a single parameter. Results are given in Table 3.

We start examining the combination of similarity measures on
the left part of Table 3. Looking first at colour, texture, size, and fill
individually, we see that the texture similarity performs worst with
a MABO of 0.581, while the other measures range between 0.63
and 0.64. To test if the relatively low score of texture is due to our
choice of feature, we also tried to represent texture by Local Binary
Patterns [24]. We experimented with 4 and 8 neighbours on dif-
ferent scales using different uniformity/consistency of the patterns
(see [24]), where we concatenate LBP histograms of the individual
colour channels. However, we obtained similar results (MABO of
0.577). We believe that one reason of the weakness of texture is be-
cause of object boundaries: When two segments are separated by
an object boundary, both sides of this boundary will yield similar
edge-responses, which inadvertently increases similarity.

Similarities MABO # box Colours MABO # box

C 0.635 356 HSV 0.693 463
T 0.581 303 I 0.670 399
S 0.640 466 RGB 0.676 395
F 0.634 449 rgI 0.693 362
C+T 0.635 346 Lab 0.690 328
C+S 0.660 383 H 0.644 322
C+F 0.660 389 rgb 0.647 207
T+S 0.650 406 C 0.615 125

T+F 0.638 400 Thresholds MABO # box
S+F 0.638 449 50 0.676 395
C+T+S 0.662 377 100 0.671 239
C+T+F 0.659 381 150 0.668 168
C+S+F 0.674 401 250 0.647 102
T+S+F 0.655 427 500 0.585 46
C+T+S+F 0.676 395 1000 0.477 19

Table 3: Mean Average Best Overlap for box-based object hy-
potheses using a variety of segmentation strategies. (C)olour,
(S)ize, and (F)ill perform similar. (T)exture by itself is weak. The
best combination is as many diverse sources as possible.

While the texture similarity yields relatively few object loca-
tions, at 300 locations the other similarity measures still yield a
MABO higher than 0.628. This suggests that when comparing
individual strategies the final MABO scores in table 3 are good
indicators of trade-off between quality and quantity of the object
hypotheses. Another observation is that combinations of similarity
measures generally outperform the single measures. In fact, us-
ing all four similarity measures perform best yielding a MABO of
0.676.

Looking at variations in the colour space in the top-right of Table
3, we observe large differences in results, ranging from a MABO
of 0.615 with 125 locations for the C colour space to a MABO of
0.693 with 463 locations for the HSV colour space. We note that
Lab-space has a particularly goodMABO score of 0.690 using only
328 boxes. Furthermore, the order of each hierarchy is effective:
using the first 328 boxes of HSV colour space yields 0.690 MABO,
while using the first 100 boxes yields 0.647 MABO. This shows
that when comparing single strategies we can use only the MABO
scores to represent the trade-off between quality and quantity of
the object hypotheses set. We will use this in the next section when
finding good combinations.

Experiments on the thresholds of [13] to generate the starting
regions show, in the bottom-right of Table 3, that a lower initial
threshold results in a higher MABO using more object locations.

5.1.3 Combinations of Diversification Strategies

We combine object location hypotheses using a variety of com-
plementary grouping strategies in order to get a good quality set
of object locations. As a full search for the best combination is
computationally expensive, we perform a greedy search using the
MABO score only as optimization criterion. We have earlier ob-
served that this score is representative for the trade-off between the
number of locations and their quality.

From the resulting ordering we create three configurations: a
single best strategy, a fast selective search, and a quality selective
search using all combinations of individual components, i.e. colour

7

2. What is good diversification
strategy?

2.1 Using a variety of color spaces
the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.

Our grouping procedure now works as follows. We first use [13]
to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.

Complementary Colour Spaces. We want to account for dif-
ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.

Of course, for images that are black and white a change of colour
space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.

In this paper we always use a single colour space throughout
the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.

Complementary Similarity Measures. We define four comple-
mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

2. What is good diversification
strategy?

2.2 Using four different similarity measures
the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.

Our grouping procedure now works as follows. We first use [13]
to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.

Complementary Colour Spaces. We want to account for dif-
ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.

Of course, for images that are black and white a change of colour
space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.

In this paper we always use a single colour space throughout
the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.

Complementary Similarity Measures. We define four comple-
mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.

Our grouping procedure now works as follows. We first use [13]
to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.

Complementary Colour Spaces. We want to account for dif-
ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.

Of course, for images that are black and white a change of colour
space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.

In this paper we always use a single colour space throughout
the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.

Complementary Similarity Measures. We define four comple-
mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

ssize(ri,r j) encourages small regions to merge early. This forces
regions in S, i.e. regions which have not yet been merged, to
be of similar sizes throughout the algorithm. This is desir-
able because it ensures that object locations at all scales are
created at all parts of the image. For example, it prevents a
single region from gobbling up all other regions one by one,
yielding all scales only at the location of this growing region
and nowhere else. ssize(ri,r j) is defined as the fraction of the
image that ri and r j jointly occupy:

ssize(ri,r j) = 1−
size(ri)+ size(rj)

size(im)
, (4)

where size(im) denotes the size of the image in pixels.

sfill(ri,r j) measures how well region ri and r j fit into each other.
The idea is to fill gaps: if ri is contained in r j it is logical to
merge these first in order to avoid any holes. On the other
hand, if ri and r j are hardly touching each other they will
likely form a strange region and should not be merged. To
keep the measure fast, we use only the size of the regions and
of the containing boxes. Specifically, we define BBi j to be the
tight bounding box around ri and r j. Now sfill(ri,r j) is the
fraction of the image contained in BBi j which is not covered
by the regions of ri and r j:

fill(ri,r j) = 1−
size(BBi j)− size(ri)− size(ri)

size(im)
(5)

We divide by size(im) for consistency with Equation 4. Note
that this measure can be efficiently calculated by keeping track
of the bounding boxes around each region, as the bounding
box around two regions can be easily derived from these.

In this paper, our final similarity measure is a combination of the
above four:

s(ri,r j) = a1scolour(ri,r j)+a2stexture(ri,r j)+

a3ssize(ri,r j)+a4s f ill(ri,r j), (6)

where ai ∈ {0,1} denotes if the similarity measure is used or
not. As we aim to diversify our strategies, we do not consider any
weighted similarities.

Complementary Starting Regions. A third diversification
strategy is varying the complementary starting regions. To the
best of our knowledge, the method of [13] is the fastest, publicly
available algorithm that yields high quality starting locations. We
could not find any other algorithm with similar computational effi-
ciency so we use only this oversegmentation in this paper. But note
that different starting regions are (already) obtained by varying the
colour spaces, each which has different invariance properties. Ad-
ditionally, we vary the threshold parameter k in [13].

3.3 Combining Locations

In this paper, we combine the object hypotheses of several varia-
tions of our hierarchical grouping algorithm. Ideally, we want to
order the object hypotheses in such a way that the locations which
are most likely to be an object come first. This enables one to find
a good trade-off between the quality and quantity of the resulting

object hypothesis set, depending on the computational efficiency of
the subsequent feature extraction and classification method.

We choose to order the combined object hypotheses set based
on the order in which the hypotheses were generated in each in-
dividual grouping strategy. However, as we combine results from
up to 80 different strategies, such order would too heavily empha-
size large regions. To prevent this, we include some randomness
as follows. Given a grouping strategy j, let r

j
i be the region which

is created at position i in the hierarchy, where i = 1 represents the
top of the hierarchy (whose corresponding region covers the com-
plete image). We now calculate the position value v

j
i as RND× i,

where RND is a random number in range [0,1]. The final ranking

is obtained by ordering the regions using v
j
i .

When we use locations in terms of bounding boxes, we first rank
all the locations as detailed above. Only afterwards we filter out
lower ranked duplicates. This ensures that duplicate boxes have a
better chance of obtaining a high rank. This is desirable because
if multiple grouping strategies suggest the same box location, it is
likely to come from a visually coherent part of the image.

4 Object Recognition using Selective

Search

This paper uses the locations generated by our selective search for
object recognition. This section details our framework for object
recognition.

Two types of features are dominant in object recognition: his-
tograms of oriented gradients (HOG) [8] and bag-of-words [7, 27].
HOG has been shown to be successful in combination with the part-
based model by Felzenszwalb et al. [12]. However, as they use an
exhaustive search, HOG features in combination with a linear clas-
sifier is the only feasible choice from a computational perspective.
In contrast, our selective search enables the use of more expensive
and potentially more powerful features. Therefore we use bag-of-
words for object recognition [16, 17, 34]. However, we use a more
powerful (and expensive) implementation than [16, 17, 34] by em-
ploying a variety of colour-SIFT descriptors [32] and a finer spatial
pyramid division [18].
Specifically we sample descriptors at each pixel on a single scale

(σ = 1.2). Using software from [32], we extract SIFT [21] and two
colour SIFTs which were found to be the most sensitive for de-
tecting image structures, Extended OpponentSIFT [31] and RGB-
SIFT [32]. We use a visual codebook of size 4,000 and a spatial
pyramid with 4 levels using a 1x1, 2x2, 3x3. and 4x4 division.
This gives a total feature vector length of 360,000. In image clas-
sification, features of this size are already used [25, 37]. Because
a spatial pyramid results in a coarser spatial subdivision than the
cells which make up a HOG descriptor, our features contain less
information about the specific spatial layout of the object. There-
fore, HOG is better suited for rigid objects and our features are
better suited for deformable object types.

As classifier we employ a Support Vector Machine with a his-
togram intersection kernel using the Shogun Toolbox [28]. To ap-
ply the trained classifier, we use the fast, approximate classification
strategy of [22], which was shown to work well for Bag-of-Words
in [30].

Our training procedure is illustrated in Figure 3. The initial posi-
tive examples consist of all ground truth object windows. As initial
negative examples we select from all object locations generated

5

ssize(ri,r j) encourages small regions to merge early. This forces
regions in S, i.e. regions which have not yet been merged, to
be of similar sizes throughout the algorithm. This is desir-
able because it ensures that object locations at all scales are
created at all parts of the image. For example, it prevents a
single region from gobbling up all other regions one by one,
yielding all scales only at the location of this growing region
and nowhere else. ssize(ri,r j) is defined as the fraction of the
image that ri and r j jointly occupy:

ssize(ri,r j) = 1−
size(ri)+ size(rj)

size(im)
, (4)

where size(im) denotes the size of the image in pixels.

sfill(ri,r j) measures how well region ri and r j fit into each other.
The idea is to fill gaps: if ri is contained in r j it is logical to
merge these first in order to avoid any holes. On the other
hand, if ri and r j are hardly touching each other they will
likely form a strange region and should not be merged. To
keep the measure fast, we use only the size of the regions and
of the containing boxes. Specifically, we define BBi j to be the
tight bounding box around ri and r j. Now sfill(ri,r j) is the
fraction of the image contained in BBi j which is not covered
by the regions of ri and r j:

fill(ri,r j) = 1−
size(BBi j)− size(ri)− size(ri)

size(im)
(5)

We divide by size(im) for consistency with Equation 4. Note
that this measure can be efficiently calculated by keeping track
of the bounding boxes around each region, as the bounding
box around two regions can be easily derived from these.

In this paper, our final similarity measure is a combination of the
above four:

s(ri,r j) = a1scolour(ri,r j)+a2stexture(ri,r j)+

a3ssize(ri,r j)+a4s f ill(ri,r j), (6)

where ai ∈ {0,1} denotes if the similarity measure is used or
not. As we aim to diversify our strategies, we do not consider any
weighted similarities.

Complementary Starting Regions. A third diversification
strategy is varying the complementary starting regions. To the
best of our knowledge, the method of [13] is the fastest, publicly
available algorithm that yields high quality starting locations. We
could not find any other algorithm with similar computational effi-
ciency so we use only this oversegmentation in this paper. But note
that different starting regions are (already) obtained by varying the
colour spaces, each which has different invariance properties. Ad-
ditionally, we vary the threshold parameter k in [13].

3.3 Combining Locations

In this paper, we combine the object hypotheses of several varia-
tions of our hierarchical grouping algorithm. Ideally, we want to
order the object hypotheses in such a way that the locations which
are most likely to be an object come first. This enables one to find
a good trade-off between the quality and quantity of the resulting

object hypothesis set, depending on the computational efficiency of
the subsequent feature extraction and classification method.

We choose to order the combined object hypotheses set based
on the order in which the hypotheses were generated in each in-
dividual grouping strategy. However, as we combine results from
up to 80 different strategies, such order would too heavily empha-
size large regions. To prevent this, we include some randomness
as follows. Given a grouping strategy j, let r

j
i be the region which

is created at position i in the hierarchy, where i = 1 represents the
top of the hierarchy (whose corresponding region covers the com-
plete image). We now calculate the position value v

j
i as RND× i,

where RND is a random number in range [0,1]. The final ranking

is obtained by ordering the regions using v
j
i .

When we use locations in terms of bounding boxes, we first rank
all the locations as detailed above. Only afterwards we filter out
lower ranked duplicates. This ensures that duplicate boxes have a
better chance of obtaining a high rank. This is desirable because
if multiple grouping strategies suggest the same box location, it is
likely to come from a visually coherent part of the image.

4 Object Recognition using Selective

Search

This paper uses the locations generated by our selective search for
object recognition. This section details our framework for object
recognition.

Two types of features are dominant in object recognition: his-
tograms of oriented gradients (HOG) [8] and bag-of-words [7, 27].
HOG has been shown to be successful in combination with the part-
based model by Felzenszwalb et al. [12]. However, as they use an
exhaustive search, HOG features in combination with a linear clas-
sifier is the only feasible choice from a computational perspective.
In contrast, our selective search enables the use of more expensive
and potentially more powerful features. Therefore we use bag-of-
words for object recognition [16, 17, 34]. However, we use a more
powerful (and expensive) implementation than [16, 17, 34] by em-
ploying a variety of colour-SIFT descriptors [32] and a finer spatial
pyramid division [18].

Specifically we sample descriptors at each pixel on a single scale
(σ = 1.2). Using software from [32], we extract SIFT [21] and two
colour SIFTs which were found to be the most sensitive for de-
tecting image structures, Extended OpponentSIFT [31] and RGB-
SIFT [32]. We use a visual codebook of size 4,000 and a spatial
pyramid with 4 levels using a 1x1, 2x2, 3x3. and 4x4 division.
This gives a total feature vector length of 360,000. In image clas-
sification, features of this size are already used [25, 37]. Because
a spatial pyramid results in a coarser spatial subdivision than the
cells which make up a HOG descriptor, our features contain less
information about the specific spatial layout of the object. There-
fore, HOG is better suited for rigid objects and our features are
better suited for deformable object types.

As classifier we employ a Support Vector Machine with a his-
togram intersection kernel using the Shogun Toolbox [28]. To ap-
ply the trained classifier, we use the fast, approximate classification
strategy of [22], which was shown to work well for Bag-of-Words
in [30].

