
ar
X

iv
:1

80
5.

07
56

3v
1

 [
cs

.A
I]

 1
9

M
ay

 2
01

8

Reinforcement Learning of Theorem Proving

Cezary Kaliszyk∗†

University of Innsbruck
Josef Urban ∗‡

Czech Technical University in Prague

Henryk Michalewski
University of Warsaw

Mirek Olšák
Charles University

Abstract

We introduce a theorem proving algorithm that uses practically no domain heuris-
tics for guiding its connection-style proof search. Instead, it runs many Monte-
Carlo simulations guided by reinforcement learning from previous proof attempts.
We produce several versions of the prover, parameterized by different learning and
guiding algorithms. The strongest version of the system is trained on a large cor-
pus of mathematical problems and evaluated on previously unseen problems. The
trained system solves within the same number of inferences over 40% more prob-
lems than a baseline prover, which is an unusually high improvement in this hard
AI domain. To our knowledge this is the first time reinforcement learning has been
convincingly applied to solving general mathematical problems on a large scale.

1 Introduction

Automated theorem proving (ATP) [34] can in principle be used to attack any formally stated math-
ematical problem. For this, state-of-the-art ATP systems rely on fast implementations of complete
proof calculi such as resolution [33], superposition [4], SMT [5] and (connection) tableau [15] that
have been over several decades improved by many search heuristics. This is already useful for
automatically discharging smaller proof obligations in large interactive theorem proving (ITP) veri-
fication projects [7]. In practice, today’s best ATP system are however still far weaker than trained
mathematicians in most research domains. Machine learning from many proofs could be used to
improve on this.

Following this idea, large formal proof corpora have been recently translated to ATP formalisms [40,
28, 18], and machine learning over them has started to be used to train guidance of ATP sys-
tems [42, 24, 2]. First, to select a small number of relevant facts for proving new conjectures over
large formal libraries [1, 6, 11], and more recently also to guide the internal search of the ATP sys-
tems. In sophisticated saturation-style provers this has been done by feedback loops for strategy
invention [41, 16, 35] and by using supervised learning [17, 26] to select the next given clause [27].
In the simpler connection tableau systems such as leanCoP [30], supervised learning has been used
to choose the next tableau extension step [43, 19] and first experiments with Monte-Carlo guided
proof search [10] have been done. Despite a limited ability to prioritize the proof search, the guided
search in the latter connection systems is still organized by iterative deepening. This ensures com-
pleteness, which has been for long time a sine qua non for building proof calculi.

In this work, we remove this requirement, since it basically means that all shorter proof candidates
have to be tried before a longer proof is found. The result is a bare connection-style theorem prover

∗These authors contributed equally to this work.
†Supported by ERC grant no. 714034 SMART.
‡Supported by the AI4REASON ERC Consolidator grant number 649043, and by the Czech project

AI&Reasoning CZ.02.1.01/0.0/0.0/15 003/0000466 and the European Regional Development Fund.

Preprint. Work in progress.

http://arxiv.org/abs/1805.07563v1

that does not use any human-designed proof-search restrictions, heuristics and targeted (decision)
procedures. This is in stark contrast to recent mainstream ATP research, which has to a large extent
focused on adding more and more sophisticated human-designed procedures in domains such as
SMT solving.

Based on the bare prover, we build a sequence of systems, adding Monte-Carlo tree search [23], and
reinforcement learning [39] of policy and value guidance. We show that while the performance of
the system (called rlCoP) is initially much worse than that of standard leanCoP, after ten iterations
of proving and learning it solves significantly more previously unseen problems than leanCoP when
using the same total number of inference steps.

The rest of the paper is organized as follows. Section 2 explains the basic connection tableau setting
and introduces the bare prover. Section 3 describes integration of the learning-based guiding mech-
anisms, i.e. Monte-Carlo search, the policy and value guidance. Section 4 evaluates the system on a
large corpus of problems extracted from the Mizar Mathematical Library [13].

