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New technologies have enabled the investigation of biology and human health at an unprecedented scale and in multiple dimensions.
These dimensions include a myriad of properties describing genome, epigenome, transcriptome, microbiome, phenotype, and
r—lifestyle. No single data type, however, can capture the complexity of all the factors relevant to understanding a phenomenon
such as a disease. Integrative methods that combine data from multiple technologies have thus emerged as critical statistical and
computational approaches. The key challenge in developing such approaches is the identification of effective models to provide
- a comprehensive and relevant systems view. An ideal method can answer a biological or medical question, identifying important
features and predicting outcomes, by harnessing heterogeneous data across several dimensions of biological variation. In this
Q Review, we describe the principles of data integration and discuss current methods and available implementations. We provide
examples of successful data integration in biology and medicine. Finally, we discuss current challenges in biomedical integrative
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1. Introduction

Understanding complex biological systems has been an on-
going quest for many researchers. The rapidly decreasing costs
of high-throughput sequencing, development of massively par-
allel technologies, and new sensor technologies have enabled
generation of data that describe biological systems on multi-
ple dimensions. These dimensions include DNA sequence [1],
epigenomic states [2], single-cell gene expression activity [3],
proteomics [4], functional and phenotypic measurements [5],
and ecological and lifestyle properties [6]. These technological
advances in data generation have driven the field of bioinfor-
matics for the past decade, producing ever increasing amounts
of data of different types as researchers develop data analysis
tools. Many of these data types have associated analytical meth-
ods designed to examine one data type specifically. Using these
methods, studies have assembled some of the puzzle of bio-
logical architecture. Usually, however, the factors necessary to
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understand a phenomenon such as a disease, cannot be captured
by a single data type (Figure 1). Much of the complexity in bi-
ology and medicine thus remains unexplained. If the field relies
strictly on single-data-type studies, it never will be explained.
Ideally, one can combine different types of data to create
a holistic picture of the cell, human health, and disease. Re-
searchers have developed multiple approaches to do this, and
therefore address the challenges brought forward by large and
heterogeneous biomedical data. For example, one can identify
DNA sequence variation through association studies in family-
and population-based data, and then integrate it with molecular
pathway information to predict the risk of developing a particu-
lar disease [7]. Data integration can have numerous meanings,
however, it is used here to mean the process by which differ-
ent types of biomedical data in their broadest sense are com-
bined as predictor variables to allow for more thorough and
comprehensive modeling of biomedically relevant outcomes.
As reviewed previously (e.g., [8, 9, 10]), a data integration ap-
proach can achieve a more thorough and informative analysis
of biomedical data than an approach that uses only a single data
type. Combining multiple data types can compensate for miss-
ing or unreliable information in any single data type, and mul-
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Figure 1: The importance of data integration in biomedicine. Considering variation in only a single data type can miss many important patterns that can only be
observed by considering multiple levels of biomedical data. Shown is a hypothetical example using disease diagnostics as a point of interest. When a new patient
arrives to the clinic, (a) domain experts sequence the patient’s genome and compare it with a database to identify mutations and disease-causing genes, (b) perform
laboratory tests using tissue samples, and (¢) process information about the patient’s behavior and lifestyle. (d) The patient’s genomic, transcriptomic, and lifestyle
information is combined with curated databases of biomedical knowledge (e.g., disease and metabolic pathways). Finally, a machine learning algorithm predicts
probability that the patient will develop a particular disease in near future. To make accurate prediction, the machine learning model needs to use many different
types of data. This example illustrates that accurate prediction can only be made by analyzing multiple types of patient’s data.

tiple sources of evidence pointing to the same outcome are less
likely to lead to false positives. A complete model of a system
like the human body is only likely to be discovered if informa-
tion from different dimensions is considered, from the genome
and transcriptome to organismal environment.

In this Review, we describe the principles of data integra-
tion, and provide a taxonomy of machine learning methods pre-
sently in use to integrate biomedical data. We discuss current
methods, implementations of these methods, and their success-
ful applications in biology and medicine. Furthermore, we dis-
cuss challenges in optimally combining and interpreting data
from multiple sources and the advantages of integrating multi-
ple data types. For example, one technology may address short-
comings of another to provide a more precise insight into hu-
man disease. In addition, we provide our perspective on how
integrative data analysis might develop in the future.

2. Challenges in data integration for biology and medicine

When one develops machine learning approaches to inte-
grate biomedical data, several challenges arise. Biological and
medical datasets have inherent complexity beyond their large
sizes. Biomedical datasets are also high-dimensional, incom-
plete, biased, heterogeneous, dynamic, and noisy. We briefly
describe these challenges below.

Biomedical data is often high-dimensional but sparse. This
contrasts with large datasets in other domains, such as social
networks, computer vision, and natural language, that typically

contain a large number of high-quality examples. A typical
genome-wide association study (GWAS) [11] genotypes hun-
dreds of thousands of single-nucleotide polymorphisms for ev-
ery individual. However, these data can often be collected for
only a relatively small number of individuals with a particular
phenotype. Furthermore, the sparse nature of these data, i.e.,
each polymorphism is only present in a small number of all
individuals, presents an additional challenge for downstream
analytic applications. It remains a major challenge to convert
these data into biologically and clinically meaningful insights.
Without integrating other types of data, such as pathway or
molecular network information [12, 13, 14], GWAS data alone
can struggle to identify meaningful patterns associated with the
phenotype of interest.

Another important challenge arises from the often incom-
plete and biased nature of biomedical data. This challenge ari-
ses from limitations of measurement technology [15], natural
and physical constraints [11, 16], and investigative biases [17].
For example, information on what chemical compounds bind
to what genes is available for only several thousands of genes,
even when considering information from across organisms [18].
Furthermore, the number of associated compounds for each
gene is highly uneven [19], with many uncharacterized genes
playing important roles in drug action [20]. Additionally, biome-
dical data are hierarchically organized and span molecules, path-
ways, cells, tissues, organs, patients, and populations [21, 22,
23] and also cover a wide spectrum of timescales and species.
Clearly, full understanding of biology requires multiscale mod-



eling, from describing atomic details of molecules to the emer-
gent properties of organismal populations. Furthermore, when
biomedical outcomes change over time, machine learning meth-
ods integrating the outcomes need to account for these dynam-
ics. For example, cancer cells, bacteria, and viruses evolve
rapidly to gain drug resistance [24], and ignoring the dynam-
ics of drug response can lead to poor performance in predicting
drug efficacy and toxicity.

A fundamental challenge in biomedical data science lies in
discovering new knowledge outside of the existing domain of
knowledge, e.g., extrapolating a drug response from an animal
model to that in a human patient. Existing approaches typically
assume that the dataset on which the algorithm is trained is rep-
resentative of all the data to which the algorithm can be applied.
However, it is challenging to build a model to predict, e.g., ef-
ficacy of an anticancer drug in a given patient, as a new patient
might be unique and might fall outside of the hypothesis space
of the trained model. As biomedical datasets are incomplete
and reflect scientific knowledge discovered so far, the models
can be trained on only these partially complete datasets and thus
can perform poorly when new data become available. For these
reasons, it is especially challenging to deploy machine learning
systems to support decision making in risk-sensitive discovery
and clinical practice [25], e.g., the system might make conflict-
ing predictions about the utility of a particular anticancer drug
for a given patient depending on the type of input data used for
prediction.

In summary, due to the complex and interconnected nature
of biomedical systems, any single model trained on any sin-
gle dataset can touch only a small part of the entire biomedical
knowledge. It is thus critical to integrate diverse sources of
information to gain a comprehensive understanding of biology
and medicine.

3. Conceptual organization of methods for data integration

We broadly categorize data integration methods into two
types of approaches. We refer to approaches that combine mod-
els and datasets across spatial and temporal scales as vertical
data integration, which depends on integration of cellular, cell
type, tissue, organism, and population models at several tem-
poral scales [23, 26, 27]. In contrast, horizontal data integra-
tion focuses on combining datasets and models at one particu-
lar level [28, 29], for example, at the microbiome [30] or at the
epigenome level [2].

More technically, the methods implement one of the fol-
lowing three distinct approaches to data integration depending
on the analysis stage at which integration takes place [8, 31,
32, 33] (Figure 2). Early integration (Figure 2b) begins by
transforming all datasets into a single, feature-based table or
a graph-based representation, which is then used as input to a
machine learning method. Theoretically, this approach is pow-
erful because the machine learning method can consider any
type of dependence between the features as long as individ-
ual datasets are not collapsed before analysis. Early integra-
tion approaches often rely on methods for automatic feature
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Figure 2: Categorization of approaches for data integration. (a) Examples
of multi-omics data about patients. (b-d) Data integration approaches can be
divided into three categories. (b) Early integration approaches involve com-
bining datasets from different data types at the raw or processed level before
analysis and prediction. (c¢) Intermediate integration approaches transform or
map the underlying datasets at the same time as they estimate model param-
eters. (d) Late integration approaches perform analysis on each dataset inde-
pendently, which is followed by integration of the resulting models to gener-
ate predictions, e.g., prognosis for a particular patient. SNP, single-nucleotide
polymorphism.

learning, such as dimensionality reduction [34] and represen-
tation learning [35, 36, 37], to project raw high-dimensional
datasets into a low-dimensional vector space and then combine
these low-dimensional representations through concatenation
or other simple aggregation techniques.

In late integration (Figure 2d), a first-level model is built for
each dataset or data type independently. These first-level mod-
els are then combined by training a second-level model that uses
predictions of the first-level models as features or via a meta-
predictor [38] that takes a majority vote or combines prediction
weights of the first-level models [39, 40].

In intermediate integration (Figure 2c), a model, such as
multiple kernel learning [41, 42], collective matrix factoriza-
tion [43, 44, 33] or deep neural network [45, 46], learns a joint
representation of many datasets. Intermediate integration relies
on algorithms that explicitly address the multiplicity of datasets
and fuse them through inference of a joint model. Importantly,
an intermediate data integration method does not combine in-
put data nor does it develop a separate model for each dataset.
Instead, it aims to preserve the structure of data and only merge
them during the analysis stage. The intermediate integration
approach can lead to superior performance, however it often re-
quires development of a new algorithm and cannot be used with
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Figure 3: Data integration. Data integration approaches combine multiples
sources of information in a statistically meaningful way to provide a compre-
hensive analysis of biomedical data. Broadly, existing approaches use three
distinct strategies (i.e., early, intermediate, and late integration; see also Fig-
ure 2) and produce three types of prediction outputs (i.e., a label representing
probability of an entity belonging to a given class; a relationship representing
probability of an association between two entities; and a complex structure,
such as an inferred network or a partitioning of entities into groups).

off-the-shelf software tools.

