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ABSTRACT

Deep learning has proven itself as a successful set of models for learning useful
semantic representations of data. These, however, are mostly implicitly learned as
part of a classification task. In this paper we propose the triplet network model,
which aims to learn useful representations by distance comparisons. A similar
model was defined by Wang et al. (2014), tailor made for learning a ranking
for image information retrieval. Here we demonstrate using various datasets that
our model learns a better representation than that of its immediate competitor,
the Siamese network. We also discuss future possible usage as a framework for
unsupervised learning.

1 INTRODUCTION

For the past few years, deep learning models have been used extensively to solve various machine
learning tasks. One of the underlying assumptions is that deep, hierarchical models such as con-
volutional networks create useful representation of data (Bengio (2009); Hinton (2007)), which can
then be used to distinguish between available classes. This quality is in contrast with traditional
approaches requiring engineered features extracted from data and then used in separate learning
schemes. Features extracted by deep networks were also shown to provide useful representation
(Zeiler & Fergus (2013a); Sermanet et al. (2013)) which can be, in turn, successfully used for other
tasks (Razavian et al. (2014)).

Despite their importance, these representations and their corresponding induced metrics are often
treated as side effects of the classification task, rather than being explicitly sought. There are also
many interesting open question regarding the intermediate representations and their role in disen-
tangling and explaining the data (Bengio (2013)). Notable exceptions where explicit metric learning
is preformed are the Siamese Network variants (Bromley et al. (1993); Chopra et al. (2005); Hadsell
et al. (2006)), in which a contrastive loss over the metric induced by the representation is used to
train the network to distinguish between similar and dissimilar pairs of examples. A contrastive loss
favours a small distance between pairs of examples labeled as similar, and large distances for pairs
labeled dissimilar. However, the representations learned by these models provide sub-par results
when used as features for classification, compared with other deep learning models including ours.
Siamese networks are also sensitive to calibration in the sense that the notion of similarity vs dis-
similarity requires context. For example, a person might be deemed similar to another person when
a dataset of random objects is provided, but might be deemed dissimilar with respect to the same
other person when we wish to distinguish between two individuals in a set of individuals only. In
our model, such a calibration is not required. In fact, in our experiments here, we have experienced
hands on the difficulty in using Siamese networks.

We follow a similar task to that of Chechik et al. (2010). For a set of samples P and a chosen rough
similarity measure r(x, x′) given through a training oracle (e.g how close are two images of objects
semantically) we wish to learn a similarity function S(x, x′) induced by a normed metric. Unlike
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Chechik et al. (2010)’s work, our labels are of the form r(x, x1) > r(x, x2) for triplets x, x1, x2

of objects. Accordingly, we try to fit a metric embedding and a corresponding similarity function
satisfying:

S(x, x1) > S(x, x2), ∀x, x1, x2 ∈ P for which r(x, x1) > r(x, x2).

In our experiment, we try to find a metric embedding of a multi-class labeled dataset. We will always
take x1 to be of the same class as x and x2 of a different class, although in general more complicated
choices could be made. Accordingly, we will use the notation x+ and x− instead of x1, x2. We focus
on finding an L2 embedding, by learning a function F (x) for which S(x, x′) = ‖F (x)− F (x′)‖2.
Inspired from the recent success of deep learning, we will use a deep network as our embedding
function F (x).

We call our approach a triplet network. A similar approach was proposed in Wang et al. (2014) for
the purpose of learning a ranking function for image retrieval. Compared with the single application
proposed in Wang et al. (2014), we make a comprehensive study of the triplet architecture which
is, as we shall argue below, interesting in and of itself. In fact, we shall demonstrate below that the
triplet approach is a strong competitor to the Siamese approach, its most obvious competitor.

2 THE TRIPLET NETWORK

A Triplet network (inspired by ”Siamese network”) is comprised of 3 instances of the same feed-
forward network (with shared parameters). When fed with 3 samples, the network outputs 2 inter-
mediate values - the L2 distances between the embedded representation of two of its inputs from
the representation of the third. If we will denote the 3 inputs as x, x+ and x−, and the embedded
representation of the network as Net(x), the one before last layer will be the vector:

TripletNet(x, x−, x+) =

[‖Net(x)−Net(x−)‖2
‖Net(x)−Net(x+)‖2

]
∈ R2

+ .

In words, this encodes the pair of distances between each of x+ and x− against the reference x.