2 The Game of Connection Based Theorem Proving

We assume basic first-order logic and theorem proving terminology [34]. We start with the con-
nection tableau architecture as implemented by the leanCoP [30] system. leanCoP is a compact
theorem prover whose core procedure can be written in seven lines in Prolog. Its input is a (math-
ematical) problem consisting of axioms and conjecture formally stated in first-order logic (FOL).
The calculus searches for refutational proofs, i.e. proofs showing that the axioms together with the
negated conjecture are unsatisfiable.4 The FOL formulas are first translated to the clause normal
form (CNF), producing a set of first-order clauses consisting of literals (atoms or their negations).
An example set of clauses is shown in Figure 1. The figure also shows a closed connection tableau,
i.e., a finished proof tree where every branch contains complementary literals (literals with opposite
polarity). Since all branches contain a pair of contradictory literals, this shows that the set of clauses
is unsatisfiable.

Clauses:

c1 : P (x)

c2 : R(x, y) ∨ ¬P (x) ∨Q(y)

c3 : S(x) ∨ ¬Q(b)

c4 : ¬S(x) ∨ ¬Q(x)

c5 : ¬Q(x) ∨ ¬R(a, x)

c6 : ¬R(a, x) ∨Q(x)

Tableau: P (a)

R(a, b)

¬R(a, b) Q(b)

¬Q(b) ¬R(a, b)

¬P (a) Q(b)

S(b)

¬S(b) ¬Q(b)

¬Q(b)

Figure 1: Closed connection tableau for a set of clauses (adapted from Letz et al. [25]).

The proof search starts with a start clause as a goal and proceeds by building a connection tableau by
repeatedly applying extension steps and reduction steps to it. The extension step connects (unifies)
the current goal (a selected tip of a tableau branch) with a complementary literal of a new clause.
This extends the current branch, possibly splitting it into several branches if there are more literals
in the new clause, and possibly instantiating some variables in the tableau. The reduction step
connects the current goal to a complementary literal of the active path, thus closing the current
branch. The proof is finished when all branches are closed. The extension and reduction steps are
nondeterministic, requiring backtracking in the standard connection calculus. Iterative deepening is
typically used to ensure completeness, i.e. making sure that the proof search finds a proof if there is
any. Incomplete strategies that restrict backtracking can be used in leanCoP, sometimes improving
its performance on benchmarks [29].

2.1 The Bare Prover

Our bare prover is based on a previous reimplementation [22] of leanCoP in OCaml (mlCoP).
Unlike the Prolog version, mlCoP uses an explicit stack for storing the full proof state. This allows

4To minimize the required theorem proving background, we follow the more standard connection tableau
calculus presentations using CNF and refutational setting as in [25]. The leanCoP calculus is typically pre-
sented in a dual (DNF) form, which is however isomorphic to the more standard one.

2

us to use the full proof state for machine learning guidance. We first modify mlCoP by remov-
ing iterative deepening, i.e., the traversal strategy that makes sure that shorter (shallower) tableaux
are tested before deeper ones. Instead, the bare prover randomly chooses extension and reduc-
tion steps operating on the current goal, possibly going into arbitrary depth. This makes our bare
prover trivially incomplete. A simple example to demonstrate that is the unsatisfiable set of clauses
{P (0),¬P (x) ∨ P (s(x)),¬P (0)} . If the prover starts with the goal P (0), the third clause can be
used to immediately close the tableau. Without any depth bounds, the bare prover may however also
always extend with the second clause, generating an infinite branch P (0), P (s(0)), P (s(s(0))),
Rather than designing such completeness bounds and corresponding exhaustive strategies, we will
use Monte-Carlo search and reinforcement learning to gradually teach the prover to avoid such bad
branches and focus on the promising ones.

Next, we add playouts and search node visit counts. A playout of length d is simply a sequence of d
consecutive extension/reduction steps (inferences) from a given proof state (a tableau with a selected
goal). Inferences thus correspond to actions and are similar to moves in games. We represent
inferences as integers that encode the selected clause together with the literal that connected to the
goal. Instead of running one potentially infinite playout, the bare prover can be instructed to play
n playouts of length d. Each playout updates the counts for the search nodes that it visits. Search
nodes are encoded as sequences of inferences starting at the empty tableau. A playout can also run
without length restrictions until it visits a previously unexplored search node. This is the current
default. Each playout in this version always starts with empty tableau, i.e., it starts randomly from
scratch.