Finally, methods for data integration can generate diverse
types of prediction outputs similar to methods that analyze a
single dataset (Figure 3). One area of a particular interest is the
prediction of quantitative or categorical properties (labels, e.g.,
gene functions) for biomedical entities (e.g., genes). For exam-
ple, many studies integrate a large number of networks, includ-
ing protein-protein and genetic interaction networks, which are
now available for several organisms, to predict genes that cause
a particular phenotype or have a particular function [47, 48]
(Section 8.1). Beyond predicting labels of individual entities,
many studies aim to predict relationships, i.e., molecular inter-
actions, functional associations, or causal relationships between
biomedical entities. For example, a multiple kernel learning ap-
proach can combine kernels derived from diverse data, such as a
drug’s structural similarity, a drug’s phenotypic similarity, and
target similarity, to predict new relationships between a drug
and proteins that the drug might target [49], i.e., drug-target in-
teractions (Section 9.1). Finally, data integration methods exist
to identify complex structures, such as gene modules or clus-
ters detected in a combined gene interaction network [50] (Sec-
tion 8.2), and to generate structured outputs, such as gene regu-
latory networks inferred from mixed data distributions [51].

4. Focus of this Review

This Review is intended for computational researchers in-
terested in recent developments and applications of machine
learning to biology and medicine and its potential for advanc-
ing biomedicine given the vast amounts of heterogeneous data
being generated today. In the Review, we focus on statisti-
cal approaches and machine learning methods for data integra-
tion. We describe the principles of integrative approaches and
provide an overview of some of the methods used to address

various biomedical questions, the tools available to implement
these analyses, and the various strengths and weaknesses of in-
tegrative approaches. Additionally, we highlight outstanding
challenges and opportunities that are ripe for exploration using
new machine learning methods and provide our perspective on
how integrative approaches might develop in the future.

Several reviews cover related data integration topics from
different perspectives, or with a special focus on a particular
biomedical question. For example, Rider et al. [52] focus on
methods for network inference with a special focus on proba-
bilistic methods. Bebek er al. [53] and Cowen et al. [50] fo-
cus on methods for construction and statistical analysis of bi-
ological networks from multiple biological datasets, as well
as on visualization tools. Related reviews [8, 54, 55, 56] sur-
vey recent advances in high-throughput technologies and data
integration-based methods for translational medicine and list
the tools that are available to domain scientists. Karczewski
et al. [9] describe applications of data integration that combine
diverse types of data to understand, diagnose and inform treat-
ment of diseases. They discuss technical challenges of imple-
menting integrative approaches in clinics and for personalized
medicine. Teschendorff et al. [10] survey algorithms for draw-
ing inferences from biological sequence data with a focus on
statistical analysis of genome sequencing data.

In this Review, we survey advances in data integration at
multiple biomedical levels. We organize our presentation ac-
cording to the flow of genetic information from the genome
level to the transcriptome level and, ultimately, to the phenome
level. Heterogeneous data exist within and between these lev-
els. We start at the DNA sequence level, describing methylation
patterns and other epigenetic markers (Section 5 and Section 6),
proceed at the single-cell level of gene expression (Section 7),
protein variation and cellular phenotypes (Section 8), and reach
the patient population levels (Section 9 and Section 10). Fi-
nally, we discuss the potential for combining diverse data and
the central role of integrative approaches in human health and
disease (Section 11).

5. Epigenomic variation and gene regulation

Individual cells within a multicellular organism usually have
nearly identical DNA sequences, but still develop distinct cel-
lular identities. These cellular identities manifest as diverse
physical forms and behaviors, but ultimately represent differ-
ing programs of gene expression. The different gene expression
programs also materialize in site-specific physical and chem-
ical changes to the DNA and the thousands of biomolecules
that interact with it. These include chemical modification of
DNA bases [57, 58, 59], and of the histone proteins that pack-
age DNA [60, 61] into nucleosome structures. The collection
of DNA, its packaging, and associated biomolecules is known
as chromatin. Biologists often refer to the state of physical
and chemical chromatin changes as a cell’s epigenome [62]
(Table 1), and measure its properties base-by-base along the
genome.

Researchers use investigative experiments known as assays
to determine epigenomic properties of each region in the genome



Term

Description

assay
chromatin

chromatin accessibility
chromatin state

conservation
deleterious

DNA methylation
dual futility conjecture

epigenome

enhancer

futility conjecture
histone

histone modifications
label

motif

noncoding
nucleosome

open chromatin

position weight matrix

regulatory region
segmentation

topologically associated domain

transcription factor

Laboratory experiment used to measure some physical or chemical aspect of a sample.

DNA, its structure for packaging, and the attached biomolecules.

Measurement of the openness of chromatin.

Label summarizing multiple properties of a region of chromatin, which often include histone
modifications, chromatin accessibility, and transcription factor binding.

Measurement of how little a particular sequence changes throughout evolution.

Hindering an organism’s survival.

Chemical modification to DNA that alters protein binding affinity without changing sequence.
Conjecture that many transcription factor binding sites cannot be predicted from sequence
alone.

The collection of site-specific chemical and physical properties of the genome other than its
sequence.

Genomic region that influences transcription of a gene distant along the one-dimensional chro-
mosome.

Conjecture that many transcription factor binding sites predicted from sequence alone will
have no functional role.

Class of protein that packages DNA into nucleosomes.

Chemical alterations to histones that can alter gene expression.

Identifier for a pattern or cluster describing multiple regions of the genome, such as a chro-
matin state.

Short, recurring sequences recognized by proteins such as transcription factors. Often defined
probabilistically as a position weight matrix.

Occurring outside the protein-coding sequence of any gene.

Eight histones and the DNA wrapped around them.

Region of chromatin not packaged into a nucleosome. Available for binding by other proteins.
Probabilistic model that scores how well a motif describes a sequence. The matrix has a
column for each position in the sequence and a row for each symbol in the sequence’s alphabet.
Region of DNA with a known effect on gene expression.

Partition of the genome with a label assigned to every segment.

Region of the genome enriched for three-dimensional interactions within.

Class of protein that binds to chromatin and regulates gene expression.

Table 1: Epigenomics glossary. Terms referenced in this section.

(Table 2). For example, the histones that DNA wraps around
can undergo various chemical changes known as histone modi-
fications [60]. The chromatin immunoprecipitation-sequencing
(ChIP-seq) [70, 71, 72, 73] assay can map histone modifica-
tions, one at a time. As another example, nucleosomes often
consistently locate at particular DNA regions in particular cell
types. Nucleosome-free regions or open chromatin play a crit-
ical role in the control of gene regulation. A variety of tech-
niques map nucleosomes and open chromatin, which include
deoxyribonuclease-sequencing (DNase-seq) [75] and assay for
transposase-accessible chromatin (ATAC-seq) [63].
Epigenomic sequencing assays usually break genomic DNA
into fragments around 200 base pairs (bp) in length. This frag-
mentation enriches for chromatin with some epigenomic prop-
erty of interest, such as a particular histone modification. These
assays end by sequencing the pool of fragments enriched for
the sought-after property. In other kinds of genomic sequenc-
ing experiments we might find the genetic variation in produced
sequencing reads interesting. Instead, in an epigenomics se-
quencing assay, we are usually interested primarily in where

these reads map in a reference genome—and how often. For
each position in the genome, we can count the number of reads
mapped to that position and treat that as a signal of the strength
or frequency of the epigenomic property under analysis. Thus,
we can treat the result of the experiment as a numerical vec-
tor across the genome. Usually we include other normaliza-
tion steps to account for differences in experimental param-
eters, such as dividing by the total number of mapped reads.
This transforms the initial integer counts into a real-valued vec-
tor. For the human genome at full resolution, this vector would
have 3 billion components.

Since epigenomic data might bear only an indirect connec-
tion to biological phenomena of interest, machine learning ap-
peals as an aid for interpretation [79]. Researchers have de-
vised numerous ways to draw conclusions about the control of
gene expression and its effect on phenotype from epigenomic
data [80, 81]. In this section, we survey several problems in
the analysis of epigenomic data and some methods designed to
solve them.



Assay Property measured Method References
ATAC-seq chromatin accessibility =~ Uses the Tn5 transposase to insert a short sequence at open chro- [63]
matin, followed by sequencing.
BS-seq DNA methylation Converts unmethylated cytosines into uracil, followed by se- [64]
quencing.
CETCh-seq associated protein ChIP-seq against a special protein region added by clustered reg- [65, 66]
ularly interspaced short palindromic repeats (CRISPR) genome
editing.
ChIA-PET long-range interactions  Ligates DNA regions close in three dimensions together with a  [67]
known linker sequence, followed by sequencing
ChIP-exo associated protein Like ChIP-seq, with a step that cuts DNA fragments closer to a [68]
bound protein.
ChIP-nexus associated protein Like ChIP-exo, with an additional self-circularization step that  [69]
increases library generation efficiency.
ChIP-seq associated protein Pulls down regions associated with a protein using an antibody  [70, 71, 72, 73]
against that protein, followed by sequencing.
CUT&RUN  associated protein Like ChIP-seq, with antibodies that diffuse into the cell to avoid [74]
breaking the cell apart prematurely.
DNase-seq chromatin accessibility ~ Uses a deoxyribonuclease (DNase) protein to cut DNA at open  [75]
chromatin, followed by sequencing.
Hi-C long-range interactions  Ligates DNA regions close in three dimensions together, followed  [76, 77]
by sequencing.
Hi-ChIP long-range interactions = Combines Hi-C and ChIP-seq. Ligates DNA regions inside of the [78]

and associated protein

nucleus with biotin, and applies ChIP-seq on ligated reads.

Table 2: Epigenomic assays. Glossary of assays referenced in this section.

5.1. Semi-automated genome annotation

To get a complete picture of the epigenomic state of each
part of the genome, researchers must combine the results of a
number of assays. Large consortia have produced datasets that
examine many aspects of epigenomic state [2, 82, 28], and one
can combine these into a data matrix. One can divide this data
matrix into row vectors, one for each assay. Alternatively, one
can divide the matrix into column vectors, one for each position
in the genome. Either way, the raw signal data proves difficult
to interpret and explore on its own.

Semi-automated genomic annotation (SAGA) methods [29]
aid in this process by clustering regions of the genome by sim-
ilarity in terms of epigenomic properties. One might describe
the task in terms of identifying clusters of similar column vec-
tors in the data matrix. However, we cannot assume indepen-
dence between the column vectors. In fact, data in each column
vector is highly dependent on its neighbors. Therefore, SAGA
methods also simultaneously segment the genome, defining the
width of a region dynamically and heterogeneously. This pro-
cess results in a partition of the genome called a segmentation,
with every region assigned to a different cluster, usually called
a label [83] or chromatin state [84].