Our training procedure is illustrated in Figure 3. The initial posi-
tive examples consist of all ground truth object windows. As initial
negative examples we select from all object locations generated

5

• Size score encourages small regions to merge early

• Fill score encourage overlapping regions to avoid holes

ssize(ri,r j) encourages small regions to merge early. This forces
regions in S, i.e. regions which have not yet been merged, to
be of similar sizes throughout the algorithm. This is desir-
able because it ensures that object locations at all scales are
created at all parts of the image. For example, it prevents a
single region from gobbling up all other regions one by one,
yielding all scales only at the location of this growing region
and nowhere else. ssize(ri,r j) is defined as the fraction of the
image that ri and r j jointly occupy:

ssize(ri,r j) = 1−
size(ri)+ size(rj)

size(im)
, (4)

where size(im) denotes the size of the image in pixels.

sfill(ri,r j) measures how well region ri and r j fit into each other.
The idea is to fill gaps: if ri is contained in r j it is logical to
merge these first in order to avoid any holes. On the other
hand, if ri and r j are hardly touching each other they will
likely form a strange region and should not be merged. To
keep the measure fast, we use only the size of the regions and
of the containing boxes. Specifically, we define BBi j to be the
tight bounding box around ri and r j. Now sfill(ri,r j) is the
fraction of the image contained in BBi j which is not covered
by the regions of ri and r j:

fill(ri,r j) = 1−
size(BBi j)− size(ri)− size(ri)

size(im)
(5)

We divide by size(im) for consistency with Equation 4. Note
that this measure can be efficiently calculated by keeping track
of the bounding boxes around each region, as the bounding
box around two regions can be easily derived from these.

In this paper, our final similarity measure is a combination of the
above four:

s(ri,r j) = a1scolour(ri,r j)+a2stexture(ri,r j)+

a3ssize(ri,r j)+a4s f ill(ri,r j), (6)

where ai ∈ {0,1} denotes if the similarity measure is used or
not. As we aim to diversify our strategies, we do not consider any
weighted similarities.

Complementary Starting Regions. A third diversification
strategy is varying the complementary starting regions. To the
best of our knowledge, the method of [13] is the fastest, publicly
available algorithm that yields high quality starting locations. We
could not find any other algorithm with similar computational effi-
ciency so we use only this oversegmentation in this paper. But note
that different starting regions are (already) obtained by varying the
colour spaces, each which has different invariance properties. Ad-
ditionally, we vary the threshold parameter k in [13].

3.3 Combining Locations

In this paper, we combine the object hypotheses of several varia-
tions of our hierarchical grouping algorithm. Ideally, we want to
order the object hypotheses in such a way that the locations which
are most likely to be an object come first. This enables one to find
a good trade-off between the quality and quantity of the resulting

object hypothesis set, depending on the computational efficiency of
the subsequent feature extraction and classification method.

We choose to order the combined object hypotheses set based
on the order in which the hypotheses were generated in each in-
dividual grouping strategy. However, as we combine results from
up to 80 different strategies, such order would too heavily empha-
size large regions. To prevent this, we include some randomness
as follows. Given a grouping strategy j, let r

j
i be the region which

is created at position i in the hierarchy, where i = 1 represents the
top of the hierarchy (whose corresponding region covers the com-
plete image). We now calculate the position value v

j
i as RND× i,

where RND is a random number in range [0,1]. The final ranking

is obtained by ordering the regions using v
j
i .

When we use locations in terms of bounding boxes, we first rank
all the locations as detailed above. Only afterwards we filter out
lower ranked duplicates. This ensures that duplicate boxes have a
better chance of obtaining a high rank. This is desirable because
if multiple grouping strategies suggest the same box location, it is
likely to come from a visually coherent part of the image.

4 Object Recognition using Selective

Search

This paper uses the locations generated by our selective search for
object recognition. This section details our framework for object
recognition.

Two types of features are dominant in object recognition: his-
tograms of oriented gradients (HOG) [8] and bag-of-words [7, 27].
HOG has been shown to be successful in combination with the part-
based model by Felzenszwalb et al. [12]. However, as they use an
exhaustive search, HOG features in combination with a linear clas-
sifier is the only feasible choice from a computational perspective.
In contrast, our selective search enables the use of more expensive
and potentially more powerful features. Therefore we use bag-of-
words for object recognition [16, 17, 34]. However, we use a more
powerful (and expensive) implementation than [16, 17, 34] by em-
ploying a variety of colour-SIFT descriptors [32] and a finer spatial
pyramid division [18].

Specifically we sample descriptors at each pixel on a single scale
(σ = 1.2). Using software from [32], we extract SIFT [21] and two
colour SIFTs which were found to be the most sensitive for de-
tecting image structures, Extended OpponentSIFT [31] and RGB-
SIFT [32]. We use a visual codebook of size 4,000 and a spatial
pyramid with 4 levels using a 1x1, 2x2, 3x3. and 4x4 division.
This gives a total feature vector length of 360,000. In image clas-
sification, features of this size are already used [25, 37]. Because
a spatial pyramid results in a coarser spatial subdivision than the
cells which make up a HOG descriptor, our features contain less
information about the specific spatial layout of the object. There-
fore, HOG is better suited for rigid objects and our features are
better suited for deformable object types.

As classifier we employ a Support Vector Machine with a his-
togram intersection kernel using the Shogun Toolbox [28]. To ap-
ply the trained classifier, we use the fast, approximate classification
strategy of [22], which was shown to work well for Bag-of-Words
in [30].

Our training procedure is illustrated in Figure 3. The initial posi-
tive examples consist of all ground truth object windows. As initial
negative examples we select from all object locations generated

5

2. What is good diversification
strategy?

• 2.3 Varying starting regions (given by Felzenszwalb
etal.)

• Using different color spaces

• Varying the threshold parameter k

• Combining diversification strategies

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

Diversification
Version Strategies MABO # win # strategies time (s)

Single HSV
Strategy C+T+S+F 0.693 362 1 0.71

k = 100

Selective HSV, Lab
Search C+T+S+F, T+S+F 0.799 2147 8 3.79
Fast k = 50,100
Selective HSV, Lab, rgI, H, I
Search C+T+S+F, T+S+F, F, S 0.878 10,108 80 17.15
Quality k = 50,100,150,300

Table 4: Our selective search methods resulting from a greedy
search. We take all combinations of the individual diversifica-
tion strategies selected, resulting in 1, 8, and 80 variants of our
hierarchical grouping algorithm. The Mean Average Best Over-
lap (MABO) score keeps steadily rising as the number of windows
increase.

method recall MABO # windows

Arbelaez et al. [3] 0.752 0.649±0.193 418
Alexe et al. [2] 0.944 0.694±0.111 1,853
Harzallah et al. [16] 0.830 - 200 per class
Carreira and Sminchisescu [4] 0.879 0.770±0.084 517
Endres and Hoiem [9] 0.912 0.791±0.082 790
Felzenszwalb et al. [12] 0.933 0.829±0.052 100,352 per class
Vedaldi et al. [34] 0.940 - 10,000 per class
Single Strategy 0.840 0.690±0.171 289
Selective search “Fast” 0.980 0.804±0.046 2,134
Selective search “Quality” 0.991 0.879±0.039 10,097

Table 5: Comparison of recall, Mean Average Best Overlap
(MABO) and number of window locations for a variety of meth-
ods on the Pascal 2007 TEST set.

space, similarities, thresholds, as detailed in Table 4. The greedy
search emphasizes variation in the combination of similarity mea-
sures. This confirms our diversification hypothesis: In the quality
version, next to the combination of all similarities, Fill and Size
are taken separately. The remainder of this paper uses the three
strategies in Table 4.

5.2 Quality of Locations

In this section we evaluate our selective search algorithms in terms
of both Average Best Overlap and the number of locations on the
Pascal VOC 2007 TEST set. We first evaluate box-based locations
and afterwards briefly evaluate region-based locations.

5.2.1 Box-based Locations

We compare with the sliding window search of [16], the sliding
window search of [12] using the window ratio’s of their models,
the jumping windows of [34], the “objectness” boxes of [2], the
boxes around the hierarchical segmentation algorithm of [3], the
boxes around the regions of [9], and the boxes around the regions
of [4]. From these algorithms, only [3] is not designed for finding
object locations. Yet [3] is one of the best contour detectors pub-
licly available, and results in a natural hierarchy of regions. We
include it in our evaluation to see if this algorithm designed for
segmentation also performs well on finding good object locations.
Furthermore, [4, 9] are designed to find good object regions rather
then boxes. Results are shown in Table 5 and Figure 4.

As shown in Table 5, our “Fast” and “Quality” selective search
methods yield a close to optimal recall of 98% and 99% respec-
tively. In terms of MABO, we achieve 0.804 and 0.879 respec-
tively. To appreciate what a Best Overlap of 0.879 means, Figure
5 shows for bike, cow, and person an example location which has
an overlap score between 0.874 and 0.884. This illustrates that our
selective search yields high quality object locations.

Furthermore, note that the standard deviation of our MABO
scores is relatively low: 0.046 for the fast selective search, and
0.039 for the quality selective search. This shows that selective
search is robust to difference in object properties, and also to im-
age condition often related with specific objects (one example is
indoor/outdoor lighting).

If we compare with other algorithms, the second highest recall is
at 0.940 and is achieved by the jumping windows [34] using 10,000
boxes per class. As we do not have the exact boxes, we were unable
to obtain the MABO score. This is followed by the exhaustive
search of [12] which achieves a recall of 0.933 and a MABO of
0.829 at 100,352 boxes per class (this number is the average over
all classes). This is significantly lower then our method while using
at least a factor of 10 more object locations.

Note furthermore that the segmentation methods of [4, 9] have
a relatively high standard deviation. This illustrates that a single
strategy can not work equally well for all classes. Instead, using
multiple complementary strategies leads to more stable and reliable
results.

If we compare the segmentation of Arbelaez [3] with a the sin-
gle best strategy of our method, they achieve a recall of 0.752 and
a MABO of 0.649 at 418 boxes, while we achieve 0.875 recall
and 0.698 MABO using 286 boxes. This suggests that a good seg-
mentation algorithm does not automatically result in good object
locations in terms of bounding boxes.

Figure 4 explores the trade-off between the quality and quantity
of the object hypotheses. In terms of recall, our “Fast” method out-
performs all other methods. The method of [16] seems competitive
for the 200 locations they use, but in their method the number of
boxes is per classwhile for our method the same boxes are used for
all classes. In terms of MABO, both the object hypotheses genera-
tion method of [4] and [9] have a good quantity/quality trade-off for
the up to 790 object-box locations per image they generate. How-
ever, these algorithms are computationally 114 and 59 times more
expensive than our “Fast” method.

Interestingly, the “objectness” method of [2] performs quite well
in terms of recall, but much worse in terms of MABO. This is
most likely caused by their non-maximum suppression, which sup-
presses windows which have more than an 0.5 overlap score with
an existing, higher ranked window. And while this significantly
improved results when a 0.5 overlap score is the definition of find-
ing an object, for the general problem of finding the highest quality
locations this strategy is less effective and can even be harmful by
eliminating better locations.

Figure 6 shows for several methods the Average Best Overlap
per class. It is derived that the exhaustive search of [12] which
uses 10 times more locations which are class specific, performs
similar to our method for the classes bike, table, chair, and sofa,
for the other classes our method yields the best score. In general,
the classes with the highest scores are cat, dog, horse, and sofa,
which are easy largely because the instances in the dataset tend
to be big. The classes with the lowest scores are bottle, person,

and plant, which are difficult because instances tend to be small.

8

3. How effective is selective
search?

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

• Bounding box quality evaluation

• VOC 2007 TEST Set

!

• Object recognition performance

• VOC 2010 detection task

3. How effective is selective
search?

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

• Bounding box quality evaluation

Diversification
Version Strategies MABO # win # strategies time (s)

Single HSV
Strategy C+T+S+F 0.693 362 1 0.71

k = 100

Selective HSV, Lab
Search C+T+S+F, T+S+F 0.799 2147 8 3.79
Fast k = 50,100
Selective HSV, Lab, rgI, H, I
Search C+T+S+F, T+S+F, F, S 0.878 10,108 80 17.15
Quality k = 50,100,150,300

Table 4: Our selective search methods resulting from a greedy
search. We take all combinations of the individual diversifica-
tion strategies selected, resulting in 1, 8, and 80 variants of our
hierarchical grouping algorithm. The Mean Average Best Over-
lap (MABO) score keeps steadily rising as the number of windows
increase.

method recall MABO # windows

Arbelaez et al. [3] 0.752 0.649±0.193 418
Alexe et al. [2] 0.944 0.694±0.111 1,853
Harzallah et al. [16] 0.830 - 200 per class
Carreira and Sminchisescu [4] 0.879 0.770±0.084 517
Endres and Hoiem [9] 0.912 0.791±0.082 790
Felzenszwalb et al. [12] 0.933 0.829±0.052 100,352 per class
Vedaldi et al. [34] 0.940 - 10,000 per class
Single Strategy 0.840 0.690±0.171 289
Selective search “Fast” 0.980 0.804±0.046 2,134
Selective search “Quality” 0.991 0.879±0.039 10,097

Table 5: Comparison of recall, Mean Average Best Overlap
(MABO) and number of window locations for a variety of meth-
ods on the Pascal 2007 TEST set.

space, similarities, thresholds, as detailed in Table 4. The greedy
search emphasizes variation in the combination of similarity mea-
sures. This confirms our diversification hypothesis: In the quality
version, next to the combination of all similarities, Fill and Size
are taken separately. The remainder of this paper uses the three
strategies in Table 4.

5.2 Quality of Locations

In this section we evaluate our selective search algorithms in terms
of both Average Best Overlap and the number of locations on the
Pascal VOC 2007 TEST set. We first evaluate box-based locations
and afterwards briefly evaluate region-based locations.

5.2.1 Box-based Locations

We compare with the sliding window search of [16], the sliding
window search of [12] using the window ratio’s of their models,
the jumping windows of [34], the “objectness” boxes of [2], the
boxes around the hierarchical segmentation algorithm of [3], the
boxes around the regions of [9], and the boxes around the regions
of [4]. From these algorithms, only [3] is not designed for finding
object locations. Yet [3] is one of the best contour detectors pub-
licly available, and results in a natural hierarchy of regions. We
include it in our evaluation to see if this algorithm designed for
segmentation also performs well on finding good object locations.
Furthermore, [4, 9] are designed to find good object regions rather
then boxes. Results are shown in Table 5 and Figure 4.

As shown in Table 5, our “Fast” and “Quality” selective search
methods yield a close to optimal recall of 98% and 99% respec-
tively. In terms of MABO, we achieve 0.804 and 0.879 respec-
tively. To appreciate what a Best Overlap of 0.879 means, Figure
5 shows for bike, cow, and person an example location which has
an overlap score between 0.874 and 0.884. This illustrates that our
selective search yields high quality object locations.

Furthermore, note that the standard deviation of our MABO
scores is relatively low: 0.046 for the fast selective search, and
0.039 for the quality selective search. This shows that selective
search is robust to difference in object properties, and also to im-
age condition often related with specific objects (one example is
indoor/outdoor lighting).

