
ar
X

iv
:1

80
1.

02
85

2v
2

 [
cs

.A
I]

 9
 A

pr
 2

01
8

Distributed Deep Reinforcement Learning: learn

how to play Atari games in 21 minutes⋆

Igor Adamski1⋆⋆, Robert Adamski2,4, Tomasz Grel1, Adam Jędrych1,
Kamil Kaczmarek1 and Henryk Michalewski1,3

1 deepsense.ai
2 Intel

3 Polish Academy of Sciences
4 Biz On Sp. z o.o.

Abstract. We present a study in Distributed Deep Reinforcement Learn-
ing (DDRL) focused on scalability of a state-of-the-art Deep Reinforce-
ment Learning algorithm known as Batch Asynchronous Advantage Actor-
Critic (BA3C). We show that using the Adam optimization algorithm
with a batch size of up to 2048 is a viable choice for carrying out large
scale machine learning computations. This, combined with careful reex-
amination of the optimizer’s hyperparameters, using synchronous train-
ing on the node level (while keeping the local, single node part of the
algorithm asynchronous) and minimizing the model’s memory footprint,
allowed us to achieve linear scaling for up to 64 CPU nodes. This corre-
sponds to a training time of 21 minutes on 768 CPU cores, as opposed
to the 10 hours required when using a single node with 24 cores achieved
by a baseline single-node implementation.

Keywords: distributed computing, reinforcement learning, deep learning, Atari
games, asynchronous computations

1 Introduction

Gradient descent optimization is an indispensable element of solving many real-
world problems including but not limited to training deep neural networks
[14,19]. Because of its inherent sequentiality it is also particularly difficult to
parallelize [17]. Recently a number of advances in developing distributed ver-
sions of gradient descent algorithms have been made [15,11,38,39,36]. However,
most of them deal with relatively simple variants of the algorithm, for which
using larger batch sizes and increasing the learning rate (step size) often yield
satisfactory results.

In the case of tasks encountered in Deep Reinforcement Learning these simple
optimization procedures are often insufficient and so more advanced algorithms

⋆ This research was supported in part by PL-Grid Infrastructure, grant identifier
rl2algos

⋆⋆ All authors contributed equally to this work.

http://arxiv.org/abs/1801.02852v2

2

such as RMSProp [34] and Adam [18] are used more often [22,20,6,2,26]. How-
ever, these have not yet been subject to extensive formal analysis or even tests
in largely distributed settings. This is crucial since the usual tasks of training
models for reinforcement learning are often extremely computationally expen-
sive [22]. Therefore distributed training is gaining more and more traction in the
supervised learning community. Devising efficient ways of distributing advanced
variants of SGD has the potential to speed up the progress of the entire field.

As our benchmarking task we chose the Atari 2600 emulator [8] provided
by the OpenAI Gym framework [10] and the wide variety of games it offers.
Atari games are considered a viable benchmark for testing deep reinforcement
learning algorithms [6,26,2]. The early attempts to develop agents that would
efficiently play Atari games were presented in [21]. This algorithm required as
much as 8 days of training on a GPU [20] to reach a level that surpassed a casual
human player. Later developments of the Asynchronous Advantage Actor-Critic
(A3C) algorithm [20] reduced the learning time to several hours. Because of the
work presented in [2] a version of this algorithm optimized for Intel® CPUs was
already publicly available. A brief discussion of the single-node version of the
algorithm is presented in section 2.1.

In this work we present a distributed version of this algorithm that achieves
linear scaling for the tested games for configurations of up to 64 nodes (see figure
8). This allowed us to reduce the training time from roughly 10 hours to around
20 minutes while preserving the original accuracy of the models obtained. For a
comparison with other similar implementations we refer the reader to table 3.

Our contribution applies and extends the recent advances [15,11] in dis-
tributed supervised learning to the field of reinforcement learning. Sections 2.2,
2.3, 2.4 and 2.5 report on the design choices we made and the results they
yielded. We also make our source code available for anyone who would like to
reproduce or improve upon our results. Detailed instructions about running the
experiments are also provided5.

1.1 Related work

While distributed machine learning has recently been a topic of extensive re-
search, it has mainly focused on supervised learning. For an in-depth review of
scalability of modern supervised learning approaches, we refer the reader to [17].
This work also lists common problems with various approaches to distributing
various gradient descent optimization procedures. The pitfalls identified include
the communication overhead arising from the necessity to share the weight up-
dates between the nodes. The authors concluded that using larger batches and
step sizes had the potential to solve this problem but resulted in less accurate
models.

Relation to [11]. Research done in [11] delves more into the architectural as-
pects of distributed learning, by proposing to abandon the asynchronous design

5 The source code along with game-play videos can be found at:
https://github.com/deepsense-ai/Distributed-BA3C.

https://github.com/deepsense-ai/Distributed-BA3C

3

in favor of a synchronous one. It also makes detailed arguments about the prob-
lem of “stale gradients”, which prevents the asynchronous paradigm from scal-
ing beyond several nodes. We set out to verify these claims by performing our
reinforcement learning experiments using both synchronous and asynchronous
training in section 2.3. For a survey of the various asynchronous gradient descent
procedures we refer the reader to [9] and [16].