We can almost completely automate the simultaneous seg-
mentation and clustering of a SAGA method. The “semi” in
“semi-automated genome annotation” refers to the interpreta-
tion of the resulting clusters, conducted by a human expert.
The expert examines both individual segments and aggregate
features of each cluster, and describes the captured pattern in

terms of a putative biological role. The identified roles may in-
clude the start of a gene, the end of a gene, and an enhancer—a
kind of genomic element that drives expression of apparently
distant genes—as well as many others. All of these have a char-
acteristic epigenomic pattern, and SAGA methods help to char-
acterize new instances of this pattern [85]. Researchers have
used these methods to annotate many genomes, including hu-
man [83, 84, 86, 87], mouse [88], and fruit fly [89], enabling
researchers to quickly assign function to genomic regions.
Methods such as HMMSeg [86], ChromHMM [84], Seg-
way [83], EpiCSeg [90], and IDEAS [87] provide an unsuper-
vised learning approach to finding regions with similar char-
acteristics. Most of these methods employ graphical models
to find similarities in epigenomic data across genomic regions.
These models treat the observed data as being emitted by some
theoretical state with defined parameters, reflecting the func-
tion of that region. The first SAGA method, HMMSeg [86],
takes a collection of input epigenomic assays, smooths the data
with wavelets, and uses a hidden Markov model [91, 92, 93,
94, 95, 96] where the hidden state represents cluster member-
ship. ChromHMM [84] uses a hidden Markov model that mod-
els input signals as vectors of random Bernoulli variables. The
Bernoulli vectorization binarizes input data into discrete “on”
or “off” categories for each region, based on whether or not the
signal in that region exceeds a significance threshold based on
a Poisson background distribution. EpiCSig [90] uses a similar
approach, although it takes raw sequencing counts and models
them as emissions from negative binomial distributions instead.



Segway [83], conversely, uses single- or multiple-component
Gaussians to model real-valued signal data [97]. Segway gener-
alizes the hidden Markov model with a dynamic Bayesian net-
work [98] that can impose hard constraints on segment lengths.
Segway can also perform semi-supervised learning, and an ex-
tension enables using it in a fully-supervised pipeline [99]. Fi-
nally, IDEAS [87] iteratively segments the genome for multi-
ple input cell types at once, and classifies similar regions from
across cell types using an infinite-state hidden Markov model.

5.2. Transcription factor binding site prediction

Transcription factors form a class of proteins that bind to
chromatin and activate or repress gene expression. There are
over 1,600 likely transcription factors, each with a characteris-
tic pattern of binding in different cell types [100, 101]. Under-
standing where transcription factors bind, and why, is crucial
to a mechanistic understanding of gene regulation. As tran-
scription factors influence the rate of gene expression, know-
ing where transcription factors bind can help predict when tran-
scription occurs. The most widely-used method to determine
transcription factor binding in living cells is ChIP-seq [70]. The-
se methods sequence protein-bound DNA, determining the po-
sitions at which the DNA comes in close proximity to a partic-
ular transcription factor. Related methods such ChIP-exo [68],
ChIP-nexus [69], and Cleavage Under Targets and Release Us-
ing Nuclease (CUT&RUN) [74] improve on the initial approach.

The existing assays for determining transcription factor bind-
ing locations fail under many conditions. Most of these meth-
ods, require an antibody specific to the target of interest, which
sometimes cannot be produced. Other methods, like CETCh-
seq [66], require editing the genome in ways that might cause
unexpected side effects. Furthermore, these assays all require
more biological material than researchers can typically obtain
from patient samples.

Computational approaches, however, can predict binding
for many transcription factors at once without requiring spe-
cific antibodies or large numbers of cells. These approaches
have the goal of predicting a transcription factor’s binding at
each genomic region. Several methods tackle prediction by in-
ferring transcription factor occupancy from DNA-binding mo-
tifs. These motifs consist of short, recurring DNA sequences to
which one transcription factor binds [102, 103, 104, 105]. Most
often, we represent a motif as a position weight matrix [106,
107] which characterizes the expected frequency of each base’s
occurrence within a binding sequence. Motifs can come from
ChIP-seq data but often come from simple extracellular experi-
ments such as protein-binding microarrays [108] or HT-SELEX
(high throughput systematic evolution of ligands by exponential
enrichment) [109]. The MEME method for motif elucidation
searches for recurring motifs in a given set of genomic regions
using an expectation maximization algorithm [110]. When gi-
ven transcription factor binding positions from ChIP-seq data,
this reveals recurring motifs for that transcription factor. Un-
fortunately, predictions that use sequence motifs alone [111] do
not identify experimentally verifiable binding sites with suffi-
cient utility for genome-wide use. A pair of observations state

this principle: the futility conjecture [107] and the dual futility
conjecture [112] (see Table 2).

To move beyond the futility of predicting transcription fac-
tor binding sites with sequence alone, most methods integrate
additional data. Sometimes these data include other epigenomic
data, such as chromatin accessibility data, that either already
exist in public databases or that one can obtain much more eas-
ily than a new ChIP-seq assay. CENTIPEDE [113] predicts
binding sites using a transcription factor’s position weight ma-
trix along with open chromatin or histone modification epige-
nomic data. It first finds all regions which match a known se-
quence motif, then uses the shape of signal in other epigenomic
assays to cluster each match. CENTIPEDE calculates the pos-
terior probability that a transcription factor binds a genomic
region given other information from other epigenomic assays.
For instance, a transcription factor bound to DNA will leave
an inaccessible region in chromatin accessibility data. Since
chromatin accessibility assays mark regions with bound tran-
scription factors as inaccessible, searching for these inacces-
sible regions can inform whether or not a transcription fac-
tor is bound. HINT [114] searches for the same patterns in
chromatin accessibility and histone modifications, but delin-
eates regions by detecting sudden changes in epigenomic sig-
nal. By modeling ChIP-seq data from histone modifications
and an input chromatin accessibility experiment using a hid-
den Markov model, HINT can find transcription factor binding
without motif information. It can also incorporate transcrip-
tion factor motifs and rank them. Methylphet [115] incorpo-
rates DNA methylation information, training a random forest on
bisulfite sequencing (BS-seq) data and ChIP-seq on one tran-
scription factor. This random forest can then predict transcrip-
tion factor binding sites using only BS-seq data on another sam-
ple.

Other methods use increasing numbers of data types to pre-
dict transcription factor binding sites. FactorNet [116] applies a
deep neural network to this problem. FactorNet trains on input
DNA sequences, chromatin accessibility, gene expression, and
the binding status of a given transcription factor. It uses this
network to predict the binding status of new input sequences,
chromatin accessibility, and expression levels. Keilwagen et
al. [117] combine features from both previous genomic annota-
tions, de novo motifs from ChIP-seq and DNase-seq, and raw
sequence-level data including RNA-seq. They model each of
these features in a different manner. Gaussians model numer-
ical features like RNA-seq expression levels, binomial distri-
butions model discrete features like gene annotations, and they
use a third order Markov model for genomic sequence. For a
new cell type, they then take an average of the prediction scores
from these models to obtain a new prediction of transcription
factor occupancy. This algorithm tied for best performance
in the ENCODE-DREAM in vivo Transcription Factor Bind-
ing Site Prediction Challenge [118]. Virtual ChIP-seq [112]
deemphasizes motifs, relying more on open chromatin data and
ChIP-seq data from other cell types [112]. It also uses data from
RNA-seq, a method for determining steady-state gene expres-
sion. Virtual ChIP-seq uses a multi-layer perceptron to integrate
these diverse data types and others, learning different hyperpa-



rameters and weights for each transcription factor.

5.3. Topologically associated domain prediction

While computational biologists usually represent the geno-
me as a simple string of letters, it actually has a complex three-
dimensional structure. Beyond the fine-scale structure inher-
ent in nucleosome positioning, each chromosome in a cell’s
nucleus has higher-order structures that persist in 3D. These
structures bring together regions of the genome distant in one
dimension, resulting in long-range chromatin interactions be-
tween genes and enhancers.

Chromosome conformation capture (3C) assays quantify sp-
atial proximity between specific genomic regions. Some of
these assays, such as Hi-C [76] and ChIA-PET [67], interrogate
spatial proximity in a whole-genome all-versus-all fashion. An-
other recent technique, Hi-ChIP [78], combines methods from
ChlIP-seq to only find large regions nearby a protein of interest.
These techniques have found self-interacting regions at various
scales that are conserved across species [119]. Topologically
associated domains (TADs) are persistent structures of spatial
proximity approximately 1 Mbp in length [119, 120]. Rather
than producing a vector like other epigenomic sequencing as-
says, these techniques produce a triangular matrix of each po-
tential interaction. Unfortunately, as the number of potential
interactions grows with the square of the number of regions
interrogated, the sequencing necessary to produce it becomes
rather expensive.

Many methods predict TAD locations from Hi-C data, such
as Chrom3D [121] and TADDit [122]. These tools use 3C-class
data to get the proximity of genomic regions to each other, and
use this information to infer TAD positioning. Chrom3D [121]
uses a Monte Carlo simulation to model histones as beads-on-a-
string. Its Monte Carlo simulation minimizes a loss-score func-
tion with Hi-C and ChIP-seq data as input. The final output
includes both a visualization of the chromatin, and the posi-
tion of the identified TADs. TADDbit [122] uses a breakpoint
detection method to segment the genome by finding the opti-
mal balance between the amount of Hi-C interactions upstream,
downstream, and within TADs. An optimal segmentation will
maximize the total log-likelihood such that all three interaction
categories are equal.

Rao et al. [120] have shown that chromatin compartmental-
izes itself into either gene dense, highly expressed regions, or
lowly expressed regions. They used a Gaussian hidden Markov
model on Hi-C interaction data to find large-scale self-interact-
ing regions, and inferred compartmentalization from this. Meth-
ods like BACH-MIX [123], and MEGABASE [124], have been
developed to determine which compartment each genomic re-
gion belongs to. BACH-MIX uses Markov chain Monte Carlo
techniques to converge on a 3D model of chromatin that agrees
with experimental 3C-class data. Since this experimental data
can assay a heterogeneous population, where chromatin can
freely move between multiple states, BACH-MIX takes into ac-
count multiple spatial rearrangements simultaneously. It mod-
els each genomic region as two substructures whose spatial
arrangement varies in the sample assayed. By modeling the
uncertainty between the possible arrangements with a mixture

component model, it reconstructs likely chromatin architectures
and their compartmentalization. MEGABASE predicts struc-
ture without 3C-class data, instead determining chromatin com-
partmentalization from histone modifications. It models DNA
as a polymer of self-interacting loci based on ChIP-seq data,
and trains a neural network to predict compartmentalization
based on this model.

5.4. Histone modification and DNA methylation prediction

Histone modification prediction also benefits from compu-
tational alternatives to ChIP-seq. Epigram [125] identifies se-
quence motifs across cell types that strongly hint at histone
modifications. Epigram then employs a random forest classi-
fier to predict histone modification and DNA methylation from
these motifs. ChromImpute [126] predicts, from a core set
of commonly performed epigenomic assays, signal from other
epigenomic assays. To do this, ChromImpute trains regression
trees on samples where the data type of interest exists. By
averaging the results of the trees from these previous experi-
ments, ChromImpute infers signal from unperformed experi-
ments. PREDICTD [127] imputes missing histone modification
and methylation signals with large factor decomposition.