‖Net(x)−Net(x−)‖2 ‖Net(x)−Net(x+)‖2

x− x x+

Comparator

Net Net Net

Figure 1: Triplet network structure
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2.1 TRAINING

Training is preformed by feeding the network with samples where, as explained above, x and x+

are of the same class, and x− is of different class. The network architecture allows the task to be
expressed as a 2-class classification problem, where the objective is to correctly classify which of
x+ and x− is of the same class as x. We stress that in a more general setting, where the objective
might be to learn a metric embedding, the label determines which example is closer to x. Here we
simply interpret “closeness” as “sharing the same label”. In order to output a comparison operator
from the model, a SoftMax function is applied on both outputs - effectively creating a ratio measure.
Similarly to traditional convolutional-networks, training is done by simple SGD on a negative-log-
likelihood loss with regard to the 2-class problem. We later examined that better results are achieved
when the loss function is replaced by a simple MSE on the soft-max result, compared to the (0, 1)
vector, so that the loss is

Loss(d+, d−) = ‖(d+, d− − 1)‖22 = const · d2+

where

d+ =
e‖Net(x)−Net(x+)‖2

e‖Net(x)−Net(x+)‖2 + e‖Net(x)−Net(x−)‖2

and

d− =
e‖Net(x)−Net(x−)‖2

e‖Net(x)−Net(x+)‖2 + e‖Net(x)−Net(x−)‖2
.

We note that Loss(d+, d−) → 0 iff ‖Net(x)−Net(x+)‖
‖Net(x)−Net(x−)‖ → 0, which is the required objective. By

using the same shared parameters network, we allow the back-propagation algorithm to update the
model with regard to all three samples simultaneously.

3 TESTS AND RESULTS

The Triplet network was implemented and trained using the Torch7 environment (Collobert et al.
(2011)).

3.1 DATASETS

We experimented with 4 datasets. The first is Cifar10 (Krizhevsky & Hinton (2009)), consisting
of 60000 32x32 color images of 10 classes (of which 50000 are used for training only, and 10000
for test only). The second dataset is the original MNIST (LeCun et al. (1998)) consisting of 60000
28x28 gray-scale images of handwritten digits 0-9, and a corresponding set of 10000 test images.
The third is the Street-View-House-Numbers (SVHN) of Netzer et al. consisting of 600000 32x32
color images of house-number digits 0-9. The fourth dataset is STL10 of Coates et al. (2011), similar
to Cifar10 and consisting of 10 object classes, only with 5000 training images (instead of 50000 in
Cifar) and a bigger 96x96 image size.

It is important to note that no data augmentation or whitening was applied, and the only prepro-
cessing was a global normalization to zero mean and unit variance. Each training instance (for all
four datasets) was a uniformly sampled set of 3 images, 2 of which are of the same class (x and
x+), and the third (x−) of a different class. Each training epoch consisted of 640000 such instances
(randomly chosen each epoch), and a fixed set of 64000 instances used for test. We emphasize that
each test instance involves 3 images from the set of test images which was excluded from training.

3.2 THE EMBEDDING NET

For Cifar10 and SVHN we used a convolutional network, consisting of 3 convolutional and 2x2
max-pooling layers, followed by a fourth convolutional layer. A ReLU non-linearity is applied
between two consecutive layers. Network configuration (ordered from input to output) consists of
filter sizes {5,3,3,2}, and feature map dimensions {3,64,128,256,128} where a 128 vector is the
final embedded representation of the network. Usually in convolutional networks, a subsequent
fully-connected layer is used for classification. In our net this layer is removed, as we are interested
in a feature embedding only.
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The network for STL10 is identical, only with stride=3 for the first layer, to allow the bigger input
size. The network used for MNIST was a smaller version consisting of smaller feature map sizes
{1,32,64,128}.

3.3 RESULTS

Training on all datasets was done by SGD, with initial learning-rate of 0.5 and a learning rate decay
regime. We used a momentum value of 0.9. We also used the dropout regularization technique with
p = 0.5 to avoid over-fitting. After training on each dataset for 10-30 epochs, the network reached
a fixed error over the triplet comparisons. We then used the embedding network to extract features
from the full dataset, and trained a simple 1-layer network model on the full 10-class classification
task (using only training set representations). The test set was then measured for accuracy. These
results (Figure 2) are comparable to state-of-the-art results with deep learning models, without us-
ing any artificial data augmentation (Zeiler & Fergus (2013b); Goodfellow et al. (2013); Lin et al.
(2013)). Noteworthy is the STL10 dataset, in which the TripletNet achieved the best known result
for non-augmented data. We conjecture that data augmentation techniques (such as translations,
mirroring and noising) may provide similar benefits to those described in previous works.