If we compare with other algorithms, the second highest recall is
at 0.940 and is achieved by the jumping windows [34] using 10,000
boxes per class. As we do not have the exact boxes, we were unable
to obtain the MABO score. This is followed by the exhaustive
search of [12] which achieves a recall of 0.933 and a MABO of
0.829 at 100,352 boxes per class (this number is the average over
all classes). This is significantly lower then our method while using
at least a factor of 10 more object locations.

Note furthermore that the segmentation methods of [4, 9] have
a relatively high standard deviation. This illustrates that a single
strategy can not work equally well for all classes. Instead, using
multiple complementary strategies leads to more stable and reliable
results.

If we compare the segmentation of Arbelaez [3] with a the sin-
gle best strategy of our method, they achieve a recall of 0.752 and
a MABO of 0.649 at 418 boxes, while we achieve 0.875 recall
and 0.698 MABO using 286 boxes. This suggests that a good seg-
mentation algorithm does not automatically result in good object
locations in terms of bounding boxes.

Figure 4 explores the trade-off between the quality and quantity
of the object hypotheses. In terms of recall, our “Fast” method out-
performs all other methods. The method of [16] seems competitive
for the 200 locations they use, but in their method the number of
boxes is per classwhile for our method the same boxes are used for
all classes. In terms of MABO, both the object hypotheses genera-
tion method of [4] and [9] have a good quantity/quality trade-off for
the up to 790 object-box locations per image they generate. How-
ever, these algorithms are computationally 114 and 59 times more
expensive than our “Fast” method.

Interestingly, the “objectness” method of [2] performs quite well
in terms of recall, but much worse in terms of MABO. This is
most likely caused by their non-maximum suppression, which sup-
presses windows which have more than an 0.5 overlap score with
an existing, higher ranked window. And while this significantly
improved results when a 0.5 overlap score is the definition of find-
ing an object, for the general problem of finding the highest quality
locations this strategy is less effective and can even be harmful by
eliminating better locations.

Figure 6 shows for several methods the Average Best Overlap
per class. It is derived that the exhaustive search of [12] which
uses 10 times more locations which are class specific, performs
similar to our method for the classes bike, table, chair, and sofa,
for the other classes our method yields the best score. In general,
the classes with the highest scores are cat, dog, horse, and sofa,
which are easy largely because the instances in the dataset tend
to be big. The classes with the lowest scores are bottle, person,

and plant, which are difficult because instances tend to be small.

8

3. How effective is selective
search?

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

• Evaluation on object recognition

• Selective search + SIFT + bag-of-words + SVMs

Figure 3: The training procedure of our object recognition pipeline. As positive learning examples we use the ground truth. As negatives
we use examples that have a 20-50% overlap with the positive examples. We iteratively add hard negatives using a retraining phase.

by our selective search that have an overlap of 20% to 50% with
a positive example. To avoid near-duplicate negative examples,
a negative example is excluded if it has more than 70% overlap
with another negative. To keep the number of initial negatives per
class below 20,000, we randomly drop half of the negatives for the
classes car, cat, dog and person. Intuitively, this set of examples
can be seen as difficult negatives which are close to the positive ex-
amples. This means they are close to the decision boundary and are
therefore likely to become support vectors even when the complete
set of negatives would be considered. Indeed, we found that this
selection of training examples gives reasonably good initial classi-
fication models.

Then we enter a retraining phase to iteratively add hard negative
examples (e.g. [12]): We apply the learned models to the training
set using the locations generated by our selective search. For each
negative image we add the highest scoring location. As our initial
training set already yields good models, our models converge in
only two iterations.

For the test set, the final model is applied to all locations gener-
ated by our selective search. The windows are sorted by classifier
score while windows which have more than 30% overlap with a
higher scoring window are considered near-duplicates and are re-
moved.

5 Evaluation

In this section we evaluate the quality of our selective search. We
divide our experiments in four parts, each spanning a separate sub-
section:

Diversification Strategies. We experiment with a variety of
colour spaces, similarity measures, and thresholds of the ini-
tial regions, all which were detailed in Section 3.2. We seek a
trade-off between the number of generated object hypotheses,
computation time, and the quality of object locations. We do
this in terms of bounding boxes. This results in a selection of
complementary techniques which together serve as our final
selective search method.

Quality of Locations. We test the quality of the object location
hypotheses resulting from the selective search.

Object Recognition. We use the locations of our selective search
in the Object Recognition framework detailed in Section 4.
We evaluate performance on the Pascal VOC detection chal-
lenge.

An upper bound of location quality. We investigate how well
our object recognition framework performs when using an ob-
ject hypothesis set of “perfect” quality. How does this com-
pare to the locations that our selective search generates?

To evaluate the quality of our object hypotheses we define
the Average Best Overlap (ABO) and Mean Average Best Over-
lap (MABO) scores, which slightly generalises the measure used
in [9]. To calculate the Average Best Overlap for a specific class c,
we calculate the best overlap between each ground truth annotation
gci ∈ Gc and the object hypotheses L generated for the correspond-
ing image, and average:

ABO =
1

|Gc| ∑
gci ∈G

c

max
l j∈L

Overlap(gci , l j). (7)

The Overlap score is taken from [11] and measures the area of the
intersection of two regions divided by its union:

Overlap(gci , l j) =
area(gci)∩ area(lj)

area(gci)∪ area(lj)
. (8)

Analogously to Average Precision and Mean Average Precision,
Mean Average Best Overlap is now defined as the mean ABO over
all classes.

Other work often uses the recall derived from the Pascal Overlap
Criterion to measure the quality of the boxes [1, 16, 34]. This crite-
rion considers an object to be found when the Overlap of Equation
8 is larger than 0.5. However, in many of our experiments we ob-
tain a recall between 95% and 100% for most classes, making this
measure too insensitive for this paper. However, we do report this
measure when comparing with other work.

To avoid overfitting, we perform the diversification strategies ex-
periments on the Pascal VOC 2007 TRAIN+VAL set. Other exper-
iments are done on the Pascal VOC 2007 TEST set. Additionally,
our object recognition system is benchmarked on the Pascal VOC
2010 detection challenge, using the independent evaluation server.

5.1 Diversification Strategies

In this section we evaluate a variety of strategies to obtain good
quality object location hypotheses using a reasonable number of
boxes computed within a reasonable amount of time.

5.1.1 Flat versus Hierarchy

In the description of our method we claim that using a full hierar-
chy is more natural than using multiple flat partitionings by chang-

6

3. How effective is selective
search?

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

• Evaluation on object recognition

• Selective search + SIFT + bag-of-words + SVMs
System plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv

NLPR .533 .553 .192 .210 .300 .544 .467 .412 .200 .315 .207 .303 .486 .553 .465 .102 .344 .265 .503 .403
MIT UCLA [38] .542 .485 .157 .192 .292 .555 .435 .417 .169 .285 .267 .309 .483 .550 .417 .097 .358 .308 .472 .408
NUS .491 .524 .178 .120 .306 .535 .328 .373 .177 .306 .277 .295 .519 .563 .442 .096 .148 .279 .495 .384
UoCTTI [12] .524 .543 .130 .156 .351 .542 .491 .318 .155 .262 .135 .215 .454 .516 .475 .091 .351 .194 .466 .380
This paper .562 .424 .153 .126 .218 .493 .368 .461 .129 .321 .300 .365 .435 .529 .329 .153 .411 .318 .470 .448

Table 7: Results from the Pascal VOC 2010 detection task test set. Our method is the only object recognition system based on Bag-of-
Words. It has the best scores for 9, mostly non-rigid object categories, where the difference is up to 0.056 AP. The other methods are
based on part-based HOG features, and perform better on most rigid object classes.

hypotheses set, representing an object hypothesis set of “perfect”
quality with aMABO score of 1. When only the ground truth boxes
are used a MAP of 0.592 is achieved, which is an upper bound
of our object recognition system. However, this score rapidly de-
clines to 0.437 MAP using as few as 500 locations per image. Re-
markably, when all 10,079 boxes are used the performance drops
to 0.377 MAP, only 0.017 MAP more than when not including the
ground truth. This shows that at 10,000 object locations our hy-
potheses set is close to what can be optimally achieved for our
recognition framework. The most likely explanation is our use of
SIFT, which is designed to be shift invariant [21]. This causes ap-
proximate boxes, of a quality visualised in Figure 5, to be still good
enough. However, the small gap between the “perfect” object hy-
potheses set of 10,000 boxes and ours suggests that we arrived at
the point where the degree of invariance for Bag-of-Words may
have an adverse effect rather than an advantageous one.

The decrease of the “perfect” hypothesis set as the number of
boxes becomes larger is due to the increased difficulty of the prob-
lem: more boxes means a higher variability, which makes the ob-
ject recognition problem harder. Earlier we hypothesized that an
exhaustive search examines all possible locations in the image,
which makes the object recognition problem hard. To test if se-
lective search alleviates the problem, we also applied our Bag-of-
Words object recognition system on an exhaustive search, using
the locations of [12]. This results in a MAP of 0.336, while the
MABO was 0.829 and the number of object locations 100,000 per
class. The same MABO is obtained using 2,000 locations with se-
lective search. At 2,000 locations, the object recognition accuracy
is 0.347. This shows that selective search indeed makes the prob-
lem easier compared to exhaustive search by reducing the possible
variation in locations.

To conclude, there is a trade-off between quality and quantity of
object hypothesis and the object recognition accuracy. High qual-
ity object locations are necessary to recognise an object in the first
place. Being able to sample fewer object hypotheses without sac-
rificing quality makes the classification problem easier and helps
to improves results. Remarkably, at a reasonable 10,000 locations,
our object hypothesis set is close to optimal for our Bag-of-Words
recognition system. This suggests that our locations are of such
quality that features with higher discriminative power than is nor-
mally found in Bag-of-Words are now required.

6 Conclusions

This paper proposed to adapt segmentation for selective search. We
observed that an image is inherently hierarchical and that there are
a large variety of reasons for a region to form an object. Therefore
a single bottom-up grouping algorithm can never capture all possi-
ble object locations. To solve this we introduced selective search,

where the main insight is to use a diverse set of complementary and
hierarchical grouping strategies. This makes selective search sta-
ble, robust, and independent of the object-class, where object types
range from rigid (e.g. car) to non-rigid (e.g. cat), and theoretically
also to amorphous (e.g. water).

In terms of object windows, results show that our algorithm is
superior to the “objectness” of [2] where our fast selective search
reaches a quality of 0.804 Mean Average Best Overlap at 2,134 lo-
cations. Compared to [4, 9], our algorithm has a similar trade-off
between quality and quantity of generated windows with around
0.790 MABO for up to 790 locations, the maximum that they gen-
erate. Yet our algorithm is 13-59 times faster. Additionally, it cre-
ates up to 10,097 locations per image yielding a MABO as high as
0.879.

In terms of object regions, a combination of our algorithm with
[4, 9] yields a considerable jump in quality (MABO increases from
0.730 to 0.758), which shows that by following our diversification
paradigm there is still room for improvement.

Finally, we showed that selective search can be successfully used
to create a good Bag-of-Words based localisation and recognition
system. In fact, we showed that quality of our selective search lo-
cations are close to optimal for our version of Bag-of-Words based
object recognition.

References

[1] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In
CVPR, 2010. 2, 6

[2] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the ob-
jectness of image windows. IEEE transactions on Pattern

Analysis and Machine Intelligence, 2012. 3, 8, 10, 13

[3] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour
detection and hierarchical image segmentation. TPAMI, 2011.
1, 2, 3, 4, 8, 10, 11

[4] J. Carreira and C. Sminchisescu. Constrained parametric min-
cuts for automatic object segmentation. In CVPR, 2010. 2, 3,
8, 9, 10, 11, 13

[5] O. Chum and A. Zisserman. An exemplar model for learning
object classes. In CVPR, 2007. 3

[6] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. TPAMI, 24:603–619, 2002. 1,
3

[7] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray.
Visual categorization with bags of keypoints. In ECCV Sta-

tistical Learning in Computer Vision, 2004. 5

13

System plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv

NLPR .533 .553 .192 .210 .300 .544 .467 .412 .200 .315 .207 .303 .486 .553 .465 .102 .344 .265 .503 .403
MIT UCLA [38] .542 .485 .157 .192 .292 .555 .435 .417 .169 .285 .267 .309 .483 .550 .417 .097 .358 .308 .472 .408
NUS .491 .524 .178 .120 .306 .535 .328 .373 .177 .306 .277 .295 .519 .563 .442 .096 .148 .279 .495 .384
UoCTTI [12] .524 .543 .130 .156 .351 .542 .491 .318 .155 .262 .135 .215 .454 .516 .475 .091 .351 .194 .466 .380
This paper .562 .424 .153 .126 .218 .493 .368 .461 .129 .321 .300 .365 .435 .529 .329 .153 .411 .318 .470 .448

Table 7: Results from the Pascal VOC 2010 detection task test set. Our method is the only object recognition system based on Bag-of-
Words. It has the best scores for 9, mostly non-rigid object categories, where the difference is up to 0.056 AP. The other methods are
based on part-based HOG features, and perform better on most rigid object classes.

hypotheses set, representing an object hypothesis set of “perfect”
quality with aMABO score of 1. When only the ground truth boxes
are used a MAP of 0.592 is achieved, which is an upper bound
of our object recognition system. However, this score rapidly de-
clines to 0.437 MAP using as few as 500 locations per image. Re-
markably, when all 10,079 boxes are used the performance drops
to 0.377 MAP, only 0.017 MAP more than when not including the
ground truth. This shows that at 10,000 object locations our hy-
potheses set is close to what can be optimally achieved for our
recognition framework. The most likely explanation is our use of
SIFT, which is designed to be shift invariant [21]. This causes ap-
proximate boxes, of a quality visualised in Figure 5, to be still good
enough. However, the small gap between the “perfect” object hy-
potheses set of 10,000 boxes and ours suggests that we arrived at
the point where the degree of invariance for Bag-of-Words may
have an adverse effect rather than an advantageous one.

The decrease of the “perfect” hypothesis set as the number of
boxes becomes larger is due to the increased difficulty of the prob-
lem: more boxes means a higher variability, which makes the ob-
ject recognition problem harder. Earlier we hypothesized that an
exhaustive search examines all possible locations in the image,
which makes the object recognition problem hard. To test if se-
lective search alleviates the problem, we also applied our Bag-of-
Words object recognition system on an exhaustive search, using
the locations of [12]. This results in a MAP of 0.336, while the
MABO was 0.829 and the number of object locations 100,000 per
class. The same MABO is obtained using 2,000 locations with se-
lective search. At 2,000 locations, the object recognition accuracy
is 0.347. This shows that selective search indeed makes the prob-
lem easier compared to exhaustive search by reducing the possible
variation in locations.

To conclude, there is a trade-off between quality and quantity of
object hypothesis and the object recognition accuracy. High qual-
ity object locations are necessary to recognise an object in the first
place. Being able to sample fewer object hypotheses without sac-
rificing quality makes the classification problem easier and helps
to improves results. Remarkably, at a reasonable 10,000 locations,
our object hypothesis set is close to optimal for our Bag-of-Words
recognition system. This suggests that our locations are of such
quality that features with higher discriminative power than is nor-
mally found in Bag-of-Words are now required.