6. Noncoding variant effects

Researchers and medical professionals often want to know
what effects DNA changes will have on cellular and organis-
mal phenotype. While interpreting the effects of changes to
the sequence coding for proteins is relatively easy, interpreting
the noncoding sequence that makes up most of a complex or-
ganism’s genome has proven far more challenging. Many non-
coding sequence variants are associated with particular pheno-
typic traits or genetic diseases [128]. Noncoding changes of-
ten cause phenotypic effects mediated through epigenomic and
gene expression changes [129]. We wish to distinguish benign
noncoding variants from those that are deleterious. Deleterious
noncoding effects often occur in specific regions that control
gene regulation, called regulatory regions as a class. Regula-
tory regions include enhancers [130] and regions at the start of
a gene [131].

Some methods aim to identify regulatory regions and dele-
terious noncoding changes based on sequence alone. For exam-
ple, gkm-SVM [132, 133] finds short sequences (k-mers) that
are indicative of enhancer activity. It then uses a support vec-
tor machine (SVM) to find enriched k-mers in the training set
versus a background of random sequences. It also allows these
k-mers to have an arbitrary number of breaks, or gaps, in the
sequence. The training dataset generally consists of binding
sites for a given transcription factor. The kernel for this SVM
computes a similarity score between two sequences, which are
represented as short sequences including gaps. DeepSEA [134]
trains a deep convolutional neural network on genomic sequence
to predict epigenomic state. It can predict both transcription
factor binding and histone modification status. DeepSEA ex-
amines the impact of sequence changes by comparing predic-
tions made for both unmodified and modified sequence. Bas-
set [135] learns chromatin accessibility from sequence alone.



It uses a deep convolutional neural network on the sequence to
obtain probability predictions of DNase-seq signal.

We can also determine a mutation’s deleteriousness by in-
tegrating genomic conservation data. Conservation measures
how little a sequence has changed over the course of evolu-
tion. Mutations almost certainly have occurred in conserved
regions over evolutionary time, but those that decrease organis-
mal fitness will have greatly diminished prevalence today. We
therefore assume that sequences that remain conserved across
species or among populations in the same species indicate that
mutations there would be highly deleterious, cause disease, or
cause death.

Several methods use conservation to identify deleterious mu-
tations. Combined Annotation Dependent Depletion (CADD)
integrates 63 features, including annotations drawn from con-
servation and epigenomic data, using a linear kernel SVM [136].
To label the SVM'’s training data, the CADD authors distinguish
between common sequence variants that have changed since the
human—chimpanzee common ancestor, and depleted simulated
variants. Eigen, by contrast, applies an unsupervised method
that uses conservation scores, protein function scores, and al-
lele frequencies from a variety of mutation databases [137]. By
combining these into a block matrix, and taking the eigende-
composition of that matrix, Eigen finds each mutation’s predic-
tive accuracy for deleteriousness.

Some methods for predicting deleterious noncoding sequen-
ce variants rely on Inference of Natural Selection from Inter-
spersed Genomically coherent elements (INSIGHT) [138] to
identify the strength of natural selection on these variants. IN-
SIGHT uses a complex evolutionary model that incorporates
knowledge from multiple species and accounts for heteroge-
neous observations at different parts of the genome. The fit-
Cons method clusters DNase-seq, RNA-seq, and histone mod-
ification data not unlike the SAGA methods above [139]. It
then estimates the fraction of bases within each cluster that IN-
SIGHT identifies as strongly under natural selection. fitCons
labels each genomic region with an importance score based
on INSIGHT’s natural selection probability. LINSIGHT uses
mostly the same procedure as fitCons, but eschews fitCons’
clustering step for a generalized linear model relating observed
epigenomic features to INSIGHT scores [140]. Like fitCons, it
outputs INSIGHT-scored fitness for each genomic region.

7. Integrative single-cell analysis

A major question in biology is how to describe and quan-
tify every cell in a multicellular organism [141], such as human,
which can contain a myriad of different types of cells. Cell type,
such as muscle or nerve, is typically defined based on function
of a tissue in which the cells reside and unique morphological
properties of that tissue [142]. However, considerable cell-to-
cell variation in cells within a single cell type indicates the exis-
tence of distinct cell states (e.g., mitotic, migratory) and various
cell behaviors, which depend on local activity of each cell in a
particular microenviroment. Even within a single tissue, there
are diverse populations of cells, representing different manifes-
tations of that tissue.
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Figure 4: Single-cell multi-omics data integration. A typical single-cell data
analysis consists of three steps. First, the raw data are preprocessed, filtered,
and quality-controlled separately for each assayed omics dimension, account-
ing for analytical challenges, such as technical variation, sparse signal, and am-
plified artifacts. Second, as single-cell data are intrinsically of low coverage,
it is a good practice to increase the signal-to-noise ratio by aggregating data;
for example, by combining expression levels of genes with similar functions
or similar DNA methylation levels across genomic regions bound by the same
transcription factors. Finally, data are integrated into one multi-omics map.

A traditional approach to studying tissues relies on a pooled
assay and uses a weighted average of a bulk sample of cells from
a particular tissue (i.e., a large population of cells), which can
obscure variations across cells within the sample. Advances in
single-cell technologies have enabled measurements at single-
cell resolution and have opened new avenues to investigate the
heterogeneity of cells across tissues and within cell popula-
tions [143]. Single-cell technologies profile individual cells
from various perspectives, including genomic [144], epigeno-
mic [145], transcriptomic [146], and proteomic [147] perspec-
tives. However, multi-omics single-cell measurements pose a
significant challenge for data analysis, integration, and inter-
pretation [148], one that could benefit from machine learning.
Integrative single-cell analyses focus on: (1) identification and
characterization of cell types and the study of their organization
in space and over time, and (2) inference of gene regulatory
networks from multi-omics data and assessment of network ro-
bustness across cells.

7.1. Cell type discovery and exploration

Single-cell RNA sequencing (scRNA-seq) is a powerful tech-
nology to measure gene expression of individual cells and to
characterize heterogeneity and functional diversity of cell pop-
ulations [149]. To characterize a cell population one needs to
identify what genes are expressed in each cell and how strong
that gene expression is. Information on heterogeneity of cells in
a given sample can answer questions that cannot be addressed
by traditional ensemble-based methods, in which gene expres-
sion measurements are averaged over all cells pooled together.



Recent studies have demonstrated that de novo cell type discov-
ery and identification of functionally distinct cell subpopula-
tions are possible via unbiased analysis of all transcriptomic in-
formation provided by scRNA-seq data [150]. However, com-
pared with bulk RNA-seq data, unique challenges associated
with scRNA-seq include high dropout rate [151] (where a large
number of genes have zero reads in some cells, but relatively
high expression in the remaining cells) and curse of dimension-
ality (where distances between cells become more and more
similar as dimension of the space they reside within increases,
e.g., mammalian expression profiles are frequently studied as
vectors with about 20,000 genes) [148].

To address these challenges, various unsupervised compu-
tational algorithms [152, 153, 154, 155, 156] have been pro-
posed since the first study of scRNA-seq [157]. Most of these
computational algorithms either rely on dimension-reduction
techniques [153, 154, 156] or utilize a consensus from multi-
ple clustering results [152, 155]. For example, Zero Inflated
Factor Analysis (ZIFA), one of the very first dimensionality re-
duction methods to address the dropout events, assumes that the
dropout rate for a gene follows a double exponential distribu-
tion with respect to the expected expression level of that gene
in the population [153]. CellTree [158] incorporates a Latent
Dirichlet Allocation model with latent gene groups to measure
cell-cell distance by a detected tree structure outlining the hier-
archical relationship between single-cell samples to introduce
biological prior knowledge. Cleary et al. [154] take another
perspective by utilizing compressed sensing together with the
assumption that scRNA-seq data are collected in a compressed
format, as composite measurements of linear combinations of
genes. However, a clear disadvantage of these dimensionality
reduction methods is a strong statistical assumption of data fol-
lowing an appropriate distribution. Such assumptions do not
always hold and depend on a particular scRNA-seq technology
or platform.

Different from dimensionality reduction methods, ensem-
ble methods first generate multiple approximate representations
or clusterings for cells and then integrate them in a principled
way. For instance, SIMLR [152] first generates multiple kernels
to represent approximate cell-cell variabilities and then uses
a non-convex optimization framework to refine and integrate
these kernels and output a detailed and fine-grained descrip-
tion of cell-cell similarity matrix. This learned similarity matrix
can enable efficient clustering and visualization for scRNA-seq
data. SC3 [155] takes a similar strategy in that it first generates
multiple clustering results with different subsets of genes and
then combine these clustering results with majority voting.

The scRNA-seq data analysis methods described so far deal
with scRNA-seq data generated by a single experiment. When
it comes to integrative analysis of scRNA-seq data from multi-
ple patient groups, different samples across tissues, and multi-
ple conditions, the number of available methods is limited. The
unique challenge lies in the fact that the accompanying biolog-
ical and technical variation tends to dominate the signals for
clustering the pooled single cells from the multiple populations.
A recent effort [159] developed a multi-task clustering method
to address the problem. This method introduces a multi-task
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learning method with embedded feature selection to simulta-
neously capture the differentially expressed genes among cell
clusters and across all cell populations or experiments to achieve
better single-cell clustering accuracy.

7.2. Single-cell multi-omics analysis

Beyond scRNA-seq data, other single-cell sequencing tech-
niques measure various biological dimensions, such as DNA
methylation [160], histone modifications [161], open chromatin
(scATAC-seq and scDNase-seq [162, 163]), chromosomal con-
formation [164], proteome [165], and metabolome [166]. Sin-
gle-cell multi-omics data are potentially more powerful to pro-
vide a comprehensive understanding of the cells than any single-
omics data [167], but their analysis poses interesting challenges
for machine learning. In particular, one needs to discover not
only information shared across various omics data but also com-
plementary signals that are specific to a particular omics data
type (Figure 4).

Current methods for analysis of single-cell multi-omics data
are correlation-based or clustering-based [168]. First, a prevail-
ing approach considers pairs of omics datasets and generates
hypotheses by measuring correlations between datasets. For ex-
ample, several studies [169, 170, 171, 172] apply canonical cor-
relation analysis (CCA) [173, 174, 175], a method that has been
widely used in bulk data analysis, to estimate correlations be-
tween single-cell DNA methylation and scRNA-seq data. CCA
learns a low-dimensional representation of omics datasets that
captures common information shared across all datasets. How-
ever, the CCA-based analysis is limited because it cannot take
into account dropout events. Dropout events are a special type
of missing values caused by the low number of RNA transcrip-
tomes in the sequencing experiment and the stochastic nature
of gene expression at a single-cell level. Consequently, these
dropout events become zeros in a gene-cell expression matrix
and these “false zeros” mix with “true zeros” representing genes
not expressed in a cell at all. To conquer this dropout issue, im-
putation methods use correlations between multi-omics data to
impute the missing values. For example, MAGIC [176] imputes
the missing values by applying a diffusion model to gene-gene
correlation matrix. Similarly, scImpute [177] pulls information
from groups of similar cells to complete a sparse data matrix
and obtain a better representation of cell-cell correlations.

