
Machine Learning and Logic

Henryk Michalewski
Google Brain, Mountain View, 28th of November 2018

what is reinforcement learning?
“... neuroscience was ... instrumental in erecting a second pillar of
contemporary AI, stimulating the emergence of the field of
reinforcement learning (RL). RL methods address the problem of how
to maximize future reward by mapping states in the environment to
actions and are among the most widely used tools in AI research. ...,
RL methods were originally inspired by research into animal learning.”

- Neuroscience-Inspired Artificial Intelligence, Demis Hassabis, Dharshan Kumaran,
Christopher Summerfield and Matthew Botvinick, Neuron 2017

RL crash course
maximize future reward of the agent by mapping states in the environment to actions

RL crash course
maximize future reward of the agent by mapping states in the environment to actions

RL crash course
maximize future reward of the agent by mapping states in the environment to actions

RL crash course
maximize future reward of the agent by mapping states in the environment to actions

RL crash course
maximize future reward of the agent by mapping states in the environment to actions

RL crash course
maximize future reward of the agent by mapping states in the environment to actions

RL crash course - some math ;)
maximize future reward of the agent by mapping states in the environment to actions

RL crash course - some math ;)
maximize future reward of the agent by mapping states in the environment to actions

RL crash course - some math ;)
maximize future reward of the agent by mapping states in the environment to actions

RL - part for adults

RL - part for adults

RL - part for adults

RL - part for adults

RL - part for adults

An innovation from the PPO paper:

RL - part for adults

Curriculum learning and
theorem proving

(joint work with Adrián Csiszárik, Cezary Kaliszyk,
Josef Urban, Zsolt Zombori)

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/research/rl.py

How to translate theorem proving to games?

How to translate theorem proving to games?

Approach
Use curriculum learning to counterbalance sparse rewards

- Take a few given proof trajectories
- Start exploration from the end of the trajectory
- Gradually move backwards towards the beginning of the proof

Handling the the discrete action space (two options):

- Use fixed action space: restricted to a narrow type of problems. A quick
route to strong results, however in general our action space is infinite
discrete.

- Action selector model: policy receives all available actions and returns
probabilities. Can generalize to yet unseen actions.

The RL workshop at NIPS 2018 (joint work with
Michał Garmulewicz and Piotr Miłoś)

https://www.mimuw.edu.pl/~henrykm/pubs_2018/montezuma_strong.mp4

How to translate theorem proving to games?

Benefits of action selector model
● Returns a probability distribution (vs scoring function)
● Cannot generalize to yet unseen actions (vs fixed action space model)
● Can handle large action spaces (provided they are not all available together)
● Can make decisions based on other available actions
● Exploits the features of actions

○ Actions and spaces are embedded into the same feature space (manual features, widely used
in the ATP community)

○ The network can meaningfully process the concatenation of state-action feature vectors.

Results
Trained and tested on Robinson arithmetic problems

RL method - variations of the Actor-Critic meta-algorithm:

- Fixed action space model trained on 7*2=14 (51 steps) managed to prove all
multiplications up to 9*9 (1201 steps)

- Action selector model trained on 7+5=12 (17 steps) managed to prove all
additions up to 9+9

What is curriculum learning in the
context of reinforcement learning?

We have a proof trajectory:

('/home/henrykmichalewski/problems/gen_mul_new/pe
ano_mul_7_2_14.p', [0, 1, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 2,
4, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 3, 0, 1, 0, 2, 4, 0, 2, 4, 0, 2,
4, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 2, 4, 0, 3, 5]),

Curriculum learning recipe:
1. Start close to the end of trajectory
2. Gradually raise the bar
3. Check whether it generalize to other problems

Example of a curriculum:

From a proof of length 51 we are learning a proof of length 1201:

SQL queries and machine
learning

Joint project with Michael Benedikt (work in progress)

Neural architectures for SAT

Joint work with Sebastian Jaszczur, Michał Łuszczyk

In this experiment we deal with formulas given in the conjunctive
normal form (CNF):

In this experiment we want to do things which are sound and simple
from engineering point of view:

Done:

- Very simple implementation of DPLL for
prototyping (allows for various heuristics)