6 Conclusions

This paper proposed to adapt segmentation for selective search. We
observed that an image is inherently hierarchical and that there are
a large variety of reasons for a region to form an object. Therefore
a single bottom-up grouping algorithm can never capture all possi-
ble object locations. To solve this we introduced selective search,

where the main insight is to use a diverse set of complementary and
hierarchical grouping strategies. This makes selective search sta-
ble, robust, and independent of the object-class, where object types
range from rigid (e.g. car) to non-rigid (e.g. cat), and theoretically
also to amorphous (e.g. water).
In terms of object windows, results show that our algorithm is

superior to the “objectness” of [2] where our fast selective search
reaches a quality of 0.804 Mean Average Best Overlap at 2,134 lo-
cations. Compared to [4, 9], our algorithm has a similar trade-off
between quality and quantity of generated windows with around
0.790 MABO for up to 790 locations, the maximum that they gen-
erate. Yet our algorithm is 13-59 times faster. Additionally, it cre-
ates up to 10,097 locations per image yielding a MABO as high as
0.879.

In terms of object regions, a combination of our algorithm with
[4, 9] yields a considerable jump in quality (MABO increases from
0.730 to 0.758), which shows that by following our diversification
paradigm there is still room for improvement.

Finally, we showed that selective search can be successfully used
to create a good Bag-of-Words based localisation and recognition
system. In fact, we showed that quality of our selective search lo-
cations are close to optimal for our version of Bag-of-Words based
object recognition.

References

[1] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In
CVPR, 2010. 2, 6

[2] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the ob-
jectness of image windows. IEEE transactions on Pattern

Analysis and Machine Intelligence, 2012. 3, 8, 10, 13

[3] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour
detection and hierarchical image segmentation. TPAMI, 2011.
1, 2, 3, 4, 8, 10, 11

[4] J. Carreira and C. Sminchisescu. Constrained parametric min-
cuts for automatic object segmentation. In CVPR, 2010. 2, 3,
8, 9, 10, 11, 13

[5] O. Chum and A. Zisserman. An exemplar model for learning
object classes. In CVPR, 2007. 3

[6] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. TPAMI, 24:603–619, 2002. 1,
3

[7] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray.
Visual categorization with bags of keypoints. In ECCV Sta-

tistical Learning in Computer Vision, 2004. 5

13

3. How effective is selective
search?

the fast method of Felzenszwalb and Huttenlocher [13], which [3]
found well-suited for such purpose.
Our grouping procedure now works as follows. We first use [13]

to create initial regions. Then we use a greedy algorithm to iter-
atively group regions together: First the similarities between all
neighbouring regions are calculated. The two most similar regions
are grouped together, and new similarities are calculated between
the resulting region and its neighbours. The process of grouping
the most similar regions is repeated until the whole image becomes
a single region. The general method is detailed in Algorithm 1.

Algorithm 1: Hierarchical Grouping Algorithm

Input: (colour) image
Output: Set of object location hypotheses L

Obtain initial regions R = {r1, · · · ,rn} using [13]
Initialise similarity set S = /0
foreach Neighbouring region pair (ri,r j) do

Calculate similarity s(ri,r j)
S = S∪ s(ri,r j)

while S ̸= /0 do
Get highest similarity s(ri,r j) = max(S)
Merge corresponding regions rt = ri∪ r j
Remove similarities regarding ri : S = S\ s(ri,r∗)
Remove similarities regarding r j : S = S\ s(r∗,r j)
Calculate similarity set St between rt and its neighbours
S = S∪St
R = R∪ rt

Extract object location boxes L from all regions in R

For the similarity s(ri,r j) between region ri and r j we want a va-
riety of complementary measures under the constraint that they are
fast to compute. In effect, this means that the similarities should be
based on features that can be propagated through the hierarchy, i.e.
when merging region ri and r j into rt , the features of region rt need
to be calculated from the features of ri and r j without accessing the
image pixels.

3.2 Diversification Strategies

The second design criterion for selective search is to diversify the
sampling and create a set of complementary strategies whose loca-
tions are combined afterwards. We diversify our selective search
(1) by using a variety of colour spaces with different invariance
properties, (2) by using different similarity measures si j, and (3)
by varying our starting regions.
Complementary Colour Spaces. We want to account for dif-

ferent scene and lighting conditions. Therefore we perform our
hierarchical grouping algorithm in a variety of colour spaces with
a range of invariance properties. Specifically, we the following
colour spaces with an increasing degree of invariance: (1) RGB,
(2) the intensity (grey-scale image) I, (3) Lab, (4) the rg chan-
nels of normalized RGB plus intensity denoted as rgI, (5) HSV , (6)
normalized RGB denoted as rgb, (7) C [14] which is an opponent
colour space where intensity is divided out, and finally (8) the Hue
channel H from HSV . The specific invariance properties are listed
in Table 1.
Of course, for images that are black and white a change of colour

space has little impact on the final outcome of the algorithm. For

colour channels R G B I V L a b S r g C H

Light Intensity - - - - - - +/- +/- + + + + +
Shadows/shading - - - - - - +/- +/- + + + + +
Highlights - - - - - - - - - - - +/- +

colour spaces RGB I Lab rgI HSV rgb C H

Light Intensity - - +/- 2/3 2/3 + + +
Shadows/shading - - +/- 2/3 2/3 + + +
Highlights - - - - 1/3 - +/- +

Table 1: The invariance properties of both the individual colour
channels and the colour spaces used in this paper, sorted by de-
gree of invariance. A “+/-” means partial invariance. A fraction
1/3 means that one of the three colour channels is invariant to said
property.

these images we rely on the other diversification methods for en-
suring good object locations.
In this paper we always use a single colour space throughout

the algorithm, meaning that both the initial grouping algorithm of
[13] and our subsequent grouping algorithm are performed in this
colour space.
Complementary Similarity Measures. We define four comple-

mentary, fast-to-compute similarity measures. These measures are
all in range [0,1] which facilitates combinations of these measures.

scolour(ri,r j) measures colour similarity. Specifically, for each re-
gion we obtain one-dimensional colour histograms for each
colour channel using 25 bins, which we found to work well.
This leads to a colour histogram Ci = {c1i , · · · ,c

n
i } for each

region ri with dimensionality n = 75 when three colour chan-
nels are used. The colour histograms are normalised using the
L1 norm. Similarity is measured using the histogram intersec-
tion:

scolour(ri,r j) =
n

∑
k=1

min(cki ,c
k
j). (1)

The colour histograms can be efficiently propagated through
the hierarchy by

Ct =
size(ri)×Ci + size(r j)×Cj

size(ri)+ size(rj)
. (2)

The size of a resulting region is simply the sum of its con-
stituents: size(rt) = size(ri)+ size(r j).

stexture(ri,r j) measures texture similarity. We represent texture us-
ing fast SIFT-like measurements as SIFT itself works well for
material recognition [20]. We take Gaussian derivatives in
eight orientations using σ = 1 for each colour channel. For
each orientation for each colour channel we extract a his-
togram using a bin size of 10. This leads to a texture his-
togram Ti = {t1i , · · · , t

n
i } for each region ri with dimension-

ality n = 240 when three colour channels are used. Texture
histograms are normalised using the L1 norm. Similarity is
measured using histogram intersection:

stexture(ri,r j) =
n

∑
k=1

min(tki , t
k
j). (3)

Texture histograms are efficiently propagated through the hi-
erarchy in the same way as the colour histograms.

4

System plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv

NLPR .533 .553 .192 .210 .300 .544 .467 .412 .200 .315 .207 .303 .486 .553 .465 .102 .344 .265 .503 .403
MIT UCLA [38] .542 .485 .157 .192 .292 .555 .435 .417 .169 .285 .267 .309 .483 .550 .417 .097 .358 .308 .472 .408
NUS .491 .524 .178 .120 .306 .535 .328 .373 .177 .306 .277 .295 .519 .563 .442 .096 .148 .279 .495 .384
UoCTTI [12] .524 .543 .130 .156 .351 .542 .491 .318 .155 .262 .135 .215 .454 .516 .475 .091 .351 .194 .466 .380
This paper .562 .424 .153 .126 .218 .493 .368 .461 .129 .321 .300 .365 .435 .529 .329 .153 .411 .318 .470 .448

Table 7: Results from the Pascal VOC 2010 detection task test set. Our method is the only object recognition system based on Bag-of-
Words. It has the best scores for 9, mostly non-rigid object categories, where the difference is up to 0.056 AP. The other methods are
based on part-based HOG features, and perform better on most rigid object classes.

hypotheses set, representing an object hypothesis set of “perfect”
quality with aMABO score of 1. When only the ground truth boxes
are used a MAP of 0.592 is achieved, which is an upper bound
of our object recognition system. However, this score rapidly de-
clines to 0.437 MAP using as few as 500 locations per image. Re-
markably, when all 10,079 boxes are used the performance drops
to 0.377 MAP, only 0.017 MAP more than when not including the
ground truth. This shows that at 10,000 object locations our hy-
potheses set is close to what can be optimally achieved for our
recognition framework. The most likely explanation is our use of
SIFT, which is designed to be shift invariant [21]. This causes ap-
proximate boxes, of a quality visualised in Figure 5, to be still good
enough. However, the small gap between the “perfect” object hy-
potheses set of 10,000 boxes and ours suggests that we arrived at
the point where the degree of invariance for Bag-of-Words may
have an adverse effect rather than an advantageous one.

The decrease of the “perfect” hypothesis set as the number of
boxes becomes larger is due to the increased difficulty of the prob-
lem: more boxes means a higher variability, which makes the ob-
ject recognition problem harder. Earlier we hypothesized that an
exhaustive search examines all possible locations in the image,
which makes the object recognition problem hard. To test if se-
lective search alleviates the problem, we also applied our Bag-of-
Words object recognition system on an exhaustive search, using
the locations of [12]. This results in a MAP of 0.336, while the
MABO was 0.829 and the number of object locations 100,000 per
class. The same MABO is obtained using 2,000 locations with se-
lective search. At 2,000 locations, the object recognition accuracy
is 0.347. This shows that selective search indeed makes the prob-
lem easier compared to exhaustive search by reducing the possible
variation in locations.

To conclude, there is a trade-off between quality and quantity of
object hypothesis and the object recognition accuracy. High qual-
ity object locations are necessary to recognise an object in the first
place. Being able to sample fewer object hypotheses without sac-
rificing quality makes the classification problem easier and helps
to improves results. Remarkably, at a reasonable 10,000 locations,
our object hypothesis set is close to optimal for our Bag-of-Words
recognition system. This suggests that our locations are of such
quality that features with higher discriminative power than is nor-
mally found in Bag-of-Words are now required.

6 Conclusions

This paper proposed to adapt segmentation for selective search. We
observed that an image is inherently hierarchical and that there are
a large variety of reasons for a region to form an object. Therefore
a single bottom-up grouping algorithm can never capture all possi-
ble object locations. To solve this we introduced selective search,

where the main insight is to use a diverse set of complementary and
hierarchical grouping strategies. This makes selective search sta-
ble, robust, and independent of the object-class, where object types
range from rigid (e.g. car) to non-rigid (e.g. cat), and theoretically
also to amorphous (e.g. water).

In terms of object windows, results show that our algorithm is
superior to the “objectness” of [2] where our fast selective search
reaches a quality of 0.804 Mean Average Best Overlap at 2,134 lo-
cations. Compared to [4, 9], our algorithm has a similar trade-off
between quality and quantity of generated windows with around
0.790 MABO for up to 790 locations, the maximum that they gen-
erate. Yet our algorithm is 13-59 times faster. Additionally, it cre-
ates up to 10,097 locations per image yielding a MABO as high as
0.879.

In terms of object regions, a combination of our algorithm with
[4, 9] yields a considerable jump in quality (MABO increases from
0.730 to 0.758), which shows that by following our diversification
paradigm there is still room for improvement.

Finally, we showed that selective search can be successfully used
to create a good Bag-of-Words based localisation and recognition
system. In fact, we showed that quality of our selective search lo-
cations are close to optimal for our version of Bag-of-Words based
object recognition.

References

[1] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In
CVPR, 2010. 2, 6

[2] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the ob-
jectness of image windows. IEEE transactions on Pattern

Analysis and Machine Intelligence, 2012. 3, 8, 10, 13

[3] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour
detection and hierarchical image segmentation. TPAMI, 2011.
1, 2, 3, 4, 8, 10, 11

[4] J. Carreira and C. Sminchisescu. Constrained parametric min-
cuts for automatic object segmentation. In CVPR, 2010. 2, 3,
8, 9, 10, 11, 13

[5] O. Chum and A. Zisserman. An exemplar model for learning
object classes. In CVPR, 2007. 3

[6] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. TPAMI, 24:603–619, 2002. 1,
3

[7] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray.
Visual categorization with bags of keypoints. In ECCV Sta-

tistical Learning in Computer Vision, 2004. 5

13

System plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv

NLPR .533 .553 .192 .210 .300 .544 .467 .412 .200 .315 .207 .303 .486 .553 .465 .102 .344 .265 .503 .403
MIT UCLA [38] .542 .485 .157 .192 .292 .555 .435 .417 .169 .285 .267 .309 .483 .550 .417 .097 .358 .308 .472 .408
NUS .491 .524 .178 .120 .306 .535 .328 .373 .177 .306 .277 .295 .519 .563 .442 .096 .148 .279 .495 .384
UoCTTI [12] .524 .543 .130 .156 .351 .542 .491 .318 .155 .262 .135 .215 .454 .516 .475 .091 .351 .194 .466 .380
This paper .562 .424 .153 .126 .218 .493 .368 .461 .129 .321 .300 .365 .435 .529 .329 .153 .411 .318 .470 .448

Table 7: Results from the Pascal VOC 2010 detection task test set. Our method is the only object recognition system based on Bag-of-
Words. It has the best scores for 9, mostly non-rigid object categories, where the difference is up to 0.056 AP. The other methods are
based on part-based HOG features, and perform better on most rigid object classes.

hypotheses set, representing an object hypothesis set of “perfect”
quality with aMABO score of 1. When only the ground truth boxes
are used a MAP of 0.592 is achieved, which is an upper bound
of our object recognition system. However, this score rapidly de-
clines to 0.437 MAP using as few as 500 locations per image. Re-
markably, when all 10,079 boxes are used the performance drops
to 0.377 MAP, only 0.017 MAP more than when not including the
ground truth. This shows that at 10,000 object locations our hy-
potheses set is close to what can be optimally achieved for our
recognition framework. The most likely explanation is our use of
SIFT, which is designed to be shift invariant [21]. This causes ap-
proximate boxes, of a quality visualised in Figure 5, to be still good
enough. However, the small gap between the “perfect” object hy-
potheses set of 10,000 boxes and ours suggests that we arrived at
the point where the degree of invariance for Bag-of-Words may
have an adverse effect rather than an advantageous one.