Another direction for integrating single-cell multi-omics da-
ta uses a two-stage approach: first, construct a separate cluster-
ing for each omics dataset, and then combine these clusterings
for comparison and analysis [171, 178, 179, 180]. The advan-
tage of such an approach is its ability to infer importance of
each data type and to identify information common to all data
types. For example, studies [179, 180] adopt the method that
first clusters cells based on each omics dataset and then perform
extensive comparisons between clusters using statistical associ-
ation tests. Along similar lines, MATCHER [181] uses man-
ifold alignment of single-cell multi-omics data. MATCHER
first uses a Gaussian process latent variable model to indepen-
dently cluster every cell in each omics dataset. It then aligns
these clusterings and combines them into a global clustering



of cells. These clustering approaches have the advantage of de-
tecting both complementary and common patterns in single-cell
multi-omics data. Nevertheless, they can suffer from computa-
tional complications caused by extensive generation and statis-
tical comparison of many clusterings.

7.3. Large-scale single-cell bioinformatics

As single-cell technologies advance, the number of cells
generated per each experiment increases, demanding for effi-
cient and large-scale bioinformatics [151]. Present approaches
for large single-cell data utilize: (1) approximate inference [182]
and fast software implementations [183], or (2) adopt deep learn-
ing methods that take small batches of cells as input [184, 185].
For example, bigScale [182] uses large sample sizes to approx-
imate an accurate numerical model of noise and cluster datasets
with millions of cells. SCANPY [183], however, provides an
efficient Python-based implementation that is easy to interface
with other machine learning packages, such as Tensorflow [186].

Another direction within this vein is to use deep-learning
based methods, since they can naturally train a multi-layer neu-
ral network using memory-efficient mini-batch stochastic gra-
dient descent. For example, [184] apply deep auto-encoders to
obtain low-dimensional representations that optimize the recon-
struction of original noisy inputs. Similarly, SAUCIE (Sparse
Autoencoder for Unsupervised Clustering, Imputation, and Em-
bedding) [185] uses a multi-task deep auto-encoder and per-
forms several key tasks for single-cell data analysis including
clustering, batch correction, visualization, denoising, and im-
putation. SAUCIE is trained to reconstruct its own input after
reducing its dimensionality in a 2D embedding layer, which can
be used to visualize the data. Different from traditional deep
auto-encoders, SAUCIE uses two additional model regulariza-
tions: (1) an information dimension regularization to penalize
the entropy as computed on the normalized activation values of
each neural layer and thereby encourage binary-like encodings
amenable to clustering, and (2) a maximal mean discrepancy
(MMD) penalty to correct for batch effects. Although these
deep learning methods achieve promising results and are capa-
ble of dealing with large single-cell data, their black-box nature
and lack of interpretability limit their wide adoption in practice.

8. Cellular phenotype and function

Our ability to generate sequence data has been improving
at a rapid rate for the past decade, and this trend is likely to
continue for the next decade (Section 5). A vast majority of
these sequences are of proteins of unknown function and their
worth could be substantially increased by knowing the biologi-
cal roles that they play. Accurate annotation of protein function
is a key to understanding life at the molecular level and has
great biomedical and pharmaceutical implications. To this aim,
numerous research efforts, such as the Encyclopedia of DNA
Elements (ENCODE) [1] (Section 5) and the Genotype-Tissue
Expression (GTEx) [187] projects, have expanded the breadth
of available data that lend themselves to protein function pre-
diction (Figure 5).
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Figure 5: A matrix-based representation of diverse datasets relevant for
gene function prediction. Let us consider a hypothetical gene function predic-
tion task. Here, the function is response to bacterial infection [188], meaning
that the task is to identify genes in an eukaryotic organism that determine how
the organism will respond to a bacterial infection. There is a variety of diverse
datasets potentially relevant for this task and each dataset is typically repre-
sented with a separate data matrix. Shown is an example with six data matrices,
including gene-phenotype associations, gene expression profiles, biomedical
literature, and annotations of research papers. Integrative approaches solve the
gene function predict task by establishing a rigorous statistical correspondence
between different input dimensions of these seemingly disparate data matri-
ces [27, 33, 44, 49, 189, 190, 191, 192, 193, 194]. For example, genes can be
linked to Medical Subject Headings (MeSH concepts) via gene-publication re-
lationships (i.e., lists of genes discussed in a given research paper), followed by
publication-MeSH relationships (i.e., lists of the MeSH concepts assigned to a
given research paper). For example, a collective matrix factorization approach
in [33] can fuse such complex systems of data matrices. The approach has been
used to predict gene functions in various species [33, 191] and has subsequently
been applied to prioritization of genes mediating bacterial infections [195].

Protein function is a concept describing biochemical and
cellular aspects of molecular events that involve proteins. Pro-
tein functions can be divided into three major categories: (1)
molecular functions, e.g., the specific reaction catalyzed by an
enzyme, (2) biological processes, e.g., the metabolic pathway
the enzyme is involved in, and (3) systems or physiological
events, e.g., if the enzyme is involved in respiration, photosyn-
thesis or cell signaling. One can also consider a fourth level,
i.e., cellular components, describing cell compartments in which
proteins have a role, such as a cell membrane and organelles.
Functions of proteins can also vary in space and time as in the
case of moonlighting proteins (i.e., multitask proteins). Fur-
thermore, many protein functions are carried out by groups of
interacting proteins and these interactions can be predicted.

Most proteins are poorly characterized experimentally and
we know little about their functions. Furthermore, vast major-
ity of proteins with known functions are from model organisms,
but even for those organisms, a significant part of all proteins
coded in their genomes remain to be characterized. For exam-
ple, in Escherichia coli, about one third of the 4,225 proteins
remain functionally unannotated (i.e., orphan proteins) and a



similar proportion applies to Saccharomyces cerevisiae.

8.1. Protein function prediction

Protein functions can be inferred on the basis of amino acid
sequence similarity [196], gene expression [197], protein-pro-
tein interactions [47, 198, 196], metabolic interactions [199],
genetic interactions [200], evolutionary relationships [201], 3D
structural information [202], mining of biomedical text [203],
and any combination of these data. At the most basic level,
protein function prediction methods can be categorized into two
categories: (1) unsupervised similarity-based methods using a
principle that similar proteins share similar functions, and (2)
supervised methods using a classification of protein functions
in the Gene Ontology (GO) [204].

Similarity-based prediction methods relate a functionally
uncharacterized protein with proteins whose functions are al-
ready known. The simplest and most often used approach uses
sequence similarity search. Given a query protein, similarity
search programs, such as Basic Local Alignment Search Tool
(BLAST) [205], scan the sequence data banks for homologous
proteins of known function or structure and transfer their func-
tions to the query protein. If the query protein is not homol-
ogous to any protein with known function, it is possible to de
novo predict functions of the query protein. A de novo predic-
tion uses diverse information about the query protein to identify
biological properties that are shared among all proteins with
the same function (e.g., proteins with the same function might
act similarly in similar conditions, for example, in a particular
human tissue). These properties are then used to select pro-
teins whose functions are transferred to the query protein [48].
For example, [15, 206] developed a low-dimensional matrix
decomposition approach that combined genetic interaction net-
works with other types of gene-gene similarity networks. These
approaches used networks to learn an embedding (i.e., a feature
vector) for every protein. This was accomplished by optimiz-
ing a network reconstruction objective, assuming that each pro-
tein’s embedding depended on embeddings of protein’s neigh-
bors in the network. The learned embeddings were then used
as input to a clustering algorithm. Many matrix decomposi-
tion [34] and tensor factorization [207] methods have proven
useful for protein function prediction [208]. For example, [209,
210] used tensor computations to combine many weighted co-
expression gene similarity networks. The same approach was
also used to identify protein complexes, i.e., groups of two or
more proteins that form a molecular machinery and together
perform a particular function [211, 212]. Along similar lines,
[213,214, 22] used Bayesian latent factor models and combined
gene expression, copy number variation (CNV), and methy-
lation data to predict protein functions. As a final example,
many approaches aim to understand protein functions by com-
bining data from different tissues [22, 215, 23, 216] or dif-
ferent species [217, 218, 219, 220, 221, 222]. For example,
OhmNet [23] organizes 107 human tissues in a multi-layer net-
work, in which each layer represents a tissue-specific protein-
protein interaction network. OhmNet models the dependen-
cies between network layers (i.e., tissues) using a tissue hierar-
chy and develops an unsupervised feature learning method then
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Figure 6: Gene prioritization. Gene prioritization aims to identify the most
promising genes among a list of candidate genes with respect to a biological
process of interest. The biological process of interest is most often represented
by a small set of seed genes that are known to be involved in the process.
Typically, gene lists generated by traditional disease gene hunting techniques
generate dozens or hundreds of genes among which only one or a few are of
primary interest. The overall goal is to identify these genes and, in a second
step, experimentally validate these genes only. Many different computational
methods that use different algorithms, datasets, and strategies have been de-
veloped [195, 224, 226, 229, 230, 231, 232, 233, 234]. Some of these ap-
proaches have been implemented as publicly available tools and several of these
approaches have been experimentally validated [195, 226, 230, 231, 227].

learns an embedding for every node (i.e., protein) in the multi-
layer network by considering edges within each layer (i.e., pro-
tein-protein interactions) as well as edges across layers (i.e.,
tissue-tissue similarities).

If there are examples of proteins with a particular function,
they can be used to identify additional proteins with the same
function. This is accomplished by gene prioritization (Fig-
ure 6). Given a set of genes with unknown function, gene pri-
oritization ranks them by their similarity to genes with known
function (i.e., seed genes). Genes at the top of the ranked list
are most similar to seed genes and thus are likely to have the
same function as seed genes. Gene prioritization methods can
be categorized into four groups: (1) similarity scoring meth-
ods that use filtering techniques to independently analyze each
dataset [223], (2) methods that aggregate gene feature vectors
from different datasets, e.g., by concatenation, and then use the
aggregated vectors as input to a downstream classifier [224], (3)
methods that use each dataset separately to estimate the sim-
ilarity of genes with seed genes and then combine similarity
scores via a linear or nonlinear weighting [225, 226, 227], and
(4) methods that construct a separate gene-gene correlation net-
work for each dataset and combine the networks under supervi-
sion of seed genes [228, 47].

Supervised methods for function prediction use a classifi-
cation of protein functions in the GO [204] to specify a super-
vised prediction task. The task presents four interesting chal-
lenges for machine learning methods. First, functions of pro-
teins are classified into over 40,000 GO terms, and this large
and complex space represents a challenge for any classification
method. Second, there are dependencies between GO terms
that lead to situations, where proteins are assigned to multiple
functions in the GO, at different levels of abstraction (e.g., cel-
lular transport versus extracellular amino acid transport). Fur-
thermore, proteins typically have multiple different functions,
making the function prediction inherently a multi-label, multi-



class problem. Finally, high-level physiological functions, such
as inter-cellular transport or regulation of heart rate, go be-
yond simple molecular interactions and require many proteins
to participate, and thus such functions usually cannot be pre-
dicted by considering a single protein in isolation. To take on
these challenges, many approaches use joint latent factor mod-
els [191, 189], multi-label learning [47], and ensemble learn-
ing [39, 235, 218, 236]. A number of machine learning meth-
ods were also developed to integrate regulatory networks and
pathway information to predict functional modules, i.e. groups
of functionally related proteins [237, 238, 51, 236, 239, 240],
which only implicitly invoke the similarity principle described
above.

