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what is reinforcement learning?
“... neuroscience was ... instrumental in erecting a second pillar of 
contemporary AI, stimulating the emergence of the field of 
reinforcement learning (RL). RL methods address the problem of how 
to maximize future reward by mapping states in the environment to 
actions and are among the most widely used tools in AI research. ..., 
RL methods were originally inspired by research into animal learning.”

- Neuroscience-Inspired Artificial Intelligence, Demis Hassabis, Dharshan Kumaran, 
Christopher Summerfield and Matthew Botvinick, Neuron 2017
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RL - part for adults

An innovation from the PPO paper:



RL - part for adults



Curriculum learning and 
theorem proving

(joint work with Adrián Csiszárik, Cezary Kaliszyk, 
Josef Urban, Zsolt Zombori)





https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/research/rl.py
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Approach
Use curriculum learning to counterbalance sparse rewards

- Take a few given proof trajectories
- Start exploration from the end of the trajectory
- Gradually move backwards towards the beginning of the proof

Handling the the discrete action space (two options):

- Use fixed action space: restricted to a narrow type of problems. A quick 
route to strong results, however in general our action space is infinite 
discrete.

- Action selector model: policy receives all available actions and returns 
probabilities. Can generalize to yet unseen actions.

The RL workshop at NIPS 2018 (joint work with
Michał Garmulewicz and Piotr Miłoś)

https://www.mimuw.edu.pl/~henrykm/pubs_2018/montezuma_strong.mp4


How to translate theorem proving to games?



Benefits of action selector model
● Returns a probability distribution (vs scoring function)
● Cannot generalize to yet unseen actions (vs fixed action space model)
● Can handle large action spaces (provided they are not all available together)
● Can make decisions based on other available actions
● Exploits the features of actions

○ Actions and spaces are embedded into the same feature space (manual features, widely used 
in the ATP community)

○ The network can meaningfully process the concatenation of state-action feature vectors.



Results
Trained and tested on Robinson arithmetic problems

RL method - variations of the Actor-Critic meta-algorithm:

- Fixed action space model trained on 7*2=14 (51 steps) managed to prove all 
multiplications up to 9*9 (1201 steps)

- Action selector model trained on 7+5=12 (17 steps) managed to prove all 
additions up to 9+9



What is curriculum learning in the 
context of reinforcement learning?

We have a proof trajectory: 

('/home/henrykmichalewski/problems/gen_mul_new/pe
ano_mul_7_2_14.p', [0, 1, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 2, 
4, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 3, 0, 1, 0, 2, 4, 0, 2, 4, 0, 2, 
4, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 3, 5]),

Curriculum learning recipe: 
1. Start close to the end of trajectory 
2. Gradually raise the bar
3. Check whether it generalize to other problems



Example of a curriculum: 



From a proof of length 51 we are learning a proof of length 1201:



SQL queries and machine 
learning

Joint project with Michael Benedikt (work in progress)













Neural architectures for SAT

Joint work with Sebastian Jaszczur, Michał Łuszczyk



In this experiment we deal with formulas given in the conjunctive 
normal form (CNF):



In this experiment we want to do things which are sound and simple 
from engineering point of view:

Done:

- Very simple implementation of DPLL for 
prototyping (allows for various heuristics)

- Generators random, but non-trivial instances
- Various neural architectures compared using 

the above infrastructure
- Generic distributed training on a cluster  

Not done:

- Integration with a more sophisticated solver
- Training/testing on large and very large 

instances
- Implementation of DPLL in tf (aka on GPU)
- TPU-compliant implementation of NeuroDPLL

Goal: Learned policy or embedding which outdoes basic heuristics and generalizes to large instances 
than these in training
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In this experiment we want to do things which are sound and simple 
from engineering point of view:

Goal: Learned policy or embedding which outdoes basic heuristics and generalizes to large instances 
than these in training

Long-term goal: learn the distributions in 
the random SAT benchmark







DPLL + some embedding
Algorithm DPLL
  Input: A set of clauses Φ.
  Output: A Truth Value.

function DPLL(Φ)
   if Φ is empty
       then return true;
   if Φ contains an empty clause
       then return false;
//    for every unit clause l in Φ
//       Φ ← unit-propagate(l, Φ);
//   for every literal l that occurs pure in Φ
//      Φ ← pure-literal-assign(l, Φ);
   l ← choose-literal(Φ);
   return DPLL(Φ ∧ l) or DPLL(Φ ∧ not(l));

function choose-literal(Φ):
for each variable v

calculate embedding of Φ[v=true]
calculate embedding of Φ[v=false]

take literal for which embedding is farthest from False



DPLL + some trained policy choose-literal
Algorithm DPLL
  Input: A set of clauses Φ.
  Output: A Truth Value.

function DPLL(Φ)
   if Φ is empty
       then return true;
   if Φ contains an empty clause
       then return false;
//    for every unit clause l in Φ
//       Φ ← unit-propagate(l, Φ);
//   for every literal l that occurs pure in Φ
//      Φ ← pure-literal-assign(l, Φ);
   l ← choose-literal(Φ);
   return DPLL(Φ ∧ l) or DPLL(Φ ∧ not(l));



Axiomatization table for CNF

Slides: goo.gl/JyRc15

In this presentation I will conflate terms NeuroSAT, NeuroDPLL, GraphSAT, GraphDPLL … 
- they all refer to a SAT policy based on a NeuroSAT-style architecture. 