The decrease of the “perfect” hypothesis set as the number of
boxes becomes larger is due to the increased difficulty of the prob-
lem: more boxes means a higher variability, which makes the ob-
ject recognition problem harder. Earlier we hypothesized that an
exhaustive search examines all possible locations in the image,
which makes the object recognition problem hard. To test if se-
lective search alleviates the problem, we also applied our Bag-of-
Words object recognition system on an exhaustive search, using
the locations of [12]. This results in a MAP of 0.336, while the
MABO was 0.829 and the number of object locations 100,000 per
class. The same MABO is obtained using 2,000 locations with se-
lective search. At 2,000 locations, the object recognition accuracy
is 0.347. This shows that selective search indeed makes the prob-
lem easier compared to exhaustive search by reducing the possible
variation in locations.

To conclude, there is a trade-off between quality and quantity of
object hypothesis and the object recognition accuracy. High qual-
ity object locations are necessary to recognise an object in the first
place. Being able to sample fewer object hypotheses without sac-
rificing quality makes the classification problem easier and helps
to improves results. Remarkably, at a reasonable 10,000 locations,
our object hypothesis set is close to optimal for our Bag-of-Words
recognition system. This suggests that our locations are of such
quality that features with higher discriminative power than is nor-
mally found in Bag-of-Words are now required.

6 Conclusions

This paper proposed to adapt segmentation for selective search. We
observed that an image is inherently hierarchical and that there are
a large variety of reasons for a region to form an object. Therefore
a single bottom-up grouping algorithm can never capture all possi-
ble object locations. To solve this we introduced selective search,

where the main insight is to use a diverse set of complementary and
hierarchical grouping strategies. This makes selective search sta-
ble, robust, and independent of the object-class, where object types
range from rigid (e.g. car) to non-rigid (e.g. cat), and theoretically
also to amorphous (e.g. water).
In terms of object windows, results show that our algorithm is

superior to the “objectness” of [2] where our fast selective search
reaches a quality of 0.804 Mean Average Best Overlap at 2,134 lo-
cations. Compared to [4, 9], our algorithm has a similar trade-off
between quality and quantity of generated windows with around
0.790 MABO for up to 790 locations, the maximum that they gen-
erate. Yet our algorithm is 13-59 times faster. Additionally, it cre-
ates up to 10,097 locations per image yielding a MABO as high as
0.879.

In terms of object regions, a combination of our algorithm with
[4, 9] yields a considerable jump in quality (MABO increases from
0.730 to 0.758), which shows that by following our diversification
paradigm there is still room for improvement.

Finally, we showed that selective search can be successfully used
to create a good Bag-of-Words based localisation and recognition
system. In fact, we showed that quality of our selective search lo-
cations are close to optimal for our version of Bag-of-Words based
object recognition.

References

[1] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In
CVPR, 2010. 2, 6

[2] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the ob-
jectness of image windows. IEEE transactions on Pattern

Analysis and Machine Intelligence, 2012. 3, 8, 10, 13

[3] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour
detection and hierarchical image segmentation. TPAMI, 2011.
1, 2, 3, 4, 8, 10, 11

[4] J. Carreira and C. Sminchisescu. Constrained parametric min-
cuts for automatic object segmentation. In CVPR, 2010. 2, 3,
8, 9, 10, 11, 13

[5] O. Chum and A. Zisserman. An exemplar model for learning
object classes. In CVPR, 2007. 3

[6] D. Comaniciu and P. Meer. Mean shift: a robust approach
toward feature space analysis. TPAMI, 24:603–619, 2002. 1,
3

[7] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray.
Visual categorization with bags of keypoints. In ECCV Sta-

tistical Learning in Computer Vision, 2004. 5

13

• SIFT based feature enabled by this method

• Performs well on non-rigid object categories

 !
!

Presented by Song Cao!
!

Computer vision seminar, 5/2/2013

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report

Ross Girshick1 Jeff Donahue1,2 Trevor Darrell1,2 Jitendra Malik1

1UC Berkeley and 2ICSI
{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Can a large convolutional neural network trained for
whole-image classification on ImageNet be coaxed into de-
tecting objects in PASCAL? We show that the answer is
yes, and that the resulting system is simple, scalable, and
boosts mean average precision, relative to the venerable
deformable part model, by more than 40% (achieving a fi-
nal mAP of 48% on VOC 2007). Our framework combines
powerful computer vision techniques for generating bottom-
up region proposals with recent advances in learning high-
capacity convolutional neural networks. We call the result-
ing system R-CNN: Regions with CNN features. The same
framework is also competitive with state-of-the-art seman-
tic segmentation methods, demonstrating its flexibility. Be-
yond these results, we execute a battery of experiments that
provide insight into what the network learns to represent,
revealing a rich hierarchy of discriminative and often se-
mantically meaningful features.

1. Introduction

Image features are the engine of recognition. Better fea-
tures immediately propel a wide array of computer vision
techniques forward. The last feature revolution was, ar-
guably, established through the introduction of SIFT [30]
and then HOG [7]. Nearly all modern object detection and
semantic segmentation systems (e.g., [5, 17]) are built on
top of one, or both, of these low-level features, serving as a
testament to their effectiveness.

Yet, the hypothesis that SIFT and HOG are now bottle-
necks throttling recognition performance has emerged over
the last few years. This hypothesis is grounded, for exam-
ple, in the wide range of papers that attempt to boost detec-
tion accuracy with work along four axes: (1) rich structured
models [20, 42]; (2) multiple feature learning [38, 41]; (3)
learned histogram-based features [11, 29, 32]; or (4) unsu-
pervised feature learning [34].

The PASCAL Visual Object Classes (VOC) Challenge
serves as the main benchmark for assessing object detec-

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. This system achieves a
mean average precision (mAP) of 43.5% on PASCAL VOC 2010.
For comparison, [36] reports a mAP of 35.1% using the same
region proposals, but with a spatial pyramid and bag-of-visual-
words approach. Deformable part models [19] perform at 29.6%.

tor performance [15]. The 2010 and 2011 challenges were
won by combining multiple types of features and making
extensive use of context from ensembles of object detec-
tors and scene classifiers. Using multiple features improved
mean average precision (mAP) by at most 10% (relative),
with diminishing returns for each additional feature. In the
final year of the challenge (2012) systems performed no bet-
ter than in the previous year. This plateau suggests current
methods may be limited by the available features. Here,
we take a supervised feature learning approach. Figure 1
overviews our method and highlights some of our results.

At the same time, researchers working on a broad array
of “deep learning” methods were making steady progress on
improving whole-image classification. (See Bengio et al.
[3] for an excellent survey.) However, until recently these
results were isolated to datasets such as CIFAR [25] and
MNIST [28], slowing their adoption by computer vision re-
searchers for use on other tasks and image domains.

Then, Krizhevsky et al. [26] rekindled broader interest in
convolutional neural networks (CNNs) [27, 28] by showing
substantially lower error rates on the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10]. The
significance of their result was vigorously debated during

1

ar
X

iv
:1

31
1.

25
24

v1
 [

cs
.C

V
]

11
 N

ov
 2

01
3

Background
• Deep learning (Convolutional Neural Network) is

best performing image-classification method for
ImageNet (Krizhevsky et al. ECCV 2012)

• Debate (War?)

• What about Object Recognition/Detection
(PASCAL)?

They did it!
VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM HOG [19] 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6
SegDPM [18] 56.4 48.0 24.3 21.8 31.3 51.3 47.3 48.2 16.1 29.4 19.0 37.5 44.1 51.5 44.4 12.6 32.1 28.8 48.9 39.1 36.6
UVA [36] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
ours (R-CNN FT fc7) 65.4 56.5 45.1 28.5 24.0 50.1 49.1 58.3 20.6 38.5 31.1 57.5 50.7 60.3 44.7 21.6 48.5 24.9 48.0 46.5 43.5

Table 1: Detection average precision (%) on VOC 2010 test. Our method competes in the comp4 track due to our use of outside data
from ImageNet. Our system is most directly comparable to UVA (row 3) since both methods use the same selective search region proposal
mechanism, but differ in features. We compare to methods before rescoring with inter-detector context and/or image classification.

is how to label a region that partially overlaps a car. We re-
solve this issue with an IoU overlap threshold, below which
regions are defined as negatives. The overlap threshold,
0.3, was selected by a grid search on {0, 0.1, . . . , 0.5}. We
found that selecting this threshold carefully is crucial. Set-
ting it to 0.5, as in [36], decreased mAP by 5 points. Sim-
ilarly, setting it to 0 decreased mAP by 4 points. Positive
examples are defined simply to be the ground-truth bound-
ing boxes for each class.

Once features are extracted and training labels are ap-
plied, we optimize one linear SVM per class. Since the
training data is too large to fit in memory, we adopt the
standard hard negative mining method [17, 35]. We found
that hard negative mining converges quickly and in practice
mAP stops increasing after only a single pass over all im-
ages. Training is fast given precomputed feature vectors,
which we store on disk. Training time for all 20 PASCAL
object detection SVMs (in 5k images) takes about 1.5 hours
on a single core. Computing features takes about 5ms per
region on a GPU.

2.4. Results on PASCAL VOC 2010-12

Following the PASCAL “best practices” guidelines [15],
we made all design decisions on the VOC 2007 dataset (see
Section 3.2). For final results on the VOC 2010-12 datasets,
we fine-tuned the CNN on VOC 2012 train (to avoid over-
fitting on the validation set). We then trained our detection
SVMs on VOC 2012 trainval and submitted test results to
the evaluation server only once.

Table 1 shows complete results for VOC 2010. We com-
pare our method against three strong baselines, but exclude
results from ensemble systems that use context rescoring.
Such rescoring boosts all methods and is orthogonal to the
focus of this paper (for clarity: we score individual win-
dows in isolation, so no contextual information is used).
The most germane comparison is to the UVA system from
Uijlings et al. [36] (Table 1 row 3), since our systems use the
same region proposal algorithm. To classify regions, their
method builds a four-level spatial pyramid and populates it
with densely sampled SIFT, Extended OpponentSIFT, and
RGB-SIFT descriptors, each vector quantized with 4000-
word codebooks. Classification is performed with a his-
togram intersection kernel SVM. Compared to their multi-
feature, non-linear kernel SVM approach, we achieve a

large improvement in mAP, from 35.1% to 43.5% mAP,
while also being much faster (Section 2.2). Our method
achieves similar performance on VOC 2011/12 test with a
mAP of 43.2%.

3. Visualization, ablation, and modes of error
The CNN works well in practice, but what did it learn,

what aspects of its design are critical to its success, and how
does it fail?

3.1. Visualizing learned features

First-layer filters can be visualized directly and are easy
to understand [26]. They capture oriented edges and oppo-
nent colors. Understanding the subsequent layers is more
challenging. Zeiler and Fergus present an attractive de-
convolutional approach in [40]. We propose a simple (and
complementary) non-parametric method that directly shows
what the network learned.

The idea is to single out a particular unit (artificial “neu-
ron”) in the network and use it as if it were an object de-
tector in its own right. That is, we compute the unit’s ac-
tivations on a large set of held-out region proposals (about
10 million), sort the proposals from highest to lowest re-
sponse, perform non-maximum suppression (within each
image), and then display the top-scoring regions. Our
method lets the selected unit “speak for itself” by showing
exactly which inputs it fires on. Because we avoid averag-
ing, we have the opportunity to see multiple visual modes
and gain insight into the invariances computed by the unit.

We visualize units from layer pool5, which is the max-
pooled output of the network’s fifth and final convolutional
layer. The pool5 feature map is 6 ⇥ 6 ⇥ 256 = 9216-
dimensional. Ignoring boundary effects, each pool5 unit has
a receptive field of 163⇥163 pixels in the original 224⇥224

pixel input. A central pool5 unit has a nearly global view,
while one near the edge has a much smaller, clipped sup-
port. We selected this layer because it’s the last layer for
which units have a compact receptive field, making it easier
to show which part of the image is responsible for the ac-
tivation. Additionally, we gain some intuition into the rep-
resentation learned by the next layer, fc6, because it takes
multiple weighted combinations of pool5 activations.

Figure 3 displays the top 16 activations for six units from
a CNN that we fine-tuned on VOC 2007 trainval. The first

4

VOC 2010 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
DPM HOG [19] 45.6 49.0 11.0 11.6 27.2 50.5 43.1 23.6 17.2 23.2 10.7 20.5 42.5 44.5 41.3 8.7 29.0 18.7 40.0 34.5 29.6
SegDPM [18] 56.4 48.0 24.3 21.8 31.3 51.3 47.3 48.2 16.1 29.4 19.0 37.5 44.1 51.5 44.4 12.6 32.1 28.8 48.9 39.1 36.6
UVA [36] 56.2 42.4 15.3 12.6 21.8 49.3 36.8 46.1 12.9 32.1 30.0 36.5 43.5 52.9 32.9 15.3 41.1 31.8 47.0 44.8 35.1
ours (R-CNN FT fc7) 65.4 56.5 45.1 28.5 24.0 50.1 49.1 58.3 20.6 38.5 31.1 57.5 50.7 60.3 44.7 21.6 48.5 24.9 48.0 46.5 43.5

Table 1: Detection average precision (%) on VOC 2010 test. Our method competes in the comp4 track due to our use of outside data
from ImageNet. Our system is most directly comparable to UVA (row 3) since both methods use the same selective search region proposal
mechanism, but differ in features. We compare to methods before rescoring with inter-detector context and/or image classification.

is how to label a region that partially overlaps a car. We re-
solve this issue with an IoU overlap threshold, below which
regions are defined as negatives. The overlap threshold,
0.3, was selected by a grid search on {0, 0.1, . . . , 0.5}. We
found that selecting this threshold carefully is crucial. Set-
ting it to 0.5, as in [36], decreased mAP by 5 points. Sim-
ilarly, setting it to 0 decreased mAP by 4 points. Positive
examples are defined simply to be the ground-truth bound-
ing boxes for each class.

Once features are extracted and training labels are ap-
plied, we optimize one linear SVM per class. Since the
training data is too large to fit in memory, we adopt the
standard hard negative mining method [17, 35]. We found
that hard negative mining converges quickly and in practice
mAP stops increasing after only a single pass over all im-
ages. Training is fast given precomputed feature vectors,
which we store on disk. Training time for all 20 PASCAL
object detection SVMs (in 5k images) takes about 1.5 hours
on a single core. Computing features takes about 5ms per
region on a GPU.

2.4. Results on PASCAL VOC 2010-12

Following the PASCAL “best practices” guidelines [15],
we made all design decisions on the VOC 2007 dataset (see
Section 3.2). For final results on the VOC 2010-12 datasets,
we fine-tuned the CNN on VOC 2012 train (to avoid over-
fitting on the validation set). We then trained our detection
SVMs on VOC 2012 trainval and submitted test results to
the evaluation server only once.