- Generators random, but non-trivial instances
- Various neural architectures compared using

the above infrastructure
- Generic distributed training on a cluster

Not done:

- Integration with a more sophisticated solver
- Training/testing on large and very large

instances
- Implementation of DPLL in tf (aka on GPU)
- TPU-compliant implementation of NeuroDPLL

Goal: Learned policy or embedding which outdoes basic heuristics and generalizes to large instances
than these in training

In this experiment we want to do things which are sound and simple
from engineering point of view:

Done:

- Very simple implementation of DPLL for
prototyping (allows for various heuristics)

- Generators random, but trivial instances
- Various neural architectures compared using

the above infrastructure
- Generic distributed training on a cluster

Goal: Learned policy or embedding which outdoes basic heuristics and generalizes to large instances
than these in training

In this experiment we want to do things which are sound and simple
from engineering point of view:

Goal: Learned policy or embedding which outdoes basic heuristics and generalizes to large instances
than these in training

Long-term goal: learn the distributions in
the random SAT benchmark

DPLL + some embedding
Algorithm DPLL
 Input: A set of clauses Φ.
 Output: A Truth Value.

function DPLL(Φ)
 if Φ is empty
 then return true;
 if Φ contains an empty clause
 then return false;
// for every unit clause l in Φ
// Φ ← unit-propagate(l, Φ);
// for every literal l that occurs pure in Φ
// Φ ← pure-literal-assign(l, Φ);
 l ← choose-literal(Φ);
 return DPLL(Φ ∧ l) or DPLL(Φ ∧ not(l));

function choose-literal(Φ):
for each variable v

calculate embedding of Φ[v=true]
calculate embedding of Φ[v=false]

take literal for which embedding is farthest from False

DPLL + some trained policy choose-literal
Algorithm DPLL
 Input: A set of clauses Φ.
 Output: A Truth Value.

function DPLL(Φ)
 if Φ is empty
 then return true;
 if Φ contains an empty clause
 then return false;
// for every unit clause l in Φ
// Φ ← unit-propagate(l, Φ);
// for every literal l that occurs pure in Φ
// Φ ← pure-literal-assign(l, Φ);
 l ← choose-literal(Φ);
 return DPLL(Φ ∧ l) or DPLL(Φ ∧ not(l));

Axiomatization table for CNF

Slides: goo.gl/JyRc15

In this presentation I will conflate terms NeuroSAT, NeuroDPLL, GraphSAT, GraphDPLL …
- they all refer to a SAT policy based on a NeuroSAT-style architecture.

Axiom EqNet LSTM NeuroSAT

“Variable renaming” - independent No No Yes

“Permutation of literals in clause” - independent No No* Yes

“Permutation of clauses in formula” - independent No No Yes

“Negation of all occurrences of variable” - independent No No Yes

http://goo.gl/JyRc15

EQNET
Learning Continuous Semantic Representations of Symbolic Expressions

Goal: learn a mapping formula ->
vector space

Semantically equivalent formulas
should be close.

○ goal: reversibility
○ bottleneck model aka autoencoder
○ “not used to compute the parent

representation, regulariser only”

EQNET as a SAT oracle
Experiment:

1. trained eqnet: size 10, 5 vars. Operators AND, OR and NOT.
Accuracy (claimed and reproduced): 85%.

2. calculate embeddings on a freshly generated set.
3. calculate distances from embedding of False
4. plot one histogram for satisfiable formulas and one from unsatisfiable

formulas.

DPLL + eqnet
Algorithm DPLL
 Input: A set of clauses Φ.
 Output: A Truth Value.

function DPLL(Φ)
 if Φ is empty
 then return true;
 if Φ contains an empty clause
 then return false;
// for every unit clause l in Φ
// Φ ← unit-propagate(l, Φ);
// for every literal l that occurs pure in Φ
// Φ ← pure-literal-assign(l, Φ);
 l ← choose-literal(Φ);
 return DPLL(Φ ∧ l) or DPLL(Φ ∧ not(l));

function choose-literal(Φ):
for each variable v

calculate embedding of Φ[v=true]
calculate embedding of Φ[v=false]

take literal for which embedding is farthest from False

Experiment 2. Notebook link.