Relation to [15]. Work done in [15] focuses on large-scale supervised learning.
It showed that a setup with many machines working concurrently can effectively
speed up the training by a large margin. As a result of parallelizing multiple
GPUs and using appropriate learning rates for effectively larger batches, training
Resnet-50 on Imagenet was completed in 1 hour. The work [15] also showed
that using very large batch sizes requires rethinking the optimization algorithms
used. In [15] authors focused on the SGD with momentum optimizer which often
works very well in supervised learning [33]. Our work attempts to apply similar
principles to the Adam optimizer which we found more suitable for reinforcement
learning tasks. The details can be found in section 2.4.

The authors of [38] recognized the need to modify the optimization proce-
dures in order to better utilize the distributed settings. The modification pro-
posed a novel procedure called “Layer-wise Adaptive Rate Scaling”, which en-
abled efficient training of supervised learning models with batch size of up to
32768. Deploying this algorithm to the task of training large convolutional nets
in [39] yielded extremely competitive training times of 24 minutes, as opposed
to 1 hour achieved without these modifications in [15].

An interesting approach to reducing the communication overhead by ternar-
izing the gradients was recently proposed in [36]. This is a part of larger research
aiming at gradient quantization i.e., reducing the precision of the communicated
values [4] [27]). A related approach is gradient sparsification, i.e. refraining from
the exchange of small gradients, see e.g., [3], [32]). However, both quantization
and sparsification drastically change the flow of training of a neural model. Since
Reinforcement Learning training is already quite complex, we refrained from em-
ploying these methods. Still, they certainly should be considered in future DDRL
experiments.

To date, only limited formal research has been done in optimizing and paral-
lelizing targeted strictly at reinforcement learning procedures. Notable works in
this domain include [23], which focused on reducing the long training times ob-
served in [22]. A significant speedup (by an order of magnitude [23]) and higher
game scores were achieved. This was done using large resources of up to 130
nodes, by applying the Asynchronous SGD paradigm to the model developed in
[22] in a manner similar to the work focusing on supervised learning presented
in [12].

Further work in [20] applied the asynchronous paradigm to the policy opti-
mization methods, resulting in the Asynchronous Advantage Actor-Critic algo-
rithm (A3C). These experiments used the relatively low computing power of a
16-core CPU. The work in [2] sought to optimize a more efficient batched variant
of this algorithm for use with commodity Intel® Xeon CPUs by employing the

4

Math Kernel Library. A GPU-based version of this algorithm has also been pre-
sented in [6]. None of these works explicitly dealt with communication overheads
in distributed policy optimization.

Significant computing resources were used in the work presented in [28] to
develop AlphaGo – a program for playing the game of Go. This work was based
on a combination of reinforcement learning, supervised learning and tree search
methods. The authors reported using configurations of up to 1920 CPUs and
280 GPUs for testing the algorithm which provided a significant improvement
in the quality of the results achieved. It is also mentioned that the training of
the policy network was done using 50 GPUs for one day [28].

Further work in [30] focused on achieving better results without using super-
vised learning and handcrafted features. Computationally, the training utilized
the synchronous paradigm with 64 GPU workers and 19 parameter servers, using
a total batch size of 2048. For optimization the Momentum SGD optimizer with
learning rate annealing was used. Recently this work has been further extended
in [29] where the authors presented a general algorithm able to achieve expert
level also in chess and shogi. Notably the training was completed in 24 hours
and a relatively large batch size of 4096 was used.

Recently a novel algorithm called Proximal Policy Optimization (PPO) was
proposed in [26]. Notably it also uses the Adam optimizer on which we focused in
this work and achieved promising scores in Atari games. A distributed version of
this algorithm was used in [7], where the authors used 4 GPUs, Adam optimizer
and batch size of 5120. Further examination of PPO in a distributed setup
appears as a promising area of future research.

A different approach to distributing reinforcement learning has recently been
presented in [24]. In this work the parallelization was applied to an evolution
strategy (ES), which is a direct search method. This property enables efficient
exchange of information between the workers since they only have to communi-
cate scalar values. Because of that the algorithm is especially easy to distribute
since the communication costs of sharing the gradient updates don’t apply to
this scheme. When training a 3D humanoid to walk the authors reported linear
scaling for up to 1440 CPU cores [24, p. 8]. After 1 hour of training agents for
Atari games on 720 CPUs evolution strategies were able to achieve scores com-
parable to the ones achieved by A3C (which was trained for 24 hours with a
single CPU) [24, p. 7].

Detailed analysis of Deep Reinforcement Learning on a single machine with
multiple GPUs was recently published in [31]. The authors reported using a
batch size of up to 2048 and utilizing 8 GPUs for various Deep RL algorithms.
Impressive training times (under 10 minutes) are also reported.

2 Distributed BA3C implementation

For all our experiments we used the Batch Asynchronous Advantage Actor-Critic
algorithm implemented in [37] and later modified in [2]. A similar algorithm was
also described in [6]. We will not elaborate on its properties here but rather

5

focus on explaining the details behind implementing it on multiple parallel ma-
chines. A good description of the single-node version of this algorithm can be
found in [2]. Here we are using multiple clustered CPUs and each of them indi-
vidually performs the BA3C algorithm. The individual nodes maintain a shared
copy of the model through the use of special nodes called parameter servers,
which store the model weights. Table 1 presents the hyperparameters of the al-
gorithms, which were specifically tuned to achieve lowest training times during
our research. Some of the hyperparameters are omitted and for those we as-
sume the default values used in [2]. Detailed description of the hyperparameters
describing the Adam optimizer is presented in section 2.4.