Table 1 shows complete results for VOC 2010. We com-
pare our method against three strong baselines, but exclude
results from ensemble systems that use context rescoring.
Such rescoring boosts all methods and is orthogonal to the
focus of this paper (for clarity: we score individual win-
dows in isolation, so no contextual information is used).
The most germane comparison is to the UVA system from
Uijlings et al. [36] (Table 1 row 3), since our systems use the
same region proposal algorithm. To classify regions, their
method builds a four-level spatial pyramid and populates it
with densely sampled SIFT, Extended OpponentSIFT, and
RGB-SIFT descriptors, each vector quantized with 4000-
word codebooks. Classification is performed with a his-
togram intersection kernel SVM. Compared to their multi-
feature, non-linear kernel SVM approach, we achieve a

large improvement in mAP, from 35.1% to 43.5% mAP,
while also being much faster (Section 2.2). Our method
achieves similar performance on VOC 2011/12 test with a
mAP of 43.2%.

3. Visualization, ablation, and modes of error
The CNN works well in practice, but what did it learn,

what aspects of its design are critical to its success, and how
does it fail?

3.1. Visualizing learned features

First-layer filters can be visualized directly and are easy
to understand [26]. They capture oriented edges and oppo-
nent colors. Understanding the subsequent layers is more
challenging. Zeiler and Fergus present an attractive de-
convolutional approach in [40]. We propose a simple (and
complementary) non-parametric method that directly shows
what the network learned.

The idea is to single out a particular unit (artificial “neu-
ron”) in the network and use it as if it were an object de-
tector in its own right. That is, we compute the unit’s ac-
tivations on a large set of held-out region proposals (about
10 million), sort the proposals from highest to lowest re-
sponse, perform non-maximum suppression (within each
image), and then display the top-scoring regions. Our
method lets the selected unit “speak for itself” by showing
exactly which inputs it fires on. Because we avoid averag-
ing, we have the opportunity to see multiple visual modes
and gain insight into the invariances computed by the unit.

We visualize units from layer pool5, which is the max-
pooled output of the network’s fifth and final convolutional
layer. The pool5 feature map is 6 ⇥ 6 ⇥ 256 = 9216-
dimensional. Ignoring boundary effects, each pool5 unit has
a receptive field of 163⇥163 pixels in the original 224⇥224

pixel input. A central pool5 unit has a nearly global view,
while one near the edge has a much smaller, clipped sup-
port. We selected this layer because it’s the last layer for
which units have a compact receptive field, making it easier
to show which part of the image is responsible for the ac-
tivation. Additionally, we gain some intuition into the rep-
resentation learned by the next layer, fc6, because it takes
multiple weighted combinations of pool5 activations.

Figure 3 displays the top 16 activations for six units from
a CNN that we fine-tuned on VOC 2007 trainval. The first

4

• On PASCAL 2007 improves upon DPM by 40%!

• Faster than UVA

Object Recognition
using Deep Learning

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report

Ross Girshick1 Jeff Donahue1,2 Trevor Darrell1,2 Jitendra Malik1

1UC Berkeley and 2ICSI
{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Can a large convolutional neural network trained for
whole-image classification on ImageNet be coaxed into de-
tecting objects in PASCAL? We show that the answer is
yes, and that the resulting system is simple, scalable, and
boosts mean average precision, relative to the venerable
deformable part model, by more than 40% (achieving a fi-
nal mAP of 48% on VOC 2007). Our framework combines
powerful computer vision techniques for generating bottom-
up region proposals with recent advances in learning high-
capacity convolutional neural networks. We call the result-
ing system R-CNN: Regions with CNN features. The same
framework is also competitive with state-of-the-art seman-
tic segmentation methods, demonstrating its flexibility. Be-
yond these results, we execute a battery of experiments that
provide insight into what the network learns to represent,
revealing a rich hierarchy of discriminative and often se-
mantically meaningful features.

1. Introduction

Image features are the engine of recognition. Better fea-
tures immediately propel a wide array of computer vision
techniques forward. The last feature revolution was, ar-
guably, established through the introduction of SIFT [30]
and then HOG [7]. Nearly all modern object detection and
semantic segmentation systems (e.g., [5, 17]) are built on
top of one, or both, of these low-level features, serving as a
testament to their effectiveness.

Yet, the hypothesis that SIFT and HOG are now bottle-
necks throttling recognition performance has emerged over
the last few years. This hypothesis is grounded, for exam-
ple, in the wide range of papers that attempt to boost detec-
tion accuracy with work along four axes: (1) rich structured
models [20, 42]; (2) multiple feature learning [38, 41]; (3)
learned histogram-based features [11, 29, 32]; or (4) unsu-
pervised feature learning [34].

The PASCAL Visual Object Classes (VOC) Challenge
serves as the main benchmark for assessing object detec-

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. This system achieves a
mean average precision (mAP) of 43.5% on PASCAL VOC 2010.
For comparison, [36] reports a mAP of 35.1% using the same
region proposals, but with a spatial pyramid and bag-of-visual-
words approach. Deformable part models [19] perform at 29.6%.

tor performance [15]. The 2010 and 2011 challenges were
won by combining multiple types of features and making
extensive use of context from ensembles of object detec-
tors and scene classifiers. Using multiple features improved
mean average precision (mAP) by at most 10% (relative),
with diminishing returns for each additional feature. In the
final year of the challenge (2012) systems performed no bet-
ter than in the previous year. This plateau suggests current
methods may be limited by the available features. Here,
we take a supervised feature learning approach. Figure 1
overviews our method and highlights some of our results.

At the same time, researchers working on a broad array
of “deep learning” methods were making steady progress on
improving whole-image classification. (See Bengio et al.
[3] for an excellent survey.) However, until recently these
results were isolated to datasets such as CIFAR [25] and
MNIST [28], slowing their adoption by computer vision re-
searchers for use on other tasks and image domains.

Then, Krizhevsky et al. [26] rekindled broader interest in
convolutional neural networks (CNNs) [27, 28] by showing
substantially lower error rates on the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10]. The
significance of their result was vigorously debated during

1

ar
X

iv
:1

31
1.

25
24

v1
 [

cs
.C

V
]

11
 N

ov
 2

01
3

Image features are the engine of recognition.

Region Proposal
Sliding window + CNN = High computational cost

Selective Search!

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report

Ross Girshick1 Jeff Donahue1,2 Trevor Darrell1,2 Jitendra Malik1

1UC Berkeley and 2ICSI
{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Can a large convolutional neural network trained for
whole-image classification on ImageNet be coaxed into de-
tecting objects in PASCAL? We show that the answer is
yes, and that the resulting system is simple, scalable, and
boosts mean average precision, relative to the venerable
deformable part model, by more than 40% (achieving a fi-
nal mAP of 48% on VOC 2007). Our framework combines
powerful computer vision techniques for generating bottom-
up region proposals with recent advances in learning high-
capacity convolutional neural networks. We call the result-
ing system R-CNN: Regions with CNN features. The same
framework is also competitive with state-of-the-art seman-
tic segmentation methods, demonstrating its flexibility. Be-
yond these results, we execute a battery of experiments that
provide insight into what the network learns to represent,
revealing a rich hierarchy of discriminative and often se-
mantically meaningful features.

1. Introduction

Image features are the engine of recognition. Better fea-
tures immediately propel a wide array of computer vision
techniques forward. The last feature revolution was, ar-
guably, established through the introduction of SIFT [30]
and then HOG [7]. Nearly all modern object detection and
semantic segmentation systems (e.g., [5, 17]) are built on
top of one, or both, of these low-level features, serving as a
testament to their effectiveness.

Yet, the hypothesis that SIFT and HOG are now bottle-
necks throttling recognition performance has emerged over
the last few years. This hypothesis is grounded, for exam-
ple, in the wide range of papers that attempt to boost detec-
tion accuracy with work along four axes: (1) rich structured
models [20, 42]; (2) multiple feature learning [38, 41]; (3)
learned histogram-based features [11, 29, 32]; or (4) unsu-
pervised feature learning [34].

The PASCAL Visual Object Classes (VOC) Challenge
serves as the main benchmark for assessing object detec-

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. This system achieves a
mean average precision (mAP) of 43.5% on PASCAL VOC 2010.
For comparison, [36] reports a mAP of 35.1% using the same
region proposals, but with a spatial pyramid and bag-of-visual-
words approach. Deformable part models [19] perform at 29.6%.

tor performance [15]. The 2010 and 2011 challenges were
won by combining multiple types of features and making
extensive use of context from ensembles of object detec-
tors and scene classifiers. Using multiple features improved
mean average precision (mAP) by at most 10% (relative),
with diminishing returns for each additional feature. In the
final year of the challenge (2012) systems performed no bet-
ter than in the previous year. This plateau suggests current
methods may be limited by the available features. Here,
we take a supervised feature learning approach. Figure 1
overviews our method and highlights some of our results.

At the same time, researchers working on a broad array
of “deep learning” methods were making steady progress on
improving whole-image classification. (See Bengio et al.
[3] for an excellent survey.) However, until recently these
results were isolated to datasets such as CIFAR [25] and
MNIST [28], slowing their adoption by computer vision re-
searchers for use on other tasks and image domains.

Then, Krizhevsky et al. [26] rekindled broader interest in
convolutional neural networks (CNNs) [27, 28] by showing
substantially lower error rates on the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10]. The
significance of their result was vigorously debated during

1

ar
X

iv
:1

31
1.

25
24

v1
 [

cs
.C

V
]

11
 N

ov
 2

01
3

Region Warping
Regardless of size and aspect ratio

Warp to 224*224 patch

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report

Ross Girshick1 Jeff Donahue1,2 Trevor Darrell1,2 Jitendra Malik1

1UC Berkeley and 2ICSI
{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Can a large convolutional neural network trained for
whole-image classification on ImageNet be coaxed into de-
tecting objects in PASCAL? We show that the answer is
yes, and that the resulting system is simple, scalable, and
boosts mean average precision, relative to the venerable
deformable part model, by more than 40% (achieving a fi-
nal mAP of 48% on VOC 2007). Our framework combines
powerful computer vision techniques for generating bottom-
up region proposals with recent advances in learning high-
capacity convolutional neural networks. We call the result-
ing system R-CNN: Regions with CNN features. The same
framework is also competitive with state-of-the-art seman-
tic segmentation methods, demonstrating its flexibility. Be-
yond these results, we execute a battery of experiments that
provide insight into what the network learns to represent,
revealing a rich hierarchy of discriminative and often se-
mantically meaningful features.

1. Introduction

Image features are the engine of recognition. Better fea-
tures immediately propel a wide array of computer vision
techniques forward. The last feature revolution was, ar-
guably, established through the introduction of SIFT [30]
and then HOG [7]. Nearly all modern object detection and
semantic segmentation systems (e.g., [5, 17]) are built on
top of one, or both, of these low-level features, serving as a
testament to their effectiveness.

Yet, the hypothesis that SIFT and HOG are now bottle-
necks throttling recognition performance has emerged over
the last few years. This hypothesis is grounded, for exam-
ple, in the wide range of papers that attempt to boost detec-
tion accuracy with work along four axes: (1) rich structured
models [20, 42]; (2) multiple feature learning [38, 41]; (3)
learned histogram-based features [11, 29, 32]; or (4) unsu-
pervised feature learning [34].

The PASCAL Visual Object Classes (VOC) Challenge
serves as the main benchmark for assessing object detec-

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. This system achieves a
mean average precision (mAP) of 43.5% on PASCAL VOC 2010.
For comparison, [36] reports a mAP of 35.1% using the same
region proposals, but with a spatial pyramid and bag-of-visual-
words approach. Deformable part models [19] perform at 29.6%.

tor performance [15]. The 2010 and 2011 challenges were
won by combining multiple types of features and making
extensive use of context from ensembles of object detec-
tors and scene classifiers. Using multiple features improved
mean average precision (mAP) by at most 10% (relative),
with diminishing returns for each additional feature. In the
final year of the challenge (2012) systems performed no bet-
ter than in the previous year. This plateau suggests current
methods may be limited by the available features. Here,
we take a supervised feature learning approach. Figure 1
overviews our method and highlights some of our results.

At the same time, researchers working on a broad array
of “deep learning” methods were making steady progress on
improving whole-image classification. (See Bengio et al.
[3] for an excellent survey.) However, until recently these
results were isolated to datasets such as CIFAR [25] and
MNIST [28], slowing their adoption by computer vision re-
searchers for use on other tasks and image domains.

Then, Krizhevsky et al. [26] rekindled broader interest in
convolutional neural networks (CNNs) [27, 28] by showing
substantially lower error rates on the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10]. The
significance of their result was vigorously debated during

1

ar
X

iv
:1

31
1.

25
24

v1
 [

cs
.C

V
]

11
 N

ov
 2

01
3

In order to compute features for a region proposal, we
must first convert the image data in that region into a form
that is compatible with our CNN. The network architec-
ture requires inputs of a fixed 224 ⇥ 224 pixel size. Of
the many possible transformations of our arbitrary-shaped
regions, we opt for the simplest. Regardless of the size or
aspect ratio of the candidate region, we warp all pixels in a
tight bounding box around it to the required size. This leads
to a fixed-length feature vector for each region. Figure 2
shows a random sampling of warped training regions. The
distortion is less than one might imagine a priori.

aeroplane bicycle bird car

Figure 2: Warped training samples from VOC 2007 train.

2.2. Inference

We run selective search on a test image to extract around
2000 region proposals (we use selective search’s “fast
mode” in all experiments). We warp each proposal to the
required shape, and forward propagate it through the CNN
in order to read off the feature map from the desired layer.
Then, for each class, we score each extracted feature map
using the SVM trained for that class. Given all scored re-
gions in an image, we apply a greedy non-maximum sup-
pression (for each class independently) that rejects a re-
gion if it has an intersection-over-union (IoU) overlap with
a higher scoring unsuppressed region larger than a learned
threshold (0.3 in all experiments).

Run-time analysis. Two key properties make inference
very efficient. First, all CNN parameters are shared across
all categories. Second, the feature vectors computed by the
CNN are low-dimensional when compared to other com-
mon approaches, such as spatial pyramids with bag-of-
visual-word encodings. The features used in the UVA de-
tection system [36], for example, are two orders of magni-
tude larger than ours (360k vs. 4k-dimensional).

The result of such sharing is that the time spent com-
puting region proposals and features (13s/image on a GPU
or 53s/image on a CPU) is amortized over all classes. The
only class-specific computations are dot products between
features and SVM weights and non-maximum suppression.
In practice, all dot products for an image are batched into
a single matrix-matrix product. The feature matrix is typi-
cally 2000⇥4096 and the SVM weight matrix is 4096⇥N ,
where N is the number of classes.

While not immediately obvious, our method should eas-
ily scale to thousands of object classes without resorting
to approximate techniques, such as hashing. Even if there

were 100k classes, the resulting matrix multiplication takes
only 10 seconds on a modern multi-core CPU. Moreover,
this efficiency is not merely the result of using region pro-
posals and shared features. The UVA system, due to its
high-dimensional features, would be two orders of mag-
nitude slower while requiring 134GB of memory just to
store 100k linear predictors, compared to just 1.5GB for our
lower-dimensional features.