Another consideration is a direct inference of a functional
ontology (i.e., a hierarchy of protein functions) from data [241,
242]. For example, [241] use a hierarchical network commu-
nity detection algorithm together with protein-protein interac-
tion network of Saccharomyces cerevisiae to infer an ontology
whose coverage is comparable to manually-curated GO anno-
tations. Another common approach is to use neural networks
to predict protein functions. For example, [23] use a neural
network to predict tissue-specific protein functions, i.e., func-
tions taking place in a particular cell type, tissue, organ, or or-
gan system. Another example that employs neural networks is
[243], who use deep learning to learn protein embeddings us-
ing protein sequence data, cross-species protein-protein inter-
action network, and the GO hierarchical relationships between
protein functions. Along similar lines, [244] use several mil-
lion genotypes to train a neural network whose architecture is
determined by the GO hierarchy. As an example of biological
application, [244] demonstrate that neural model can simulate
cellular growth almost as accurately as laboratory experiments.

8.2. Protein-protein interaction prediction

One major strategy to study cellular phenotype and func-
tion is to analyze networks of physical interactions between
proteins. These physical protein-protein interaction (PPI) net-
works carry out the core functions of cells since interacting pro-
teins tend to be linked to similar phenotypes and participating
in similar functions [17]. Protein-protein interactions also or-
chestrate complex biological processes including signaling and
catalysis (Figure 7) [50].

With the recent advances in experimental techniques, the
number of identified PPIs keeps increasing [245]. However,
we are still far from the complete knowledge of PPIs and their
characterization at the network level. Computational methods
to predict PPIs have thus recently become popular due to the
significant increase in other types of protein data, such as pro-
tein sequence and structural information, which is indicative of
PPIs.

Proteins can interact with or co-localize with a variety of
other biomolecules and can form stable complexes. These com-
plexes can bind to DNA, alter gene expression, and alter cell
phenotype. A predictive method by Jansen et al. [246] improves
analyses based on pull-down assays, which experimentally find
proteins interacting with an input protein. However, these as-
says tend to be noisy and are often incomplete. To address
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Figure 7: A network-based approach to cellular function prediction. Bio-
logical networks are a powerful representation for the discovery of interactions
and emergent properties in biological systems, ranging from cell type identifi-
cation at a single-cell level to disease treatment at a patient level. Fundamental
to biological networks is the principle that genes involved in the same cellular
function or underlying the same phenotype tend to interact [50]. This principle
has been used many times to combine and to amplify signals from individual
genes, and has led to remarkable discoveries in biology. For example, network-
based methods for protein function prediction [249, 250, 23, 251] often use a
heterogeneous protein-protein interaction network and conduct a large number
of random walks on the network that are biased towards visiting known proteins
associated with a specific function. These methods then calculate a score for
each protein representing the probability that a protein is involved in a given
cellular function based on how often the protein’s node in the network is visited
by random walkers.

this issue, Jansen et al.’s [246] method uses Bayesian inference
across pairs of interacting proteins from a variety of datasets,
along with transcriptomic and essentiality information to find
complete interaction networks. Another example is Chrom-
Net [247], which predicts PPIs among chromatin-interacting
proteins such as transcription factors using epigenomic data. It
does this by identifying conditional dependence structures be-
tween proteins present at specific genomic regions. In another
example [248], over 9,000 mass spectrometry protein interac-
tion datasets from a variety of human and animal cells and tis-
sues were combined into a comprehensive map of human pro-
tein complexes and predict PPIs. Interestingly, the combined
map revealed thousands of PPIs that were not identified by any
individual mass spectrometry experiment, thus demonstrating
the value of data integration. This analysis was accomplished
by a network-based protein complex discovery pipeline. The
computational pipeline first generated an integrated protein in-
teraction network using features from all input datasets. To pre-
dict PPIs, the approach trained a protein interaction classifier
based on support vector machines (SVMs). To predict protein
complexes, the approach then employed a Markov clustering
algorithm for graphs and optimized the clustering parameters
relative to a training set of literature-curated protein complexes.

9. Computational pharmacology

The goal of computational pharmacology is to use data to
predict and better understand how drugs affect the human body,
support decision making in the drug discovery process, improve
clinical practice and avoid unwanted side effects (for an excel-
lent review, see [254, 20]). The properties of drugs and their in-



Term

Description

drug discovery
side effect

medical indication
drug-protein binding

target protein

drug-target interaction

drug-drug interaction

protein-ligand binding

The process through which potential new drugs are identified. It currently takes 13—15 years
and between $2 billion and $3 billion on average to get a new drug on the market [252].
Secondary, typically undesirable effect of a drug, e.g. adverse drug reaction.

The use of a drug for treating a disease, e.g., insulin is indicated for the treatment of diabetes.
The formation of a drug-protein complex. It describes the ability of a protein to form bonds
with a drug in the human body. For example, if a drug is 95% bound to a protein and 5% free,
then 5% of the drug is active in the human body and causes pharmacological effects.

Protein that is addressed and controlled by a chemical compound. Modulation of a target
protein can have a therapeutic effect. Target protein is druggable when it binds with high
affinity to a drug.

A drug interacting with a target protein in the human body and affecting the protein’s activity.
Phenomenon, in which the activity of one drug changes, favorably or unfavorably, if taken
with another drug. It is often defined through the concepts of synergy and antagonism [253].
The process by which a ligand (usually a molecule) produces a signal by binding to a site on

a target protein.

drug combination

structural interaction fingerprint
on-target side effect

off-target side effect

Combinatorial therapy that involves a concurrent use of multiple medications.

Binary vector representation of 3D structural information about protein-ligand binding.
Side effect that results from affecting the desired target protein of treatment.

Side effect that results from an unwanted interaction of a drug with other proteins.

Table 3: Glossary for computational pharmacology. Terms referenced in this section.

teractions with the human body can be described in a variety of
ways and measured at the physicochemical, pharmacological,
and phenotypic levels. One can measure the physicochemical
properties of a drug, such as chemical structure, melting point,
or hydrophobicity. One can also measure interactions between
a drug and its target proteins by quantifying binding strength,
kinetic activity, and the change in a cellular state or gene ex-
pression. Furthermore, one can use phenotypic data, such as
information about diseases that a particular drug treats, drug
side effects, and interactions of a drug with other drugs. Such
data lend themselves to mathematical representations, which
are then analyzed to guide drug discovery and in vivo experi-
ments in a laboratory.

9.1. Drug-target interaction prediction

At the most basic level, drugs have an impact on the hu-
man body by binding with target proteins and affecting their
downstream activity. Identification of drug-target interactions
is thus important for understanding key properties of drugs, in-
cluding drug side effects, therapeutic mechanisms, and medical
indications. Traditional prediction of drug-target interactions
uses molecular docking [255], an approach that combines 3D
modeling and computer simulation to dock a candidate drug
into a protein-binding pocket and then score the likelihood of
the pair’s interaction. This approach provides insights into the
structural nature of the interaction, however, the performance
of molecular docking is limited when the 3D structures of tar-
get proteins are not available. As molecular docking can be
computationally very demanding, ligand-based methods [256]
have emerged as an alternative approach to drug-target inter-
action prediction. A ligand-based approach specifies an ab-
stract model of chemical properties that are considered impor-
tant for the interaction with the chosen target protein and then it
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aligns and scores candidate drugs against this model. However,
ligand-based approaches perform poorly when the chosen tar-
get protein has only a small number of known binding ligands
and the quality of the abstract model is low.

Many recent efforts focus on using machine learning for
drug-target interaction prediction. These efforts are based on
the guilt-by-association principle, a principle that similar drugs
tend to share similar target proteins and vice versa. Using this
principle, prediction can be formulated as a binary classifica-
tion task, which aims to predict whether a drug-target interac-
tion is present or not. This straightforward classification ap-
proach considers known drug-target interactions as positive la-
bels and uses chemical structure of drugs and DNA sequence
of target proteins as input features (or kernels) [257, 258, 259].
Additionally, many methods integrate side information into the
classification model, such as drug side effects [18, 260], gene
expression profiles [261], drug-disease associations [262], and
genes’ functional information [263]. Such data provide a multi-
view learning setting for drug-target interaction prediction [264,
265]. For example, [264] use kernelized matrix factorization
and combine multiple types of data (i.e., views), each data type
is treated as a different kernel, to obtain better prediction per-
formance than single-kernel scenarios. Another common ap-
proach is to represent multiple types of data as a heterogeneous
network (Figure 8) and predict target proteins using random
walks. These methods use diffusion distributions to calculate
a score for each node (protein) in the network, such that the
score reflects the probability that the protein is targeted by a
particular drug [262, 266, 267]. In addition to random walks,
one can use meta-paths [268] to extract drug and protein feature
vectors from a heterogeneous network and then feed them into
a classifier [269].



However, hand-engineered features, such as meta-paths, of-
ten require expert knowledge and intensive effort in feature en-
gineering and can thus prevent methods from being scaled to
large datasets. For these reasons, matrix factorization algo-
rithms are used to learn an optimal projection of a heteroge-
neous network into a latent feature space. The learned latent
space is used to infer a drug-target network via a sequence of
matrix operations and the resulting drug-target network is used
to predict drug-target interactions [270]. A potential limitation
of classic matrix factorization is that it takes as input a homoge-
neous network and thus one needs to collapse a heterogeneous
network into a homogeneous one, discarding potentially useful
information. This limitation is overcome by multi-view, collec-
tive, and tensor factorization approaches to drug-target interac-
tion prediction [264, 271, 272]. In addition to using matrix fac-
torizations, which are shallow feature learning algorithms, one
can use deep feature learning algorithms, such as deep autoen-
coders [273]. These algorithms generate a feature vector for ev-
ery drug and protein in the dataset. Using the learned drug and
protein features, the method finds the best projection from the
drug space onto the protein space such that the projected feature
vectors of drugs are geometrically close to the feature vectors
of proteins that are targeted by these drugs [19]. The projection
is learned to minimize prediction error on a training dataset of
drug-target interactions [274]. After model training, the method
predicts target proteins for a particular drug by ranking the pro-
teins based on their geometric proximity to the drug’s vector in
the projected space.