Table 1: Hyperparameters of the distributed BA3C implementation

Symbol
Default

value
Description

n 64 Number of CPU nodes used for the distributed training

c 12 Number of cores in each worker CPU

η 0.001 Learning rate (step-size)

bs 32 Number of data-points in each training batch (on each node)

ps 4 Number of nodes responsible for holding the model parameters

n_sim 10 Number of Atari simulators used simultaneously on one worker

ǫ 10
−8 Constant used for numerical stability in the Adam optimizer

β1, β2 0.8, 0.75 Decay rates of the running averages used in Adam optimizer

2.1 BA3C background

The BA3C design on a single node focuses on parallel interactions of multiple
agents with game environments, that produce experience data later aggregated
into mini-batches used for training. We call an “agent” an instance of the model
interacting with the outside environment, in our context the Atari 2600 emulator.

The interaction with an Atari game is attained via OpenAI Gym [10] pro-
viding the model with input of RGB image pixels and enabling the agents to
act upon any state of the game. On a single machine, n_sim simulators of the
Atari environment are running concurrently and an agent plays one game on
each of them. Each consecutive frame_hist frames from the game count as one
state. For each state of the game a policy query is sent to the prediction thread,
which then feeds the input image to the neural net, outputting a respective
behavioral guideline. The action performed is then gathered together with the
state it was acted on and the reward it received from that action. This tuple cre-
ates a data-point. Then, bs data-points are assembled into a mini-batch, that is
back-propagated through the neural net giving gradients, later used to perform
gradient descent on a cost function.

2.2 Architecture

Let us suppose that we are using n workers. Each of the n workers possesses
a copy of the BA3C algorithm, which will parallelize the training among its c

6

cores. As aforementioned, a tuple of state, action and reward constitutes a single
data-point, and a mini-batch of bs of those data-points is then used to compute
the gradients which are synchronously gathered from all the workers, averaged
and applied to the weights through the Adam optimizer. All the weights are
located in ps different parameter servers, each of which stores 1/ps of the model’s
parameters (4 convolution layers and 3 fully connected layers). The parameter
servers then send the updated parameters back to the workers, which then again
play the games and the process goes on until a satisfactory model is achieved.

Parameter

Server 1

Chief worker sync

Atari

simulators

ModelFIFO

Worker n

FIFO

Parameter

Server k

Atari

simulators

ModelFIFO

FIFO

Fig. 1: Our approach to distributed learning. The figure shows the synchronous training architec-
ture which was our final choice.

2.3 Synchronous vs Asynchronous training

Background on gradient descent optimization. Training deep neural net-
works usually involves gradient descent optimization. This is convenient since
the gradient of the model with respect to some chosen loss function can be eas-
ily obtained by backpropagation [19]. Gradient descent is an iterative algorithm
that in each iteration attempts to modify the model’s parameters θ in order
to achieve a lower value of the cost function J(θ,x) for some training data x.
Given the gradient gt of the cost function w.r.t. the model parameters θ (which
can be obtained from the backpropagation procedure) the basic update rule for
obtaining the new values of parameters at time step t given the old values θt−1

can be written as:

θt = θt−1 − λgt, (1)

where the λ parameter controls the learning rate (step size).
Numerous improvements to this scheme have been proposed. For a broad

overview of different approaches we refer the reader to [19]. Of the recent im-
provements the RMSProp [34] and Adam [18] procedures are widely used in Re-
inforcement Learning [22,20,6,2,26]. In the course of our experiments we found
that Adam performs better on our task and therefore we will not elaborate on
RMSProp further. A brief description of Adam optimizer is given in section 2.4.

7

An important decision that largely influences the outcome of the model’s
performance is the way of parallelizing the work of multiple nodes. Data paral-
lelism in gradient descent algorithms can be done in two ways: synchronously or
asynchronously. We have found that when using a large number of distributed
nodes, these two approaches produce completely different results.

Asynchronous training. In the asynchronous approach, each of the workers,
after collecting a mini-batch of data points, computes gradients and then uses
them to perform weight updates. The weights of the model reside in parameter
servers, which receive gradients from the workers and send the updated copy of
the current model to each training instance. Therefore each individual worker
updates the commonly shared parameters of the model without delay as soon
as it completes computing its gradient. This has several advantages, one is that
compared to a single machine implementation our model is guaranteed to per-
form k times as many updates, if we are using k workers. Another is that because
workers do not need to wait for others to finish but rather apply updates con-
tinuously, we are utilizing a lock-free paradigm that helps make the most of the
processing power at our disposal.

However, the pure asynchronous approach possesses also other characteristics
that could impede the learning and prevent convergence. One such disadvantage
is called stale gradients [11]. It arises when a worker updates the weights using
gradients that are outdated with regard to the current model. This is guaranteed
to happen because during the time that the worker was processing the data and
computing the gradients, the model has been updated several times by other
nodes and now, when the worker applies the gradients, it will do so with respect
to the model that is out-of-date. This is shown in the figure 2.