It is also interesting to contrast our approach with the
recent work from Dean et al. on scalable detection using
DPMs and hashing [8]. They report a mAP of around 16%
on VOC 2007 at a run-time of 5 minutes per image when
introducing 10k distractor classes. With our approach, 10k
detectors can run in about a minute on a CPU, and because
no approximations are made mAP would remain at 48%
(Section 3.2).

2.3. Training

CNN pre-training. We used a large auxiliary dataset
(ILSVRC 2012) with image-level annotations (i.e., no
bounding box labels) to “pre-train” the CNN. We followed
the methodology of [26] closely, aside from two small
changes (implemented for simplicity). We share the same
implementation and training procedure as detailed in the
DeCAF tech report [12] and refer readers there for details.
In brief summary, our CNN nearly matches the performance
of [26], obtaining a top-1 error rate only 2.2% points higher
on the ILSVRC 2012 validation set. This discrepancy is
likely due to our simplifications.

CNN fine-tuning. To adapt our CNN to the new task
(detection) and the new domain (warped PASCAL win-
dows), we continue training the CNN parameters using
only warped region proposals from PASCAL. During pre-
training, we decreased the learning rate by a factor of 10
three times. However, little progress is made at the final
rate. For fine-tuning, we start stochastic gradient descent
(SGD) at a learning rate of 0.01 times that of the initial
pre-training rate. This allows fine-tuning to make progress
while not clobbering the initialization. We treat all region
proposals with � 0.5 IoU overlap with a ground-truth box
as positives for that box’s class and the rest as negatives.
In each SGD iteration, we sample two training images and
construct a mini-batch of size 128 by sampling 64 proposals
from the approximately 2000 in each image. Because target
objects are rare, we found it necessary to bias sampling so
that on average 1/4 of each mini-batch is positive.

Object category classifiers. Consider training a binary
classifier to detect cars. It’s clear that an image region
tightly enclosing a car should be a positive example. Simi-
larly, it’s clear that a background region, which has nothing
to do with cars, should be a negative example. Less clear

3

Feature Extraction
Rich feature hierarchies for accurate object detection and semantic segmentation

Tech report

Ross Girshick1 Jeff Donahue1,2 Trevor Darrell1,2 Jitendra Malik1

1UC Berkeley and 2ICSI
{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Can a large convolutional neural network trained for
whole-image classification on ImageNet be coaxed into de-
tecting objects in PASCAL? We show that the answer is
yes, and that the resulting system is simple, scalable, and
boosts mean average precision, relative to the venerable
deformable part model, by more than 40% (achieving a fi-
nal mAP of 48% on VOC 2007). Our framework combines
powerful computer vision techniques for generating bottom-
up region proposals with recent advances in learning high-
capacity convolutional neural networks. We call the result-
ing system R-CNN: Regions with CNN features. The same
framework is also competitive with state-of-the-art seman-
tic segmentation methods, demonstrating its flexibility. Be-
yond these results, we execute a battery of experiments that
provide insight into what the network learns to represent,
revealing a rich hierarchy of discriminative and often se-
mantically meaningful features.

1. Introduction

Image features are the engine of recognition. Better fea-
tures immediately propel a wide array of computer vision
techniques forward. The last feature revolution was, ar-
guably, established through the introduction of SIFT [30]
and then HOG [7]. Nearly all modern object detection and
semantic segmentation systems (e.g., [5, 17]) are built on
top of one, or both, of these low-level features, serving as a
testament to their effectiveness.

Yet, the hypothesis that SIFT and HOG are now bottle-
necks throttling recognition performance has emerged over
the last few years. This hypothesis is grounded, for exam-
ple, in the wide range of papers that attempt to boost detec-
tion accuracy with work along four axes: (1) rich structured
models [20, 42]; (2) multiple feature learning [38, 41]; (3)
learned histogram-based features [11, 29, 32]; or (4) unsu-
pervised feature learning [34].

The PASCAL Visual Object Classes (VOC) Challenge
serves as the main benchmark for assessing object detec-

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. This system achieves a
mean average precision (mAP) of 43.5% on PASCAL VOC 2010.
For comparison, [36] reports a mAP of 35.1% using the same
region proposals, but with a spatial pyramid and bag-of-visual-
words approach. Deformable part models [19] perform at 29.6%.

tor performance [15]. The 2010 and 2011 challenges were
won by combining multiple types of features and making
extensive use of context from ensembles of object detec-
tors and scene classifiers. Using multiple features improved
mean average precision (mAP) by at most 10% (relative),
with diminishing returns for each additional feature. In the
final year of the challenge (2012) systems performed no bet-
ter than in the previous year. This plateau suggests current
methods may be limited by the available features. Here,
we take a supervised feature learning approach. Figure 1
overviews our method and highlights some of our results.

At the same time, researchers working on a broad array
of “deep learning” methods were making steady progress on
improving whole-image classification. (See Bengio et al.
[3] for an excellent survey.) However, until recently these
results were isolated to datasets such as CIFAR [25] and
MNIST [28], slowing their adoption by computer vision re-
searchers for use on other tasks and image domains.

Then, Krizhevsky et al. [26] rekindled broader interest in
convolutional neural networks (CNNs) [27, 28] by showing
substantially lower error rates on the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10]. The
significance of their result was vigorously debated during

1

ar
X

iv
:1

31
1.

25
24

v1
 [

cs
.C

V
]

11
 N

ov
 2

01
3

4096-dimensional feature vector

their own implementation of the CNN of (Krizhevsky et al. ECCV 2012)

Inference
Rich feature hierarchies for accurate object detection and semantic segmentation

Tech report

Ross Girshick1 Jeff Donahue1,2 Trevor Darrell1,2 Jitendra Malik1

1UC Berkeley and 2ICSI
{rbg,jdonahue,trevor,malik}@eecs.berkeley.edu

Abstract

Can a large convolutional neural network trained for
whole-image classification on ImageNet be coaxed into de-
tecting objects in PASCAL? We show that the answer is
yes, and that the resulting system is simple, scalable, and
boosts mean average precision, relative to the venerable
deformable part model, by more than 40% (achieving a fi-
nal mAP of 48% on VOC 2007). Our framework combines
powerful computer vision techniques for generating bottom-
up region proposals with recent advances in learning high-
capacity convolutional neural networks. We call the result-
ing system R-CNN: Regions with CNN features. The same
framework is also competitive with state-of-the-art seman-
tic segmentation methods, demonstrating its flexibility. Be-
yond these results, we execute a battery of experiments that
provide insight into what the network learns to represent,
revealing a rich hierarchy of discriminative and often se-
mantically meaningful features.

1. Introduction

Image features are the engine of recognition. Better fea-
tures immediately propel a wide array of computer vision
techniques forward. The last feature revolution was, ar-
guably, established through the introduction of SIFT [30]
and then HOG [7]. Nearly all modern object detection and
semantic segmentation systems (e.g., [5, 17]) are built on
top of one, or both, of these low-level features, serving as a
testament to their effectiveness.

Yet, the hypothesis that SIFT and HOG are now bottle-
necks throttling recognition performance has emerged over
the last few years. This hypothesis is grounded, for exam-
ple, in the wide range of papers that attempt to boost detec-
tion accuracy with work along four axes: (1) rich structured
models [20, 42]; (2) multiple feature learning [38, 41]; (3)
learned histogram-based features [11, 29, 32]; or (4) unsu-
pervised feature learning [34].

The PASCAL Visual Object Classes (VOC) Challenge
serves as the main benchmark for assessing object detec-

1. Input
image

2. Extract region
proposals (~2k)

3. Compute
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. This system achieves a
mean average precision (mAP) of 43.5% on PASCAL VOC 2010.
For comparison, [36] reports a mAP of 35.1% using the same
region proposals, but with a spatial pyramid and bag-of-visual-
words approach. Deformable part models [19] perform at 29.6%.

tor performance [15]. The 2010 and 2011 challenges were
won by combining multiple types of features and making
extensive use of context from ensembles of object detec-
tors and scene classifiers. Using multiple features improved
mean average precision (mAP) by at most 10% (relative),
with diminishing returns for each additional feature. In the
final year of the challenge (2012) systems performed no bet-
ter than in the previous year. This plateau suggests current
methods may be limited by the available features. Here,
we take a supervised feature learning approach. Figure 1
overviews our method and highlights some of our results.

At the same time, researchers working on a broad array
of “deep learning” methods were making steady progress on
improving whole-image classification. (See Bengio et al.
[3] for an excellent survey.) However, until recently these
results were isolated to datasets such as CIFAR [25] and
MNIST [28], slowing their adoption by computer vision re-
searchers for use on other tasks and image domains.

Then, Krizhevsky et al. [26] rekindled broader interest in
convolutional neural networks (CNNs) [27, 28] by showing
substantially lower error rates on the 2012 ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [9, 10]. The
significance of their result was vigorously debated during

1

ar
X

iv
:1

31
1.

25
24

v1
 [

cs
.C

V
]

11
 N

ov
 2

01
3

Training + Testing using SVMs (with negative mining)

Efficient: shared CNN parameters + low dimensional features

CNN Training
• Pre-training + fine-tuning

• Overlap threshold to define positive/negative: 0.3

• Performance is quite sensitive to this value

• What feature exactly did CNN learn?

• Visualization method: single out a unit and treat it
as a detector

Feature Visualization
9.6 8.6 8.6 8.1 7.9 7.6 7.5 7.2 7.0 6.9 6.7 6.7 6.6 6.5 6.4 6.2

9.2 7.0 7.0 6.6 6.4 6.0 5.9 5.8 5.8 5.5 5.5 5.5 5.4 5.1 5.0 5.0

5.1 4.5 4.2 4.2 4.1 4.1 4.0 3.7 3.7 3.6 3.6 3.6 3.5 3.5 3.4 3.4

10.0 8.0 7.8 7.6 7.4 7.3 7.1 6.9 6.9 6.9 6.9 6.9 6.8 6.8 6.8 6.8

6.9 5.3 5.2 5.1 5.1 4.9 4.9 4.8 4.8 4.8 4.7 4.6 4.6 4.5 4.5 4.5

5.6 5.4 4.7 4.7 4.6 4.5 4.5 4.3 4.2 4.2 4.2 4.2 4.1 4.1 4.0 4.0

Figure 3: Top activations for six pool5 units. Receptive fields and activation values are drawn in white. From top to bottom: (1) positive
and (2) negative weight for cats; positive weight for (3) sheep and (4) person; selectivity for (5) diagonal bars and (6) red blobs.

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN pool5 49.3 58.0 29.7 22.2 20.6 47.7 56.8 43.6 16.0 39.7 37.7 39.6 49.6 55.6 37.5 20.6 40.5 37.4 47.8 51.3 40.1
R-CNN fc6 56.1 58.8 34.4 29.6 22.6 50.4 58.0 52.5 18.3 40.1 41.3 46.8 49.5 53.5 39.7 23.0 46.4 36.4 50.8 59.0 43.4
R-CNN fc7 53.1 58.9 35.4 29.6 22.3 50.0 57.7 52.4 19.1 43.5 40.8 43.6 47.6 54.0 39.1 23.0 42.3 33.6 51.4 55.2 42.6
R-CNN FT pool5 55.6 57.5 31.5 23.1 23.2 46.3 59.0 49.2 16.5 43.1 37.8 39.7 51.5 55.4 40.4 23.9 46.3 37.9 49.7 54.1 42.1
R-CNN FT fc6 61.8 62.0 38.8 35.7 29.4 52.5 61.9 53.9 22.6 49.7 40.5 48.8 49.9 57.3 44.5 28.5 50.4 40.2 54.3 61.2 47.2
R-CNN FT fc7 60.3 62.5 41.4 37.9 29.0 52.6 61.6 56.3 24.9 52.3 41.9 48.1 54.3 57.0 45.0 26.9 51.8 38.1 56.6 62.2 48.0

DPM HOG [19] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
DPM ST [29] 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9 29.1
DPM HSC [32] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

Table 2: Detection average precision (%) on VOC 2007 test. Rows 1-3 show results for our CNN pre-trained on ILSVRC 2012. Rows
4-6 show results for our CNN pre-trained on ILSVRC 2012 and then fine-tuned (“FT”) on VOC 2007 trainval. Rows 7-9 present DPM
methods as a strong baseline comparison. The first uses only HOG, while the next two use feature learning to augment or replace it.

two units were selected because they correspond to large
positive and negative weights in a cat SVM (trained on
pool5). The first is selective for cat faces, while the sec-
ond is selective for other animal faces (primarily dogs). We
also visualize units for sheep and person. The last two rows
illustrate more generic units; one that fires on diagonal bars
of a certain width and another that fires on red blobs. These
visualizations demonstrate the richness of pool5 features
and hint at the diversity that lies therein, with units ranging
from particular animal faces to more generic shapes and tex-
tures. The subsequent fully connected layer has the ability
to model a large set of compositions of these rich features.
Additional visualizations are included in the appendix, Fig-
ure 6.

3.2. Ablation studies

Performance layer-by-layer, without fine-tuning. To un-
derstand which layers are critical for detection performance,
we analyzed results on the VOC 2007 dataset for each of the

CNN’s last three layers. Layer pool5 was briefly described
in Section 3.1. The final two layers are summarized below.

Layer fc6 is fully connected to pool5. To compute fea-
tures, it multiplies a 4096⇥9216 weight matrix by the pool5
feature map (reshaped as a 9216-dimensional vector) and
then adds a vector of biases. This intermediate vector is
component-wise half-wave rectified (i.e., x max(0, x)).

Layer fc7 is the final layer of the network. It is imple-
mented by multiplying the features computed by fc6 by a
4096 ⇥ 4096 weight matrix, and similarly adding a vector
of biases and applying half-wave rectification.

We start by looking at results from the CNN without
fine-tuning on PASCAL, i.e. all CNN parameters were pre-
trained on ILSVRC 2012 only. Analyzing performance
layer-by-layer (Table 2 rows 1-3) reveals that features from
fc7 offer little or no advantage over features from fc6. This
means that 29%, or about 16.8 million, of the CNN’s param-
eters can be removed without degrading mAP. More surpris-
ing is that removing both fc7 and fc6 produces quite good

5

Ablation Study
• Last three layers: pool5, fc6 and fc7

• With or without fine-tuning

• pool5 uses only 6% parameters (possible to use DPM on top)

• Color helps (40.1% -> 43.4% VOC 2007 on fc6)

9.6 8.6 8.6 8.1 7.9 7.6 7.5 7.2 7.0 6.9 6.7 6.7 6.6 6.5 6.4 6.2

9.2 7.0 7.0 6.6 6.4 6.0 5.9 5.8 5.8 5.5 5.5 5.5 5.4 5.1 5.0 5.0

5.1 4.5 4.2 4.2 4.1 4.1 4.0 3.7 3.7 3.6 3.6 3.6 3.5 3.5 3.4 3.4

10.0 8.0 7.8 7.6 7.4 7.3 7.1 6.9 6.9 6.9 6.9 6.9 6.8 6.8 6.8 6.8

6.9 5.3 5.2 5.1 5.1 4.9 4.9 4.8 4.8 4.8 4.7 4.6 4.6 4.5 4.5 4.5

5.6 5.4 4.7 4.7 4.6 4.5 4.5 4.3 4.2 4.2 4.2 4.2 4.1 4.1 4.0 4.0

Figure 3: Top activations for six pool5 units. Receptive fields and activation values are drawn in white. From top to bottom: (1) positive
and (2) negative weight for cats; positive weight for (3) sheep and (4) person; selectivity for (5) diagonal bars and (6) red blobs.