Dataset with random k-SATs:

2-SAT, 2 variables, 5 clauses

#Sat: 686; avg dist: 0.5334; stdev dist: 0.103

#Unsat: 314; avg dist: 0.5207; stdev dist: 0.124

https://github.com/mluszczyk/sat-notebooks/blob/master/eqnet%20with%20random%20ksat.ipynb

DPLL
results: link

2-SAT,
2 variables,
3 clauses

https://github.com/mluszczyk/sat-notebooks/blob/master/dpll%20with%20eqnet%20etc.ipynb

DPLL
results: link

3-SAT,
3 variables,
6 clauses

https://github.com/mluszczyk/sat-notebooks/blob/master/dpll%20with%20eqnet%20etc.ipynb

Experiment: a&~a versus
b&~b Notebook link

distance
from/to

a&~a b&~b c&~c

a&~a 0.0 1.14 1.07

b&~b 1.14 0.0 0.9

c&~c 1.07 0.9 0.0

https://github.com/mluszczyk/sat-notebooks/blob/master/eqnet%20dists%20ANotA%20vs%20BNotB.ipynb

Standard solutions: why not LSTM?

Treat like a sequence: (A v ~C v B) ^ (~B ^ C) ^ (~A v B v D)

● Problems with LSTMs and similar:
○ 😟 Permutation of variables inside a clause changes the result.
○ 😟 Permutation of clauses changes the result.
○ 😟 Negation of all occurences of a variable changes the result.
○ 😟 Definite limit on embedding size, regardless of the size of the formula.

Slides: goo.gl/JyRc15

http://goo.gl/JyRc15

Experiment 1.
#vars: 4

trained on up to 40 clauses

test on up to 70 clauses

Experiment 3.
#vars: 8, #clauses: up to
50
#Sats: 100; avg step:
19.73; stdev step: 19.94;
avg error: 0.36; stdev
error: 0.54

#Sats: 100; avg step:
15.27; stdev step: 11.05;
avg error: 0.66; stdev
error: 0.78

Notebook

https://github.com/mluszczyk/deepsat/blob/master/dpll%20comparison%20var8.ipynb

Axiomatization table for CNF

Slides: goo.gl/JyRc15

Axiom EqNet LSTM NeuroSAT

“Variable renaming” - independent No No Yes

“Permutation of literals in clause” - independent No No* Yes

“Permutation of clauses in formula” - independent No No Yes

“Negation of all occurrences of variable” - independent No No Yes

*Unless Bag of Words is used for in-clause literals aggregation.

http://goo.gl/JyRc15

We may forget the names
A graph representation without names still has all important information!

A B C

A ∨ ¬C ∨ B ¬B ∨ C

¬A ¬B ¬C

Slides: goo.gl/JyRc15

http://goo.gl/JyRc15

Iteration N Iteration N+1

Iteration N Iteration
N+1

Iteration N Iteration N+1

Architecture idea: embeddings get copied from previous iteration
+ There are blue connections between negating literals
+ There are green connections\between clauses and literals.

Iteration N+2

Comparison vs LSTM
#vars: 8, #clauses: up to
50
#Sats: 100; avg step:
19.73; stdev step: 19.94;
avg error: 0.36; stdev
error: 0.54

#Sats: 100; avg step:
9.01; stdev step: 0.10;
avg error: 0.01; stdev
error: 0.10

Notebook and Notebook

https://github.com/mluszczyk/deepsat/blob/master/dpll%20comparison%20var8.ipynb
https://github.com/mluszczyk/deepsat/blob/master/dpll%20comparison%20graph.ipynb

https://www.mimuw.edu.pl/~henrykm/pubs_2018/neural_guidance_sat.pdf

Generalisation of GraphSAT to non-CNF

A B A

OR NOT

AND (A or B) and (not A)

Eqnet/TreeNN:
one-way edges.

-B A

OR

AND

GraphSAT: two-way edges,
symmetric or asymmetric.

-AB

Current graphSAT - AND across clauses is implicit.

A B C

A v ~C v B ~B v C

~A ~B ~C

AND

This is not present in current
architecture, but would be in
generalised architecture.