Worker 1: Gradient computation
Read

Write

Worker 2: Gradient computation

Write

Worker 3: Gradient computation

Write

Current model: iteration N iteration N + 1 iteration N + 2

staleness

time

Fig. 2: A diagram representing gradient staleness - a systematic flaw related to asynchronous
training with many workers.

Synchronous training. The synchronous training architecture is visualized in
figure 1. One of the workers (called a chief worker) is special in a sense that
it’s responsible for aggregating the gradients from all the others. A “regular”
worker no longer posseses the power to update the model on its own – it can
only compute its gradient estimate and send it to the chief worker. Once enough

8

0

20

40

60

80

100

0 30 60 90 120

o
n
li
n
e

sc
o
re

time [minutes]

(a) Online score

−0.5

0

0.5

1

1.5

0 30 60 90 120

to
ta

l
lo

ss

time [minutes]

(b) Total training loss

Fig. 3: Typical asynchronous training attempt, 64 workers.

gradients from the workers are accumulated, the chief worker updates the weights
and sends the new them to the parameter servers. The new weights are then sent
to other workers and a new training iteration begins. This ensures that all the
workers always have an up-to-date copy of the model weights, which solves the
stale gradients problem.

The side effect of this procedure is the increase of the effective batch size used
for performing a single update. Although we are not able to linearly increase the
speed of model updates with the number of workers as in the asynchronous
design, we expect the updates that are made to be more accurate since the
gradient estimate is done using a larger batch size. This might in turn allow for
larger step sizes to be used, which can hopefully compensate for the updates
being less frequent and provide speed up. Importantly, synchronous training
removes the problem of gradient staleness, as no worker computes gradients on
an obsolete model, because updates are performed only after all of the workers
compute their individual gradients.

The fact that we need to wait for all the workers can cause delays. This
arises whenever, for various reasons, some of the workers may be lagging behind
others in assembling their batches and computing gradients. We call this the
slow stragglers problem. Since the synchronous design imposes waiting for all the
workers’ gradients to perform a weight update, the effective time it takes for an
update to occur is the time it takes the slowest worker to assemble his batch
and compute the gradients. Therefore, reducing the number of gradients that we
need to wait for to make an update could significantly reduce the influence of the
slow stragglers. Detailed analysis of this phenomenon presented in [11] confirms
that waiting for around 90% of gradients as opposed to all of them significantly
improves the training times.

Another key fact that needs to be addressed when discussing synchronous
training is the large effective batch size6 it tends to create. Since we are using

6 We use the term effective batch size to denote the number of training samples partic-
ipating in a single weight update. In synchronous training this is equal to the local

9

n mini-batches of data-points from every worker and then averaging them, we
are virtually using a single batch of size n× bs to perform a single update. This
may indicate the need to adjust other hyperparameters of the algorithm such as
the learning rate. We revisit this issue in section 2.4.

With the slow stragglers problem removed, the synchronous approach is much
more intuitive and reasonable – it does not risk gradient staleness and the weight
updates that are made are much more accurate and less noisy. Making just one
update for all the workers working on a model assures that the nodes are work-
ing collectively and efficiently upon a goal, whereas the asynchronous learning
strategy seems rather chaotic and unstructured.

We performed a series of experiments to determine which paradigm is better
in our use case. We found that asynchronous training causes large instabilities
in the learning process. One of such experiments is shown in the figures 3a and
3b. In this experiment the learning was proceeding correctly until after about
50 minutes the online score7 dropped suddenly to zero. This coincided with
a large spike in the total training loss visible in the figure 3b. We suspect it is
caused by the stale gradients. We did not encounter this phenomenon when using
synchronous training, therefore we have chosen to work with the synchronous
architecture.

2.4 Optimizer changes

Background on Adam optimizer. Adam optimizer was first described in
[18] and can be thought of as extension of the works presented in [34] and [13].
It maintains the exponentially decaying running averages mt and vt of all the
previous gradients and squared gradients:

mt = β1mt−1 + (1− β1)gt, (2)

vt = β2vt−1 + (1 − β1)g
2

t (3)

It then perform bias correction to define m̂t = mt/(1− βt
1
) and v̂t = vt/(1− βt

2
)

and gives the final weight update for parameter θ at timestep t as:

θt = θt−1 − η
m̂t√
v̂t + ǫ

(4)

batch size on each node multiplied by the number of workers required to perform an
update. In asynchronous training effective batch size is equal to the local batch size.

7 By online score we refer to the scores obtained by the agent during training. By
contrast an evaluation score would be a score obtained during the test phase. These
scores can differ substantially, because while training the actions are sampled from
the distribution returned by the policy network (this ensures more exploration). On
the other hand, during test time the agent always chooses the action that gives the
highest expected reward. This usually yields higher scores, but using it while training
would prevent exploration.

10

Instead, many implementations (including TensorFlow [1]) use less clear but
more efficient formulation:

ηt = η

√

1− βt
2

1− βt
1

, (5)

θt = θt−1 − ηt
mt√
vt + ǫ̂

(6)

The ǫ̂ in the equation 6 and ǫ in equation 4 are added for numerical stability,
not to divide by 0 in the first timestep.