9.2. Drug-drug interaction and drug combination prediction

The use of drug combinations is a common treatment prac-
tice. Many patients take multiple drugs at the same time to treat
complex diseases or co-existing conditions [278]. A drug com-
bination consists of multiple drugs, each of which has generally
been used as a single effective medication in a patient popula-
tion [279]. Since drugs in a drug combination can modulate
the activity of distinct proteins, drug combinations can improve
the therapeutic efficacy by overcoming the redundancy in un-
derlying biological processes [280]. While the use of multiple
drugs may be a good practice for the treatment of many dis-
eases, a major consequence of a drug combination for a pa-
tient is a much higher risk of side effects which can be due to
drug-drug interactions [190, 281]. Such side effects can emerge
because the activity of one drug may change if taken with an-
other drug. This means that a combination of drugs leads to
an exaggerated response in patients that is over and beyond the
response we would expect under no interaction.

Drug-drug interactions are one of the major concerns in
drug discovery. They are extremely difficult to identify man-
ually because there are combinatorially many ways in which
a given combination of drugs can clinically manifest and each
combination is valid in only a certain subset of patients. Fur-
thermore, it is practically impossible to test all possible pairs of
drugs [282], and observe side effects in relatively small clinical
testing. Given the large number of drugs, experimental screens
of pairwise combinations of drugs pose a formidable challenge
in terms of cost and time. For example, given n drugs, there
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Figure 8: Drug-target and drug-drug interactions. A heterogeneous network
representation of drugs and proteins targeted by the drugs. In addition to inter-
action information, e.g., drug-drug interactions, drug-protein interactions, and
protein-protein interactions (Section 8), each node in the network has a feature
vector describing important biological characteristics of the node, e.g., drug’s
chemical structure, and protein’s activity in tissues. Such networks are used to
address two important tasks in computational pharmacology. The first is the
prediction of drug-target interactions [262, 266, 19, 267], which are fundamen-
tal to the way that drugs work and often provide an important foundation for
other tasks in the computational pharmacology. The second is the prediction of
drug-drug interactions [275, 276, 272, 277], which are fundamental to model-
ing drug combinations and identifying drug pairs whose combination gives an
exaggerated response beyond the response expected under no interaction. Zit-
nik et al. [46] use heterogeneous networks, such as the one shown in the figure,
and develop a graph convolutional deep network approach to predict which side
effects a patient might develop when taking multiple drugs at the same time.

are n(n — 1)/2 pairwise drug combinations and many more
higher-order combinations. Furthermore, unwanted side effects
are recognized as an increasingly serious problem in the health
care system affecting nearly 15% of the U.S. population [283].
To address this combinatorial explosion of candidate drug com-
binations, computational methods were developed to identify
drug pairs that potentially interact [284].

Drug-drug interactions are defined through the concepts of
synergy and antagonism [285, 286] and are quantified biolog-
ically by measuring the dose-effect curves [287, 288] or cell
viability [289, 290, 291, 292, 282, 293, 294]. Computational
methods use these measurements to identify combinations of
drugs, most often pairs of drugs, that potentially interact. These
methods predict drug-drug interactions by estimating the scores
representing the overall strength of an interaction for a drug
pair. Existing approaches are classification- or similarity-based.
Classification-based approaches consider drug-drug interaction
prediction as a binary classification problem [295, 290, 292,
282, 294, 296]. They use known interacting drug pairs as pos-
itive examples and other drug pairs as negative examples. The
methods first obtain a feature representation of each drug pair.
For example, they use a linear or nonlinear dimensionality re-
duction algorithm on each data type to derive a feature vector
for each drug [292, 297], followed by an aggregation of feature
vectors of individual drugs to obtain integrated feature vectors



of drug pairs. Finally, the methods train a binary classifier,
such as logistic regression classifier, support vector machine,
or neural network on feature representations of drug pairs. In
contrast, similarity-based approaches assume that similar drugs
have similar interaction patterns [298, 299, 289, 254, 33, 291,
300]. These methods combine different kinds of drug-drug sim-
ilarity measures defined on drug chemical substructures, struc-
tural interaction fingerprints, drug side effects, off-target side
effects, and connectivity of molecular targets. The methods ag-
gregate similarity measures through clustering or label propa-
gation to predict new drug-drug interactions [301, 302, 303].

Moving beyond predicting the chance of drug-drug interac-
tion occurrence, recent methods identify how a given drug pair
manifests clinically within a patient population [46, 304, 305].
These methods use molecular, drug, and patient data to pre-
dict side effects associated with pairs of drugs. For example,
Decagon [46] constructs a multimodal graph of protein-protein
interactions, drug-protein interactions, and drug-drug interac-
tions (Figure 8). The approach represents each type of side ef-
fect as a different edge type in the multimodal graph. Decagon
uses the graph to develop a graph convolutional neural network,
a type of neural network designed for graph data [37], to predict
side effects of drug pairs.

9.3. Drug repurposing

Drug repurposing (also called “drug repositioning”, Fig-
ure 9) seeks to find new uses for known drugs as well as for
novel molecules. Fundamental to drug repurposing are the fol-
lowing two observations. First, many drugs have multiple target
proteins [306] and hence a multi-target drug might be used for
more than one purpose. Second, different diseases share ge-
netic factors, molecular pathways, and symptoms [307, 17] and
hence a drug acting on such overlapping factors might be bene-
ficial to more than one disease.

At a high level, drug repurposing approaches can be cat-
egorized into four groups: (1) methods that predict new uses
for existing drugs on the basis of protein target interaction net-
works [308, 309, 310, 311, 274], (2) methods that make predic-
tions by analyzing gene expression activation following various
drug treatment regimes [312, 313], (3) methods that make pre-
dictions based on drug side effects [314, 315, 316, 317], and (4)
methods that consider a variety of disease similarity and drug
similarity measures, each capturing a different type of biomed-
ical knowledge [262, 318, 319, 320, 321, 322, 323].

For example, [324, 262, 322, 274] used random walks on
a heterogeneous similarity network to rank candidate drugs for
a given disease. In another example, [322] designed similarity
measures to construct a drug-drug similarity network, a disease-
disease similarity network and a drug-disease interaction net-
work, and then used random walks to predict medical indi-
cations. The method is based on the observation that similar
drugs are used to treat similar diseases. Along similar lines,
the work of [318, 319] used multiple types of drug-drug and
disease-disease similarity measures and combined them via a
large-margin method or logistic regression to solve the drug re-
purposing task.

16

Drugs Diseases

— “Treats" relationship
Unknown drug-disease relationship

Figure 9: Drug repurposing. Drug repurposing uses computational meth-
ods to find new uses for existing drugs [254, 20]. Given a disease, the task
is to predict drugs (e.g., among all drugs approved for use by the U.S. Food
and Drug Administration) that might treat that disease. Integrative methods
for drug repurposing comprise similarity-based methods [318], network ap-
proaches [262, 323, 274], and matrix factorization [325].

10. Disease subtyping and biomarker discovery

Many diseases are characterized by incredible heterogene-
ity among patients. This includes many common diseases of
which neuropsychiatric and autoimmune disorders (e.g., Au-
tism Spectrum Disorder (ASD), Attention Deficit Hyperactive
Disorder (ADHD), Obsessive Compulsive Disorder (OCD), ar-
thritis, lupus, chronic fatigue syndrome (CFS)) are among the
most diverse. This means that individuals present at the clinic
with widely ranging symptoms. ASD patients, for example,
range from those with mild behavioral challenges to inability
to speak; arthritis can affect a very particular type of joint or
present itself systemically, affecting multiple organs and tis-
sues. For a lot of common diseases, there exist classifications
into subtypes that can be distinguished clinically (Figure 10).
Consequently, treatment maybe guided by that clinical distinc-
tion. On the other hand, diseases such as cancer present them-
selves, for example, as a solid mass in a given organ (e.g.,
lung, breast, stomach, etc) and clinically seem similar, however
biopsy and the consequent cellular profiling revealed that these
masses may widely differ, conferring different risks and prog-
noses for the patients. A good example is breast cancer, where
at least four different subtypes are currently distinguished in the
clinic based on gene expression biomarkers (Luminal A and B,
Her2+, Triple Negative/Basal-like). Further research on breast
cancer has shown that there maybe closer to ten subtypes [326]
or even more. It thus appears that there is both clinical and
biological heterogeneity across multiple diseases. The cancer
scenario tells us that clinical and biological subcategorizations
of disease might not agree, indeed, the symptoms with which
breast cancer patients present in the clinic are not indicative of
their molecular subtypes.

Determining subtypes computationally presents a challenge.
In theory, subtyping a disease means identification of homo-
geneous subgroups of patients, i.e., clustering, yet we see that
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Figure 10: Disease subtyping. Many diseases are heterogeneous. Disease sub-
typing stratifies a heterogeneous group of patients with a particular disease into
homogeneous subgroups, i.e., subtypes, based on clinical, molecular, and other
types of patient features. Accurate clustering of patients into subtypes is an
important step towards personalized medicine and can inform clinical decision
making and treatment matching.

in practice, clustering of different types of patient information
(clinical vs molecular data) leads to different subgroupings of
patients. This inconsistency is not only present between molec-
ular and clinical data, it is also present among molecular sub-
types. For example, [327] showed that clustering of gene ex-
pression vs methylation of medulloblastoma (brain cancer) pa-
tients resulted in inconsistent subgroups which were resolved
using integration of gene expression and methylation. Another
example, is the case of glioblastoma multiforme (GBM), a very
aggressive adult-onset brain cancer. An earlier analysis com-
bining gene expression and copy number variations (CNVs)
yielded two subtypes [328], whereas a later analysis, driven pri-
marily by gene expression analysis, yielded 4 subtypes [329].
Interestingly, that while methylation data was available in [329],
it was used only to explain the clusters obtained with gene ex-
pression and thus it was found to be uninformative. Analy-
sis that used methylation as the driving signal identified a very
prominent and now well-recognized IDH subtype, a mutation
that leads to hypermethylation across the genome that corre-
sponds to a younger subpopulation of GBM patients with better
clinical prognosis. To summarize, analyzing each of the molec-
ular data types independently resulted in inconsistent findings
that were difficult to consolidate. These examples illustrate the
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importance of data integration to identifying subtypes. Indeed,
the more completely we can define the patients, the more faith-
ful and hopefully, clinically relevant, will our subtypes be.

Many methods for data integration have been developed
with the purpose of identifying disease subtypes. The simplest
commonly used method is the concatenation of all the available
data types and then clustering patients using the long concate-
nated vectors. The problem with this approach is that it com-
pletely disregards the structure present in each of the datasets,
thus diluting the often weak signal even further. Another simple
method that avoids this issue is Cluster-Of-Cluster-Assignments
(COCA), which was originally developed to define subclasses
in The Cancer Genome Atlas (TCGA) breast cancer patient co-
hort [330]. COCA first clusters patients according to each of the
individual data types and then takes these assignments as binary
vector inputs and re-clusters patients according to those vectors
thus providing consensus. The problem with this assignment
is that it is mostly driven by the common signal across all data
types, not making use of the complementary information po-
tentially provided by the different data types. This approach
was used by the TCGA to integrate five data types including
mRNA, DNA methylation, reverse phase protein array (RPPA),
CNV and miRNA data across 12 cancer types and they suc-
cessfully re-identified majority of the cancer types [331]. The
reality, however, is that one can obtain very similar accuracy by
clustering these samples using mRNA only. The problem was
with the borderline cases that multiple types of data disagreed
on. COCA was unfortunately not particularly useful for most
of those cases.