VOC 2007 test aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP
R-CNN pool5 49.3 58.0 29.7 22.2 20.6 47.7 56.8 43.6 16.0 39.7 37.7 39.6 49.6 55.6 37.5 20.6 40.5 37.4 47.8 51.3 40.1
R-CNN fc6 56.1 58.8 34.4 29.6 22.6 50.4 58.0 52.5 18.3 40.1 41.3 46.8 49.5 53.5 39.7 23.0 46.4 36.4 50.8 59.0 43.4
R-CNN fc7 53.1 58.9 35.4 29.6 22.3 50.0 57.7 52.4 19.1 43.5 40.8 43.6 47.6 54.0 39.1 23.0 42.3 33.6 51.4 55.2 42.6
R-CNN FT pool5 55.6 57.5 31.5 23.1 23.2 46.3 59.0 49.2 16.5 43.1 37.8 39.7 51.5 55.4 40.4 23.9 46.3 37.9 49.7 54.1 42.1
R-CNN FT fc6 61.8 62.0 38.8 35.7 29.4 52.5 61.9 53.9 22.6 49.7 40.5 48.8 49.9 57.3 44.5 28.5 50.4 40.2 54.3 61.2 47.2
R-CNN FT fc7 60.3 62.5 41.4 37.9 29.0 52.6 61.6 56.3 24.9 52.3 41.9 48.1 54.3 57.0 45.0 26.9 51.8 38.1 56.6 62.2 48.0

DPM HOG [19] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7
DPM ST [29] 23.8 58.2 10.5 8.5 27.1 50.4 52.0 7.3 19.2 22.8 18.1 8.0 55.9 44.8 32.4 13.3 15.9 22.8 46.2 44.9 29.1
DPM HSC [32] 32.2 58.3 11.5 16.3 30.6 49.9 54.8 23.5 21.5 27.7 34.0 13.7 58.1 51.6 39.9 12.4 23.5 34.4 47.4 45.2 34.3

Table 2: Detection average precision (%) on VOC 2007 test. Rows 1-3 show results for our CNN pre-trained on ILSVRC 2012. Rows
4-6 show results for our CNN pre-trained on ILSVRC 2012 and then fine-tuned (“FT”) on VOC 2007 trainval. Rows 7-9 present DPM
methods as a strong baseline comparison. The first uses only HOG, while the next two use feature learning to augment or replace it.

two units were selected because they correspond to large
positive and negative weights in a cat SVM (trained on
pool5). The first is selective for cat faces, while the sec-
ond is selective for other animal faces (primarily dogs). We
also visualize units for sheep and person. The last two rows
illustrate more generic units; one that fires on diagonal bars
of a certain width and another that fires on red blobs. These
visualizations demonstrate the richness of pool5 features
and hint at the diversity that lies therein, with units ranging
from particular animal faces to more generic shapes and tex-
tures. The subsequent fully connected layer has the ability
to model a large set of compositions of these rich features.
Additional visualizations are included in the appendix, Fig-
ure 6.

3.2. Ablation studies

Performance layer-by-layer, without fine-tuning. To un-
derstand which layers are critical for detection performance,
we analyzed results on the VOC 2007 dataset for each of the

CNN’s last three layers. Layer pool5 was briefly described
in Section 3.1. The final two layers are summarized below.

Layer fc6 is fully connected to pool5. To compute fea-
tures, it multiplies a 4096⇥9216 weight matrix by the pool5
feature map (reshaped as a 9216-dimensional vector) and
then adds a vector of biases. This intermediate vector is
component-wise half-wave rectified (i.e., x max(0, x)).

Layer fc7 is the final layer of the network. It is imple-
mented by multiplying the features computed by fc6 by a
4096 ⇥ 4096 weight matrix, and similarly adding a vector
of biases and applying half-wave rectification.

We start by looking at results from the CNN without
fine-tuning on PASCAL, i.e. all CNN parameters were pre-
trained on ILSVRC 2012 only. Analyzing performance
layer-by-layer (Table 2 rows 1-3) reveals that features from
fc7 offer little or no advantage over features from fc6. This
means that 29%, or about 16.8 million, of the CNN’s param-
eters can be removed without degrading mAP. More surpris-
ing is that removing both fc7 and fc6 produces quite good

5

VOC Segmentation
• Segmentation by region classification

• Feature same as before + foreground mask
VOC 2011 test bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
R&P [2] 83.4 46.8 18.9 36.6 31.2 42.7 57.3 47.4 44.1 8.1 39.4 36.1 36.3 49.5 48.3 50.7 26.3 47.2 22.1 42.0 43.2 40.8
O2P [5] 85.4 69.7 22.3 45.2 44.4 46.9 66.7 57.8 56.2 13.5 46.1 32.3 41.2 59.1 55.3 51.0 36.2 50.4 27.8 46.9 44.6 47.6
ours (full+fg R-CNN fc6) 84.2 66.9 23.7 58.3 37.4 55.4 73.3 58.7 56.5 9.7 45.5 29.5 49.3 40.1 57.8 53.9 33.8 60.7 22.7 47.1 41.3 47.9

Table 4: Segmentation accuracy (%) on VOC 2011 test. All methods compete in the comp6 track due to use of outside data from [22].
We compare against two strong baselines: the “Regions and Parts” (R&P) method of [2] and the second-order pooling (O2P) method of [5].
Without any fine-tuning, our CNN achieves top segmentation performance, outperforming R&P and roughly matching O2P.

they are research endeavors in their own right.
This paper proves a strong experimental claim: A large

convolutional neural network is highly effective at exploit-
ing “big visual data” to learn a rich hierarchy of features
that yields previously unattainable object detection results
on the gold-standard PASCAL VOC Challenge. This is no
small feat. From the vantage point of the detector, ILSVRC
2012 is weakly labeled, even missing annotations for key
visual concepts such as person. The CNN’s ability to eas-
ily turn this data into top-performing detection results is
truly exciting. It is significant that we achieved these re-
sults by using a combination of classical tools (bottom-up
region proposals and convolutional neural networks) from
computer vision and deep learning. Rather than opposing
world views, the two are natural and inevitable partners.

A. Additional feature visualizations
Figure 6 shows additional visualizations for six pool5

units. For each unit, we show the 96 region proposals that
maximally activate that unit out of the full set of approxi-
mately 10 million regions in all of VOC 2007 test.

We label each unit by its (y, x, channel) position in the
6 ⇥ 6 ⇥ 256 dimensional pool5 feature map. Within each
channel, the CNN computes exactly the same function of
the input region, with the (y, x) position changing only the
receptive field. From top-left to bottom-right we see units
that are selective for: green plants, cat faces, human faces,
squiggles, text, and stripes at a variety of orientations.

B. Per-category segmentation results
In Table 5 we show the per-category segmentation ac-

curacy on VOC 2011 val for each of our six segmentation
methods in addition to the O2P method [5]. These results
show which methods are strongest across each of the 20 in-
dividual PASCAL classes, plus the background class.

C. Analysis of cross-dataset redundancy
One concern when training on an auxiliary dataset is that

there might be redundancy between it and the test set. Even
though the tasks of object detection and whole-image clas-
sification are substantially different, making such cross-set
redundancy much less worrisome, we still conducted a thor-
ough investigation that quantifies the extent to which PAS-
CAL test images are contained within the ILSVRC 2012

training and validation sets. Our findings may be useful to
researchers who are interested in using ILSVRC 2012 as
training data for the PASCAL image classification task.

We performed two checks for duplicate (and near-
duplicate) images. The first test is based on exact matches
of flickr image IDs, which are included in the VOC 2007
test annotations (these IDs are intentionally kept secret for
subsequent PASCAL test sets). All PASCAL images, and
about half of ILSVRC, were collected from flickr.com. This
check turned up 31 matches out of 4952 (0.63%).

The second check uses GIST descriptor [31] matching,
which was shown in [13] to have excellent performance at
near-duplicate image detection in large (> 1 million) im-
age collections. Following [13], we computed GIST de-
scriptors on warped 32 ⇥ 32 pixel versions of all ILSVRC
2012 trainval and PASCAL 2007 test images. Euclidean
nearest-neighbor matching of GIST descriptors revealed 38
near-duplicate images (including all 31 found by flickr ID
matching). The matches tend to vary slightly in JPEG com-
pression level and resolution, and to a lesser extent crop-
ping. These findings show that the overlap is very small,
less than 1%. For VOC 2012, because flickr IDs are not
available, we used the GIST matching method only. Based
on GIST matches, 1.5% of VOC 2012 test images are in
ILSVRC 2012 trainval. The slightly higher rate for VOC
2012 is likely due to the fact that the two datasets were col-
lected closer together in time than VOC 2007 and ILSVRC
2012.

References
[1] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the object-

ness of image windows. TPAMI, 2012. 2
[2] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and

J. Malik. Semantic segmentation using regions and parts. In
CVPR, 2012. 2, 7, 8

[3] Y. Bengio, A. Courville, and P. Vincent. Representation
learning: A review and new perspectives. TPAMI, 2013. 1

[4] L. Bourdev and J. Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In ICCV, 2009.
2

[5] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-
mantic segmentation with second-order pooling. In ECCV,
2012. 1, 7, 8, 10

[6] J. Carreira and C. Sminchisescu. CPMC: Automatic ob-
ject segmentation using constrained parametric min-cuts.
TPAMI, 2012. 2

8

VOC 2011 test bg aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean
R&P [2] 83.4 46.8 18.9 36.6 31.2 42.7 57.3 47.4 44.1 8.1 39.4 36.1 36.3 49.5 48.3 50.7 26.3 47.2 22.1 42.0 43.2 40.8
O2P [5] 85.4 69.7 22.3 45.2 44.4 46.9 66.7 57.8 56.2 13.5 46.1 32.3 41.2 59.1 55.3 51.0 36.2 50.4 27.8 46.9 44.6 47.6
ours (full+fg R-CNN fc6) 84.2 66.9 23.7 58.3 37.4 55.4 73.3 58.7 56.5 9.7 45.5 29.5 49.3 40.1 57.8 53.9 33.8 60.7 22.7 47.1 41.3 47.9

Table 4: Segmentation accuracy (%) on VOC 2011 test. All methods compete in the comp6 track due to use of outside data from [22].
We compare against two strong baselines: the “Regions and Parts” (R&P) method of [2] and the second-order pooling (O2P) method of [5].
Without any fine-tuning, our CNN achieves top segmentation performance, outperforming R&P and roughly matching O2P.

they are research endeavors in their own right.
This paper proves a strong experimental claim: A large

convolutional neural network is highly effective at exploit-
ing “big visual data” to learn a rich hierarchy of features
that yields previously unattainable object detection results
on the gold-standard PASCAL VOC Challenge. This is no
small feat. From the vantage point of the detector, ILSVRC
2012 is weakly labeled, even missing annotations for key
visual concepts such as person. The CNN’s ability to eas-
ily turn this data into top-performing detection results is
truly exciting. It is significant that we achieved these re-
sults by using a combination of classical tools (bottom-up
region proposals and convolutional neural networks) from
computer vision and deep learning. Rather than opposing
world views, the two are natural and inevitable partners.

A. Additional feature visualizations
Figure 6 shows additional visualizations for six pool5

units. For each unit, we show the 96 region proposals that
maximally activate that unit out of the full set of approxi-
mately 10 million regions in all of VOC 2007 test.

We label each unit by its (y, x, channel) position in the
6 ⇥ 6 ⇥ 256 dimensional pool5 feature map. Within each
channel, the CNN computes exactly the same function of
the input region, with the (y, x) position changing only the
receptive field. From top-left to bottom-right we see units
that are selective for: green plants, cat faces, human faces,
squiggles, text, and stripes at a variety of orientations.

B. Per-category segmentation results
In Table 5 we show the per-category segmentation ac-

curacy on VOC 2011 val for each of our six segmentation
methods in addition to the O2P method [5]. These results
show which methods are strongest across each of the 20 in-
dividual PASCAL classes, plus the background class.

C. Analysis of cross-dataset redundancy
One concern when training on an auxiliary dataset is that

there might be redundancy between it and the test set. Even
though the tasks of object detection and whole-image clas-
sification are substantially different, making such cross-set
redundancy much less worrisome, we still conducted a thor-
ough investigation that quantifies the extent to which PAS-
CAL test images are contained within the ILSVRC 2012

training and validation sets. Our findings may be useful to
researchers who are interested in using ILSVRC 2012 as
training data for the PASCAL image classification task.

We performed two checks for duplicate (and near-
duplicate) images. The first test is based on exact matches
of flickr image IDs, which are included in the VOC 2007
test annotations (these IDs are intentionally kept secret for
subsequent PASCAL test sets). All PASCAL images, and
about half of ILSVRC, were collected from flickr.com. This
check turned up 31 matches out of 4952 (0.63%).

The second check uses GIST descriptor [31] matching,
which was shown in [13] to have excellent performance at
near-duplicate image detection in large (> 1 million) im-
age collections. Following [13], we computed GIST de-
scriptors on warped 32 ⇥ 32 pixel versions of all ILSVRC
2012 trainval and PASCAL 2007 test images. Euclidean
nearest-neighbor matching of GIST descriptors revealed 38
near-duplicate images (including all 31 found by flickr ID
matching). The matches tend to vary slightly in JPEG com-
pression level and resolution, and to a lesser extent crop-
ping. These findings show that the overlap is very small,
less than 1%. For VOC 2012, because flickr IDs are not
available, we used the GIST matching method only. Based
on GIST matches, 1.5% of VOC 2012 test images are in
ILSVRC 2012 trainval. The slightly higher rate for VOC
2012 is likely due to the fact that the two datasets were col-
lected closer together in time than VOC 2007 and ILSVRC
2012.

References
[1] B. Alexe, T. Deselaers, and V. Ferrari. Measuring the object-

ness of image windows. TPAMI, 2012. 2
[2] P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and

J. Malik. Semantic segmentation using regions and parts. In
CVPR, 2012. 2, 7, 8

[3] Y. Bengio, A. Courville, and P. Vincent. Representation
learning: A review and new perspectives. TPAMI, 2013. 1

[4] L. Bourdev and J. Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In ICCV, 2009.
2

[5] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Se-
mantic segmentation with second-order pooling. In ECCV,
2012. 1, 7, 8, 10

[6] J. Carreira and C. Sminchisescu. CPMC: Automatic ob-
ject segmentation using constrained parametric min-cuts.
TPAMI, 2012. 2

8

Take aways

• Large CNN is highly effective in feature learning

• Classical computer vision tools and deep
learning are partners, not enemies