This means that the algorithm in this formulation has 4 hyperparameters
that need tuning: the learning rate η, the decay factors for the running averages:
β1 and β2 and ǫ̂. Next section provides insight into how these might need to be
modified when transitioning from a single-node to a multi-node configuration.

Increasing the learning rate. Using very large batches that result from utiliz-
ing a large number of workers in the synchronous paradigm poses some challenges
on the selection of optimizer hyperparameters. This problem is especially severe
when distributing an algorithm that already had its hyperparameters chosen
carefully.

Research on large scale distributed SGD by [15] has addressed this problem
by deploying the linear scaling rule: when multiplying the mini-batch size by k,
multiply the learning rate by k. However this was done using much simpler SGD
with momentum optimizer. We on the other hand have experimented with mul-
tiple optimizers and have found that only Adam [18] and occasionally RMSProp
[34] have brought about positive results in the asynchronous design.

With Adam optimizer, using the linear scaling rule did not yield any positive
results. We found that increasing the learning rate made the training highly
unstable and often resulted in the model learning how to play well only to later
abruptly forget and score 0 until the end (see figure 4). We settled on using
η = 0.001 (the same as in the single-node version), as it was the largest value
for which we did not experience large instabilities.

Apart from the learning rate some of the other default optimizer parameters
also needed examination. Moving to a synchronous distributed setup requires a
re-thinking of how exactly momentum accumulation and learning rate adaptivity
are impacted by the batch size.

Modifying the ǫ parameter. Curiously enough, some implementations can be
found that manipulate this variable so that it no longer serves the mere purpose
of avoiding numerical instability (see e.g. the implementation of BA3C in [37]).
Through experiments we found that for some tasks setting the ǫ parameter of
the optimizer to much lower values (e.g. 10−8 instead of 10−3) can yield much
better training times. A comparison of online scores for two similar experiments
with different epsilon values is shown in the figure 5. It is important to note that
this positive effect when using smaller ǫ was observable only when using large

11

0

50

100

150

200

250

300

350

400

0 20 40 60 80

o
n
li
n
e

sc
o
re

time [minutes]

(a) Online score

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0 20 40 60 80

to
ta

l
lo

ss

time [minutes]

(b) Total training loss

Fig. 4: Experiment with a learning rate η = 0.002. 64 nodes, synchronous training, local batch size
of 64, total batch size of 4096. Increasing the learning rate for the Adam optimizer from 0.001
to 0.002 causes large instabilities clearly visible on the online score plot (figure 4a) and the total
training loss plot (figure 4b)

effective batch sizes (i.e., 512 and more). For smaller effective batch sizes using
a lower ǫ did not produce positive results.

Table 2: Number of network parame-
ters when considering different number
of neurons in the fully connected layer.

hidden

neurons

network

weights

% of initial

setup

256 538 119 100%

128 332 295 61%

64 229 383 43%

32 177 927 33%

16 152 199 28%

This is understandable since a high ǫ
value significantly constrains the ability of
the Adam optimizer to automatically adapt
the learning rate to the variance of the gradi-
ents. We suspected that averaging more data
points through the use of synchronous data
parallelism reduced the variance of the gradi-
ent estimate to the point that the algorithm
could be allowed more freedom in automati-
cally adapting the learning rate based on the
noise estimations.

Based on these experiments we decided
to change the default value of the ǫ hyperpa-
rameter from 10−3 to 10−8. This significantly
sped up the training for some games (such as Breakout and Boxing). However,
we cannot claim this effect is universal, e.g., it made training for Atari Pong
slower. The results cited for this game in section 3 were obtained with ǫ = 10−3.

Other hyperparameters. Motivated by the research in [15] we decided that
we should optimize Adam’s decay factors β1, β2 to the very large batch that we
are using. This did not turn out to be an easy task - with the Adam optimizer
update policy being quite complicated, choosing β1 and β2 for the effective batch-
size analytically was difficult. The results of our experiments do not support any
gains from using different values of these parameters; however we are leaving it
to the community to try and find the factors that work best for a distributed
setup.

12

0

50

100

150

200

250

300

350

400

0 20 40 60 80

o
n
li
n
e

sc
o
re

time [minutes]

(a) First 90 minutes ǫ̂ = 10
−3

0

50

100

150

200

250

300

350

400

0 20 40 60 80

o
n
li
n
e

sc
o
re

time [minutes]

(b) First 90 minutes, ǫ̂ = 10
−8

0

20

40

60

80

100

0 5 10 15 20

o
n
li
n
e

sc
o
re

time [minutes]

(c) First 20 minutes, ǫ̂ = 10
−3

0

20

40

60

80

100

0 5 10 15 20

o
n
li
n
e

sc
o
re

time [minutes]

(d) First 20 minutes, ǫ̂ = 10
−8

Fig. 5: Two experiments of training agents for Breakout on 64 nodes with different ǫ parameter
values. Figures 5a and 5c show an experiment where ǫ = 10

−3 was used. Figures 5b and 5d
show training with ǫ = 10

−8. The most important difference lies at the beginning of the training.
This is visible in the closer views presented in the bottom row. Lower values of ǫ seem to give a
significant speedup at this stage. Note that the vertical axis shows online score.