There are many more sophisticated approaches that try to
capture internal structure, latent dimensions and non-linearity.
For example, iCluster is a Gaussian latent variable model with
sparsity regularization in a Lasso-type optimization framework
[332]. The main assumption behind this method is that there
exists a latent space that captures the true subgrouping of the
patients. Each of the different data types are then used jointly to
estimate this latent space. This method was applied to identify
10 breast cancer subtypes from the METABRIC cohort [326].
In our experience, iCluster results tend to be dominated by the
strongest single data type signal. Another drawback of iCluster
is that it cannot naturally handle thousands of variables (genes);
thus gene pre-selection has to be applied to the data first. This
pre-selection imposes a bias and if the pre-selected features
do not contain signal relevant to the true subgroups, it will be
hard to impossible to recover them in the post-selection inte-
gration. Patient Specific Data Fusion (PSDF) [333] is another
latent variable approach. PSDF is a nonparametric Bayesian
model for discovering subtypes by combining gene expression
and copy number variation. PSDF estimates a latent variable
per patient, minimizing samples on which the combined data
types contradict each other. While a powerful non-parametric
framework, PSDF suffers from high computational costs due
to the necessity to infer a large number of parameters and the
restriction to combine only two data types.

Another type of methods for integrating data to identify
subtypes is network-based. An example of such an approach
is Similarity Network Fusion (SNF) [44]. Instead of trying to



combine data in the original measurement space that are hard
to calibrate and compare across a variety of data types, SNF
combines data in the patient similarity space. In short, SNF
consists of two steps; first it creates a similarity patient net-
work for each of the available data types and once all the net-
works are constructed, it combines these networks in an itera-
tive non-linear fashion relying on an idea of extension of ran-
dom walks across multiple graphs. SNF was shown to outper-
form the above methods [44] on five cancers and has subse-
quently been applied outside of cancer to combine images and
clinical data as well as a variety of lab tests across multiple dis-
eases [327, 334, 335, 336, 337]. In spirit, SNF is similar to
Multiple Kernel Learning (MKL), which can also be used to
construct and combine similarities [338]. The main difference
between SNF and MKL is the linear nature of MKL which hurts
its performance during integration as shown in [44]. While
there are not as yet many methods that perform subtyping us-
ing network fusion, a short review on the topic can be found in
[339].

When it comes to biomarker discovery, there is a myriad of
papers, however, when it comes to the integrative analysis, the
number of approaches identifying truly integrative biological
markers is sparse. One of the early and very interesting ap-
proaches is called PAthway Recognition Algorithm using Data
Integration on Genomic Models (PARADIGM) [340]. In a nut-
shell, this method models activity levels of each gene, which
are represented as latent variables. The method relies on a large
public network of genes, including activating and inhibitory in-
teractions. This network is then transformed into a Bayes net-
work, for which the following biological assumptions are fol-
lowed: for each gene, copy number alteration (CNA) affects
expression, which affects protein levels, which affect the latent
protein activity. This graph represents the reference (normal)
state. Given the data for a particular disease, a joint poste-
rior distribution is computed for all latent activity nodes. By
comparing pre- and post-activity levels, PARADIGM obtains a
quantitative measure of the alteration induced by the disease.
This approach was applied in the pancancer study [331] and
biologically relevant dis-regulations were identified.

11. Challenges and future directions

There are great opportunities at the intersection of machine
learning and biomedical data integration. However, there are
equally great challenges that need to be overcome. In partic-
ular, the days of studying biomedical datasets in isolation and
independently of each other are slowly coming to an end and the
reductionist paradigms of looking for ‘low-hanging fruit’ (i.e.,
a single variable that would fully explain a trait) are becom-
ing less prevalent. The realization that performing all analyses
within only one data type can limit the potential for discovery
of new biomedical insights has led to the development of many
new ideas and methods for integrating biomedical data. How-
ever, these approaches are only in their beginning and little is
known about key principles of their optimal design. In addition,
gold standard methods for many biomedical questions, such as
identifying noncoding DNA variants (Section 6), multi-omics
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profiling of cells (Section 7), and stratifying patient populations
(Section 10), are only emerging. Furthermore, combinations of
heterogeneous data and new machine learning methods has en-
abled us to ask fundamentally new biomedical questions.

There are many directions available to take on these chal-
lenges. Below, we highlight outstanding problems and oppor-
tunities that need to be addressed to fully realize the potential
of machine learning for integrating biomedical data.

11.1. Combining mixed-technology data

The structure and distribution of data generated by different
technologies (e.g., gene expression data generated by a sequen-
cing-based versus an array-based technology [341]) can be very
different and it is challenging to combine such data. Data nor-
malization is thus an essential first step when analyzing mixed-
technology data. Furthermore, there is a deluge of different as-
says (e.g., Table 2 and Section 7) and appropriate normalization
of data derived from these assays prior to downstream analysis
remains a major challenge. Normalization is important because
it can adjust for unwanted biological and technical noise that
can mask the signal of interest. For example, one widely used
normalization strategy in single-cell transcriptomics is global
scaling [342] that removes cell-specific biases by scaling gene
expression measurements within each cell by a constant factor.
There are many opportunities for moving data normalization
approaches forward by using next-generation machine learning
methods. For example, one could use generative adversarial
networks (GANs) to generate data with the properties of real
data and then use the created data to normalize the real data. Fu-
ture approaches may include integrated strategies, where nor-
malization is intrinsic to a specific type of analysis (e.g., [343]),
and generic tools, which normalize the data that can then be
used as input to any downstream analysis (e.g., [344, 345, 346]).

11.2. Multi-scale and higher-order approaches

A central goal of computational biology is to assemble a
predictive model of a cell that would be able to predict a range
of phenotypes and answer biological questions. To be able
to predict many phenotypes, rather than only one type of out-
come, we need to understand how phenotypes are interrelated
with each other. Here, multi-scale models come into play be-
cause the cell is organized in a hierarchical manner, both in 3D
structure and in function [21]. Similarly, higher-order structure
and function of the cell might emerge from many molecular
measurements and interaction datasets if only one could figure
out how to combine these measurements properly. A multi-
scale predictive model of the cell is a very general framework,
but whether it can capture the full extent of biological com-
plexity remains to be seen. Furthermore, it is not clear how
to combine or extrapolate cell models to the scale of an or-
ganism (i.e., human patient). This gap between cell models
and organismal models poses fundamentally new challenges
that must eventually be met. Moreover, because parameters
of most current machine learning models are fixed after the
model is trained, such models are incompatible with biologi-
cal evolution. First critical steps to address these challenges



have already been taken. For example, recent advances in the
theory of multi-level graphs and network motifs enabled us to
study, for example, higher-order organization of gene regula-
tory networks [347, 348] and multi-layer nature of ecological
systems [26]. Furthermore, these challenges present an ex-
cellent opportunity for next-generation machine learning algo-
rithms, such as those based on deep representation learning
and topological data analysis, to develop multi-scale [23] and
higher-order [349] models of a cell, and eventually of a human
patient.

11.3. Interpretability and explainability

The black-box nature of many machine learning methods
presents an additional challenge for biomedical applications.
It is difficult to interpret the output of such methods from a
biomedical perspective, a challenge that limits methods’ util-
ity for providing insights. This is especially the case for ad-
vanced methods such as deep neural networks that transform
the input data in such a way that it can be difficult to deter-
mine the relative importance of each feature or whether a fea-
ture is positively or negatively correlated with the outcome.
Understanding black-box predictions is an open challenge in
machine learning, with great attention being given to the in-
terpretation of how a particular model relates the input to its
output [350, 351, 352, 353]. There is a critical need to de-
velop means to transform black-box methods into white-box
methods that can be opened up and interpreted meaningfully.
An early application of explainability in biomedicine includes
[354], an approach that integrates high fidelity data from a hos-
pital’s information management system (e.g., data from patient
monitors and anesthesia machines, medications, laboratory re-
sults, and electronic medical records) to predict the risk of hy-
poxemia during surgery and explain the patient- and surgery-
specific factors that lead to that risk. In a similar way, [244]
used a neural network and integrated prior biological knowl-
edge from the GO [204] into the neural model. A particular
genotype-phenotype association could then be explained by a
hierarchy of cellular systems, which was identified as a neural
activation map.

11.4. Integration of self-reported, lifestyle, and ecological data

While the cost and speed of generating genomic data have
come down dramatically in recent years, advances in the collec-
tion of phenome data (i.e., the set of all phenotypic information
for a single organism or individual, see Section 10) have not
kept pace. To begin to address the phenomics challenge, new
research is needed to facilitate both broad and deep phenotyp-
ing and maximize the utility of gathered data while minimizing
the burden on individuals. Although studies have traditionally
used medical records as gold standard information about medi-
cal conditions, emerging research considers internet and mobile
technologies as a viable method for broad phenotyping of large
populations.

Relative to medical record review, internet-based phenotyp-
ing can be fast. For example, Tung et al. [355] assessed more
than 20,000 people for 50 phenotypes, such as Crohn’s disease,
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inflammatory bowel disease and diabetes, in approximately 12
months using only a small team of people. Emerging research
has demonstrated the value of combining these self-reported
data with genomic information about individuals. For example,
Hu et al. [11] conducted a genome-wide association analysis
of self-reported morningness (i.e., a morning person prefers to
rise and rest early) and then analyzed the newly identified ge-
netic variants using biological pathways. Along similar lines,
Hyde et al. [16] recently used self-reported data from more than
300,000 individuals and combined them with a genome-wide
association study to identify genetic variants associated with
depression. Furthermore, integration of other types of lifestyle
and ecological data together with molecular information has a
large potential to reveal new biological mechanisms. For ex-
ample, [30] is an early work in this area that combined human
gut microbiome data with lifestyle information. The combined
data revealed striking differences in gut microbial communities
between seasons that depended on seasonal availability of dif-
ferent types of food.

12. Conclusions

Machine learning is becoming integral to modern biomed-
ical research. Importantly, approaches have emerged that can
integrate data from many different biomedical datasets. These
approaches aim to bridge the gap between our ability to gener-
ate vast amounts of data and our understanding of biomedical
systems and thus reflect the intricate complexity of biology. On-
going methodological developments and emerging applications
of machine learning promise an exciting future for biomedical
data integration, although it is likely that no single method will
perform best for all problems. Approaches thus need to be se-
lected according to different types of domain-specific models,
specific types of data, and different types of biomedical out-
comes. In this Review, we described various approaches that
can currently be implemented to perform powerful integrative
analyses. As integrative approaches become more readily avail-
able, systems biology and systems medicine are likely to be-
come a central computational strategy to generate new knowl-
edge in biology and medicine.
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