We also note that similar results are achieved when the embedded representations are classified using
a linear SVM model or KNN classification with up to 0.5% deviance from the results in Figure 2.
Another side-affect noticed, is that the representation seems to be sparse - about 25% non-zero
values. This is very helpful when used later as features for classification both computationally and
with respect to accuracy, as each class is characterised by only a few non zero elements.

Dataset TripletNet SiameseNet Best known result (with no data augmentation)
Mnist 99.54±0.08% 97.9±0.1% 99.61% Mairal et al. (2014); Lee et al. (2014)

Cifar10 87.1% - 90.22% Lee et al. (2014)
SVHN 95.37% - 98.18% Lee et al. (2014)
STL10 70.67% - 67.9% Lin & Kung (2014)

Figure 2: Classification accuracy (no data augmentation)

3.4 2D VISUALIZATION OF FEATURES

In order to examine our main premise, which is that the network embeds the images into a repre-
sentation with meaningful properties, we use PCA to project the embedding into 2d euclidean space
which can be easily visualized (figures 5 4 5). We can see a significant clustering by semantic mean-
ing, confirming that the network is useful in embedding images into the euclidean space according
to their content. Similarity between objects can be easily found by measuring the distance between
their embedding and, as shown in the results, can reach high classification accuracy using a simple
subsequent linear classifier.

3.5 COMPARISON WITH PERFORMANCE OF THE SIAMESE NETWORK

The Siamese network is the most obvious competitor for our approach. Our implementation of the
Siamese network consisted of the same embedding network, but with the use of a contrastive loss
between a pair of samples, instead of three (as explained in Chopra et al. (2005)). The generated
features were then used for classification using a similar linear model as was used for the TripletNet
method. We measured lower accuracy on the MNIST dataset compared to results gained using the
TripletNet representations 2.

We have tried a similar comparison for the other three datasets, but unfortunately could not obtain
any meaningful result using a Siamese network. We conjecture that this might be related to the
problem of context described above, and leave the resolution of this conjecture to future work.
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Figure 3: CIFAR10 - Euclidean representation of embedded test data, projected onto top two singu-
lar vectors
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Figure 4: MNIST - Euclidean representation of embedded test data, projected onto top two singular
vectors

4 FUTURE WORK

As the Triplet net model allows learning by comparisons of samples instead of direct data labels,
usage as an unsupervised learning model is possible. Future investigations can be performed in
several scenarios:
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Figure 5: SVHN - Euclidean representation of embedded test data, projected onto top two singular
vectors

• Using spatial information. Objects and image patches that are spatially near are also
expected to be similar from a semantic perspective. Therefore, we could use geometric
distance between patches of the same image as a rough similarity oracle r(x, x′), in an
unsupervised setting.

• Using temporal information. The same is applicable to time domain, where two consecu-
tive video frames are expected to describe the same object, while a frame taken 10 minutes
later is less likely to do so. Our Triplet net may provide a better embedding and improve on
past attempts in solving classification tasks in an unsupervised environment, such as that of
(Mobahi et al. (2009)).

It is also well known that humans tend to be better at accurately providing comparative labels. Our
framework can be used in a crowd sourcing learning environment. This can be compared with
Tamuz et al. (2011), who used a different approach. Furthermore, it may be easier to collect data
trainable on a Triplet network, as comparisons over similarity measures are much easier to attain
(pictures taken at the same location, shared annotations, etc).

5 CONCLUSIONS

In this work we introduced the Triplet network model, a tool that uses a deep network to learn useful
representation explicitly. The results shown on various datasets provide evidence that the represen-
tations that were learned are useful to classification in a way that is comparable with a network that
was trained explicitly to classify samples. We believe that enhancement to the embedding network
such as Network-in-Network model (Lin et al. (2013)), Inception models (Szegedy et al. (2014))
and others can benefit the Triplet net similarly to the way they benefited other classification tasks.
Considering the fact that this method requires to know only that two out of three images are sampled
from the same class, rather than knowing what that class is, we think this should be inquired further,
and may provide us insights to the way deep networks learn in general. We have also shown how
this model learns using only comparative measures instead of labels, which we can use in the future
to leverage new data sources for which clear out labels are not known or do not make sense (e.g
hierarchical labels).
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