2.5 Communication overhead

180

185

190

195

200

205

210

16 32 64 128 256

P
ro

ce
ss

in
g

sp
ee

d
[d

p
/
s]

Neurons in hidden layer

Fig. 6: Data points per second for models with
different number of hidden neurons in the fully
connected layer. Each experiment was repeated
5 times and results were averaged. Experiments
were run with 32 workers and 4 parameter
servers.

In data parallelized synchronous gradi-
ent descent procedures the nodes have
to transmit roughly 2n multiplicities
of the size of the model (where n is
the number of workers) during a single
training step [17]. Our initial model ar-
chitecture consisted of approximately
half a million weights stored as 32-bit
floats. Thus, when using 64 workers we
needed to send ≈ 263MB of data dur-
ing every iteration.

Importantly, if all nodes have
roughly the same processing speed
and synchronous training is being used
then all this communication occurs at

13

approximately the same time. This is because in a gradient descent training the
communication cannot be easily overlaid with computation to maximally utilize
both network bandwidth and compute power (see [17] for details). This further
reduces the scaling capabilities.

60

70

80

90

100

110

1 2 4 8

P
ro

ce
ss

in
g

sp
ee

d
[d

p
/
s]

Parameter servers

Fig. 7: Data points per second for different num-
bers of parameter servers. Each experiment was
repeated 5 times and the results were averaged.
32 workers, 332k parameters, local; batch size
set to 4. The conclusion is that after some point
there’s no more gains to be achieved by adding
more parameter servers.

In our experiments we measured
the speed of our algorithm by calcu-
lating the number of training examples
backpropagated through our model ev-
ery second. In next section we will refer
to this speed as data points per second.

Changing the model. One way to
reduce network communication is to
shrink the model. In the initial archi-
tecture most weights (≈ 76%) were in
a single fully connected layer that fol-
lows the last convolution layer (see [2]
for the details about the exact neu-
ral model used). The relation between
number of neurons in this layer and
the processing speed is shown in figure
6. Although all of the tested architec-
tures were able to achieve decent re-
sults, we decided to use 128 neurons since this setup was able to learn as fast
and stable as the initial architecture, while having only ≈ 61% of its weights.
Despite the fact that further reduction of the model size accelerated data pro-
cessing, smaller networks were taking more time to reach corresponding scores.

Adding more parameter servers. Adding more parameter servers, each stor-
ing only fraction of model weights, causes data sent through the network to be
distributed into more nodes. This leads to more optimized network usage (see
figure 7 for details).

3 Results

Synchronous training allowed us to use more workers and avoid instabilities
common in the asynchronous paradigm. By reducing model size and adding
more parameter servers we could better utilize network communication which
led to the possibility of further increase in the number of workers. As a result we
were able to train models to reach 300 points in Breakout in 21±2 minutes using
64 workers (each consisting of 12 physical cores, i.e. using 768 cores in total).

3.1 Scaling

We compared times it took to reach a predetermined score in Atari Breakout
for different number of workers. The reference was reaching a mean score of 300

14

points or higher for 50 consecutive games played. This is considered vastly better
than a human tester (see [22] for data on detailed human performance for this
game). The results are shown in figure 8.

0.125

0.25

0.5

1

2

4

8

16

32

1 2 4 8 16 32 64

ti
m

e
to

re
fe

re
n
ce

sc
o
re

[h
o
u
rs

]

number of workers

DBA3C
theoretical

Fig. 8: Red plot shows mean time to
reference score of 300 points ± stan-
dard deviation for Breakout. Green plot
shows theoretical linear speedup in ref-
erence to 1 node experiment. Notice
that the real performance of our con-
figuration is consistent with the ex-
pected values for a wide number of
workers. For 64 workers the commu-
nication overheads start to inhibit fur-
ther scaling. Notice that the mean time
to achieve a mean score of 300 in Atari
breakout is 21 minutes when using 64
workers.

Experiment settings: Each of the 64 workers had 12 CPU cores. We used
4 parameter servers for storing model weights. Model trained had 128 hidden
neurons in the fully connected layer described in section 2.3. Every experiment
was repeated 10 times and results were averaged. Additionally we have plotted a
theoretical linear speedup. This line represents the theoretical time that should
be achieved when using n times more computing power in reference to a single
node experiment.
Learning rate: All experiments used the learning rate of 10−3.
Optimizer’s hyperparameters: In all experiments optimizer’s hyperparame-
ters were: ǫ = 10−8, β1 = 0.8, β2 = 0.75.
Batch size: In experiments with 32 and 64 workers batch size was set to 32,
because smaller batches caused too much network communication overhead. For
the rest of experiments the per-worker batch size was set, so that the effective
batch size equaled n× bs = 512.
Evaluation: Every 1000 steps the model played 50 games and the mean score
was saved. During the games the model parameters were frozen. By step we
mean single global update performed by the chief worker.
Baseline: As a baseline we have chosen the single node setup (i.e. using a single
12-core CPU). To be comparable with effective batch sizes on multiple nodes, a
relatively large batch size of 512 was chosen. This baseline achieves the solving
score in mean time of 14.2 hours.