Axiom EqNet LSTM NeuroSAT

“Variable renaming” - independent No No Yes

“Permutation of literals in clause” - independent No No* Yes

“Permutation of clauses in formula” - independent No No Yes

“Negation of all occurrences of variable” - independent No No Yes

http://goo.gl/JyRc15


EQNET 
Learning Continuous Semantic Representations of Symbolic Expressions

Goal: learn a mapping formula -> 
vector space

Semantically equivalent formulas 
should be close.





○ goal: reversibility
○ bottleneck model aka autoencoder
○ “not used to compute the parent 

representation, regulariser only”



EQNET as a SAT oracle
Experiment:

1. trained eqnet: size 10, 5 vars. Operators AND, OR and NOT.
Accuracy (claimed and reproduced): 85%.

2. calculate embeddings on a freshly generated set.
3. calculate distances from embedding of False
4. plot one histogram for satisfiable formulas and one from unsatisfiable 

formulas.



DPLL + eqnet
Algorithm DPLL
  Input: A set of clauses Φ.
  Output: A Truth Value.

function DPLL(Φ)
   if Φ is empty
       then return true;
   if Φ contains an empty clause
       then return false;
//    for every unit clause l in Φ
//       Φ ← unit-propagate(l, Φ);
//   for every literal l that occurs pure in Φ
//      Φ ← pure-literal-assign(l, Φ);
   l ← choose-literal(Φ);
   return DPLL(Φ ∧ l) or DPLL(Φ ∧ not(l));

function choose-literal(Φ):
for each variable v

calculate embedding of Φ[v=true]
calculate embedding of Φ[v=false]

take literal for which embedding is farthest from False



Experiment 2. Notebook link.

Dataset with random k-SATs:

2-SAT, 2 variables, 5 clauses

#Sat: 686; avg dist: 0.5334; stdev dist: 0.103

#Unsat: 314; avg dist: 0.5207; stdev dist: 0.124

https://github.com/mluszczyk/sat-notebooks/blob/master/eqnet%20with%20random%20ksat.ipynb


DPLL 
results: link

2-SAT,
2 variables, 
3 clauses

https://github.com/mluszczyk/sat-notebooks/blob/master/dpll%20with%20eqnet%20etc.ipynb


DPLL 
results: link

3-SAT,
3 variables, 
6 clauses

https://github.com/mluszczyk/sat-notebooks/blob/master/dpll%20with%20eqnet%20etc.ipynb


Experiment: a&~a versus 
b&~b Notebook link

distance 
from/to

a&~a b&~b c&~c

a&~a 0.0 1.14 1.07

b&~b 1.14 0.0 0.9

c&~c 1.07 0.9 0.0

https://github.com/mluszczyk/sat-notebooks/blob/master/eqnet%20dists%20ANotA%20vs%20BNotB.ipynb


Standard solutions: why not LSTM?

Treat like a sequence: (A v ~C v B) ^ (~B ^ C) ^ (~A v B v D)

● Problems with LSTMs and similar:
○ 😟 Permutation of variables inside a clause changes the result.
○ 😟 Permutation of clauses changes the result.
○ 😟 Negation of all occurences of a variable changes the result.
○ 😟 Definite limit on embedding size, regardless of the size of the formula.

Slides: goo.gl/JyRc15

 
 

http://goo.gl/JyRc15


Experiment 1.
#vars: 4 

trained on up to 40 clauses

test on up to 70 clauses



Experiment 3.
#vars: 8, #clauses: up to 
50
#Sats: 100; avg step: 
19.73; stdev step: 19.94; 
avg error: 0.36; stdev 
error: 0.54

#Sats: 100; avg step: 
15.27; stdev step: 11.05; 
avg error: 0.66; stdev 
error: 0.78

Notebook

https://github.com/mluszczyk/deepsat/blob/master/dpll%20comparison%20var8.ipynb




Axiomatization table for CNF

Slides: goo.gl/JyRc15

Axiom EqNet LSTM NeuroSAT

“Variable renaming” - independent No No Yes

“Permutation of literals in clause” - independent No No* Yes

“Permutation of clauses in formula” - independent No No Yes

“Negation of all occurrences of variable” - independent No No Yes

*Unless Bag of Words is used for in-clause literals aggregation. 

http://goo.gl/JyRc15


We may forget the names
A graph representation without names still has all important information!

A B C

A ∨ ¬C ∨ B ¬B ∨ C

¬A ¬B ¬C

Slides: goo.gl/JyRc15

http://goo.gl/JyRc15
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Iteration N Iteration N+1

Architecture idea: embeddings get copied from previous iteration
+ There are blue connections between negating literals
+ There are green connections\between clauses and literals.

Iteration N+2



Comparison vs LSTM
#vars: 8, #clauses: up to 
50
#Sats: 100; avg step: 
19.73; stdev step: 19.94; 
avg error: 0.36; stdev 
error: 0.54

#Sats: 100; avg step: 
9.01; stdev step: 0.10; 
avg error: 0.01; stdev 
error: 0.10

Notebook and Notebook

https://github.com/mluszczyk/deepsat/blob/master/dpll%20comparison%20var8.ipynb
https://github.com/mluszczyk/deepsat/blob/master/dpll%20comparison%20graph.ipynb








https://www.mimuw.edu.pl/~henrykm/pubs_2018/neural_guidance_sat.pdf



Generalisation of GraphSAT to non-CNF

A B A

OR NOT

AND (A or B) and (not A)

Eqnet/TreeNN:
one-way edges.

-B A

OR

AND

GraphSAT: two-way edges,
symmetric or asymmetric.

-AB



Current graphSAT - AND across clauses is implicit.

A B C

A v ~C v B ~B v C

~A ~B ~C

AND

This is not present in current 
architecture, but would be in 
generalised architecture.