The next modification to this simple setup are bigsteps done after b playouts. They correspond
to moves that are chosen in games after many playouts. Similarly, instead of starting all playouts
always from scratch (empty tableau) as above, we choose after the first b playouts a particular single
inference (bigstep), resulting in a new bigstep tableau. The next b playouts will start with this
tableau, followed by another bigstep, etc.

This finishes the description of the bare prover. Without any guidance and heuristics for choosing
the playout inferences and bigsteps, this prover is typically much weaker than standard mlCoP with
iterative deepening, see Section 4. The bare prover will just iterate between randomly doing b new
playouts, and randomly making a bigstep.

3 Guidance

The rlCoP extends the bare prover with (i) Monte-Carlo tree search balancing exploration and ex-
ploitation using the UCT formula [23], (ii) learning-based mechanisms for estimating the prior prob-
ability of inferences to lead to a proof (policy), and (iii) learning-based mechanisms for assigning
heuristic value to the proof states (tableaux).

3.1 Monte-Carlo Guidance

To implement Monte-Carlo tree search, we maintain at each search node i the number of its visits
ni, the total reward wi, and its prior probability pi. This is the transition probability of the action
(inference) that leads from i’s parent node to i. If no policy learning is used, the prior probabilities
are all equal to one. The total reward for a node is computed as a sum of the rewards of all nodes
below that node. In the basic setting, the reward for a leaf node is 1 if the sequence of inferences
results in a closed tableau, i.e., a proof of the conjecture. Otherwise it is 0.

Instead of this basic setting, we will by default use a simple evaluation heuristic, that will later be
replaced by learned value. The heuristic is based on the number of open (non-closed) goals (tips
of the tableau) Go. The exact value is computed as 0.95Go , i.e., the leaf value exponentially drops
with the number of open goals in the tableau. The motivation is similar as, e.g., preferring smaller
clauses (closer to the empty clause) in saturation-style theorem provers. If nothing else is known
and the open goals are assumed to be independent, the chances of closing the tableau within a given
inference limit drop exponentially with each added open goal. The exact value of 0.95 has been
determined experimentally using a small grid search.

3

We use the standard UCT formula [23] to select the next inferences (actions) in the playouts:

wi

ni

+ c · pi ·

√

lnN

ni

where N stands for the total number of visits of the parent node. We have also experimented with
PUCT as in AlphaZero [38], however the results are practically the same. The value of c has been
experimentally set to 2 when learned policy and value are used.

3.2 Policy Learning and Guidance

From many proof runs we learn prior probabilities of actions (inferences) in particular proof states
corresponding to the search nodes in which the actions were taken. We characterize the proof states
for policy learning by extracting features (see Section 3.4) from the current goal, the active path, and
the whole tableau. Similarly, we extract features from the clause and its literal that were used to per-
form the inference. Both are extracted as sparse vectors and concatenated into pairs (fstate, faction).
For each search node, we extract from its UCT data the frequency of each action a, and normalize
it by dividing with the average action frequency at that node. This yields a relative proportion
ra ∈ (0,∞). Each concatenated pair of feature vectors (fs, fa) is then associated with ra, which
constitutes the training data for policy learning implemented as regression on the logarithms. During
the proof search, the prior probabilities pi of the available actions ai in a state s are computed as a
softmax of their predictions. We use τ = 2.5 by default as the softmax temperature. This value has
been optimized by a small grid search.

The policy learning data can be extracted from all search nodes or only from some of them. By
default, we only extract the training examples from the bigstep nodes. This makes the amount of
training data manageable for our experiments and also focuses on important examples.

3.3 Value Learning and Guidance

Bigstep nodes are used also for learning of the proof state evaluation (value). For value learning we
characterize the proof states of the nodes by extracting features from all goals, the active path, and
the whole tableau. If a proof was found, each bigstep node b is assigned value vb = 1. If the proof
search was unsuccessful, each bigstep is assigned value vb = 0. By default we also apply a small
discount factor to the positive bigstep values, based on their distance dproof (b) to the closed tableau,

measured by the number of inferences. This is computed as 0.99dproof(b). The exact value of 0.99
has again been determined experimentally using a small grid search.

For each bigstep node b the sparse vector of its proof state features fb is associated with the value
vb. This constitutes the training data for value learning which is implemented as regression on the
logits. The trained predictor is then used during the proof search to estimate the logit of the proof
state value.