3.2 Training times

In this section we present example learning curves for various Atari games. The
plots show mean and max scores from evaluation games. Each game was played
on the 64 worker setup.

15

0

500

1000

1500

2000

0 20 40 60 80

sc
o
re

time [minutes]

(a) Assault

0

5000

10000

15000

0 20 40 60 80

time [minutes]

(b) BeamRider

0

25

50

75

100

0 20 40 60 80

time [minutes]

(c) Boxing

0

100

200

300

400

0 20 40 60 80

time [minutes]

(d) Breakout

−20

−10

0

10

20

0 90 180

sc
o
re

time [minutes]

(e) Pong

0

500

1000

1500

2000

0 20 40 60 80

time [minutes]

(f) Seaquest

0

200

400

600

800

0 20 40 60 80

time [minutes]

(g) Space invaders

0

20000

40000

60000

0 20 40 60 80

time [minutes]

(h) Star gunner

Fig. 9: Score vs time plots for different games in the final setup.

3.3 Comparison with other solutions

The most notable similar work in optimizing Atari games training for speed is
presented in [6]. The results presented there were achieved by a hybrid GPU-
CPU algorithm called GA3C which is a flavor of A3C focusing on batching
the data points in order to better utilize the massively parallel nature of GPU
computations. This is similar to the single node algorithm called BA3C [2] which
we used as a starting point for this work.

Comparing the training curves included in [6] for 3 common games tested in
both works (Boxing, Breakout, SpaceInvaders) shows that our implementation
is much faster and achieves as good or better scores8 (see table 3). Importantly
our experiments used 64 CPU nodes of 12 cores each, while the experiments
presented in [5] were all single node. However the results show that using dis-
tributed computations on CPU clusters is a viable alternative for using GPUs,
even when training convolutional neural networks.

4 Conclusions and future work

We presented a detailed description of our experiments with large scale Dis-
tributed Deep Reinforcement Learning (DDRL). Detailed motivation behind all
the important design choices was given in sections 2.2, 2.3, 2.4 and 2.5. We
also provided some empirical information about tuning the Adam optimizer to

8 It is important to note that the scores achieved by different implementations are not
directly comparable and should interpreted cautiously. For future comparisons we’d
like to state that the evaluation scores presented by us in this work are always mean
scores of 50 consecutive games played by the agent. Unless otherwise stated they’re
evaluation scores achieved by choosing the action giving the highest future expected
reward.

16

Table 3: Algorithm
performance in 3
games tested in
both papers. Best
stable score and
time (in hours)
to achieve it are
given. The data
are based on the
best reported re-
sults found in the
training plots in
[6,2,20].

Game DDRL A3C GA3C [6] BA3C [2] A3C [20]

BeamRider 14900 (2.7h) 3000 (24h) – 15000 (15h)

Breakout 350 (0.5h) 350 (21h) 400 (15h) 500 (11h)

Boxing 98 (0.5h) 92 (2h) – –

Pong 20 (4h) 18 (1h) 17 (24h) 20 (8h)

Seaquest 1832 (0.5h) 1706 (24h) 1840 (24h) 2300 (24h)

SpaceInvaders 650 (0.5h) 600 (24h) 700 (24h) 1400 (15h)

perform well when using large training batches that arise in synchronous data
parallelism. Our key experimental results described in section 3 involve being
able to train agents for playing Atari games in minutes rather than hours on
clusters of commodity CPUs.

Extending this work to other RL algorithms, most notably those presented
in [25,26,35] would provide a natural extension to this work. Also developing a
framework for distributed RL training that is independent of the algorithm itself
would certainly be a valuable contribution.

Given the results reported in [39] testing the Intel® Xeon PhiTM architecture
on distributed RL training would also be an interesting experiment.

On a wider scale, further research on adaptive optimization algorithms, most
notably those presented in [18,13,34] in the context of training with large batch
sizes seems to be necessary to further reduce training times both in supervised
and reinforcement learning.

5 Acknowledgments

The work presented in this paper would not have been possible without the
computational power of Prometheus supercomputer, provided by the PL-Grid
infrastructure.

We would also like to thank the four anonymous reviewers who provided us
with valuable insights and suggestions about our work.

This work was supported by the LABEX MILYON (ANR-10-LABX-0070)
of Université de Lyon, within the program "Investissements d’Avenir" (ANR-11-
IDEX- 0007) operated by the French National Research Agency (ANR).

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,

17

X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015),
https://www.tensorflow.org/, software available from tensorflow.org

2. Adamski, R., Grel, T., Klimek, M., Michalewski, H.: Atari games and intel proces-
sors. CoRR abs/1705.06936 (2017)

3. Aji, A.F., Heafield, K.: Sparse communication for distributed gradient descent.
CoRR abs/1704.05021 (2017)

4. Alistarh, D., Li, J., Tomioka, R., Vojnovic, M.: QSGD: Randomized quantiza-
tion for communication-optimal stochastic gradient descent. CoRR abs/1610.02132
(2016)

5. Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., Kautz, J.: GA3C: GPU-based
A3C for deep reinforcement learning. CoRR abs/1611.06256 (2016)

6. Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., Kautz, J.: Reinforcement learn-
ing through asynchronous advantage actor-critic on a GPU. In: ICLR (2017)

7. Bansal, T., Pachocki, J., Sidor, S., Sutskever, I., Mordatch, I.: Emergent complexity
via multi-agent competition. CoRR abs/1710.03748 (2017)

8. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The arcade learning envi-
ronment: An evaluation platform for general agents. CoRR abs/1207.4708 (2012)

9. Bhardwaj, O., Cong, G.: Practical efficiency of asynchronous stochastic gradi-
ent descent. In: 2016 2nd Workshop on Machine Learning in HPC Environments
(MLHPC). vol. 00, pp. 56–62 (Nov 2016)

10. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: OpenAI Gym. CoRR abs/1606.01540 (2016)

11. Chen, J., Monga, R., Bengio, S., Jozefowicz, R.: Revisiting distributed synchronous
SGD. In: International Conference on Learning Representations Workshop Track
(2016)

12. Dean, J., Corrado, G.S., Monga, R., Chen, K., Devin, M., Le, Q.V., Mao, M.Z.,
Ranzato, M., Senior, A., Tucker, P., Yang, K., Ng, A.Y.: Large scale distributed
deep networks. In: Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1. pp. 1223–1231. NIPS’12, Curran As-
sociates Inc., USA (2012)

13. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (Jul 2011)

14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016),
http://www.deeplearningbook.org

15. Goyal, P., Dollár, P., Girshick, R.B., Noordhuis, P., Wesolowski, L., Kyrola, A.,
Tulloch, A., Jia, Y., He, K.: Accurate, large minibatch SGD: training ImageNet in
1 hour. CoRR abs/1706.02677 (2017)

16. Keuper, J., Pfreundt, F.: Asynchronous parallel stochastic gradient descent -
A numeric core for scalable distributed machine learning algorithms. CoRR
abs/1505.04956 (2015)

17. Keuper, J., Preundt, F.J.: Distributed training of deep neural networks: Theoret-
ical and practical limits of parallel scalability. In: Proceedings of the Workshop
on Machine Learning in High Performance Computing Environments. pp. 19–26.
MLHPC ’16, IEEE Press, Piscataway, NJ, USA (2016)

18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

19. Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On optimiza-
tion methods for deep learning. In: Proceedings of the 28th International Con-
ference on International Conference on Machine Learning. pp. 265–272. ICML’11,
Omnipress, USA (2011)

https://www.tensorflow.org/
http://www.deeplearningbook.org

18

20. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D.,
Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning. CoRR
abs/1602.01783 (2016)

21. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. In: NIPS Deep
Learning Workshop (2013)

22. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
529–533 (Feb 2015)

23. Nair, A., Srinivasan, P., Blackwell, S., Alcicek, C., Fearon, R., Maria, A.D., Pan-
neershelvam, V., Suleyman, M., Beattie, C., Petersen, S., Legg, S., Mnih, V.,
Kavukcuoglu, K., Silver, D.: Massively parallel methods for deep reinforcement
learning. CoRR abs/1507.04296 (2015)

24. Salimans, T., Ho, J., Chen, X., Sutskever, I.: Evolution strategies as a scalable
alternative to reinforcement learning. CoRR abs/1703.03864 (2017)

25. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy
optimization. CoRR abs/1502.05477 (2015)

26. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. CoRR abs/1707.06347 (2017)

27. Seide, F., Fu, H., Droppo, J., Li, G., Yu, D.: 1-bit stochastic gradient descent and
application to data-parallel distributed training of speech DNNs. In: Interspeech
2014 (September 2014)

28. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587), 484–489 (Jan 2016)

29. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D.:
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm (Dec 2017)

30. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre,
L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of Go
without human knowledge 550, 354–359 (10 2017)

31. Stooke, A., Abbeel, P.: Accelerated methods for deep reinforcement learning. CoRR
abs/1803.02811 (March 2018)

32. Strom, N.: Scalable distributed DNN training using commodity GPU cloud com-
puting. In: INTERSPEECH. pp. 1488–1492. ISCA (2015)

33. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initializa-
tion and momentum in deep learning. In: Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume 28. pp.
III–1139–III–1147. ICML’13, JMLR.org (2013)

34. Tieleman, T., Hinton, G.: Lecture 6.5—RmsProp: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning (2012)

35. Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., de Fre-
itas, N.: Sample efficient actor-critic with experience replay. CoRR abs/1611.01224
(2016)

19

36. Wen, W., Xu, C., Yan, F., Wu, C., Wang, Y., Chen, Y., Li, H.: TernGrad:
Ternary gradients to reduce communication in distributed deep learning. CoRR
abs/1705.07878 (2017)

37. Wu, Y.: Tensorpack. https://github.com/ppwwyyxx/tensorpack (2016)
38. You, Y., Gitman, I., Ginsburg, B.: Scaling SGD batch size to 32K for ImageNet

training. CoRR abs/1708.03888 (2017)
39. You, Y., Zhang, Z., Hsieh, C.J., Demmel, J.: 100-epoch ImageNet training with

AlexNet in 24 minutes. arXiv preprint arXiv:1709.05011 (2017)

	Distributed Deep Reinforcement Learning: learn how to play Atari games in 21 minutes