3.4 Features

We have briefly experimented with using deep neural networks to learn the policy and value pre-
dictors directly from the theorem proving data. Current deep neural architectures however do not
seem to perform on such data significantly better than non-neural classifiers such as XGBoost with
manually engineered features [17, 32, 2]. We use the latter approach, which is also significantly
faster [26].

Features are collected from the first-order terms, clauses, goals and tableaux. Most of them are
based on (normalized) term walks of length up to 3, as used in the ENIGMA system [17]. We
uniquely identify each symbol by a 64-bit integer. To combine a sequence of integers originating
from symbols in a term walk into a single integer, the components are multiplied by fixed large
primes and added. The resulting integers are then reduced to a smaller feature space by taking
modulo by a large prime (218 − 5). The value of each feature is the sum of its occurrences in the
given expression.

In addition to the term walks we also use several common abstract features, especially for more
complicated data such as tableaux and paths. These are: number of goals, total symbol size of
all goals, maximum goal size, maximum goal depth, length of the active path, number of current

4

variable instantiations, and the two most common symbols and their frequencies. The exact features
used have been optimized based on several experiments and analysis of the reinforcement learning
data.

3.5 Learners and Their Integration

For both policy and value we have experimented with several fast linear learners such as LIBLIN-
EAR [9] and the XGBoost [8] gradient boosting toolkit (used with the linear regression objective).
The latter performs significantly better and has been chosen for conducting the final evaluation. The
XGBoost parameters have been optimized on a smaller dataset using randomized cross-validated
search5 taking speed of training and evaluation into account. The final values that we use both for
policy and value learning are as follows: maximum number of iterations = 400, maximum tree
depth = 9, ETA (learning rate) = 0.3, early stopping rounds = 200, lambda (weight regularization)
= 1.5. Table 1 compares the performance of XGBoost and LIBLINEAR6 on value data extracted
from 2003 proof attempts.

Table 1: Machine learning performance of XGBoost and LIBLINEAR on the value data extracted
from 2003 problems.The errors are errors on the logits.

Predictor Train Time RMSE (Train) RMSE (Test)

XGBoost 19 min 0.99 2.89
LIBLINEAR 37 min 0.83 16.31

For real-time guidance during the proof search we have integrated LIBLINEAR and XGBoost into
rlCoP using the OCaml foreign interface, which allows for a reasonably low prediction overhead.
Another part of the guidance overhead is feature computation and transformation of the computed
feature vectors into the form accepted by the learned predictors. Table 2 shows that the resulting
slowdown is in low linear factors.

Table 2: Inference speed comparison of mlCoP and rlCoP. IPS stand for inferences per second.
The data are averaged over 2003 problems.

System mlCoP rlCoP without policy/value (UCT only) rlCoP with XGBoost policy/value
Average IPS 64335.5 64772.4 16205.7

4 Experimental Results

The evaluation is done on two datasets of first-order problems exported from the Mizar Mathematical
Library [13] by the MPTP system [40]. The larger Miz40 dataset 7 consists of 32524 problems that
have been proved by several state-of-the-art ATPs used with many strategies and high time limits
in the experiments described in [20]. We have also created a smaller M2k dataset by taking 2003
Miz40 problems that come from related Mizar articles. Most experiments and tuning were done on
the smaller dataset. All problems are run on the same hardware8 and with the same memory limits.
When using UCT, we always run 2000 playouts (each until a new node is found) per bigstep.

4.1 Performance without Learning

First, we use the M2k dataset to compare the performance of the baseline mlCoP with the bare
prover and with the non-learning rlCoP using only UCT with the simple goal-counting proof state
evaluation heuristic. The results of runs with a limit of 200000 inferences are shown in Table 3.
Raising the inference limit helps only a little: mlCoP solves 1003 problems with a limit of 2 ∗ 106

inferences, and 1034 problems with a limit of 4∗106 inferences. The performance of the bare prover

5We have used the RandomizedSearchCV method of Scikit-learn [31].
6We use L2-regularized L2-loss support vector regression and ǫ = 0.0001 for LIBLINEAR.
7https://github.com/JUrban/deepmath
8Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz with 256G RAM.

5

https://github.com/JUrban/deepmath

is low as expected - only about half of the performance of mlCoP. rlCoP using UCT with no policy
and only the simple proof state evaluation heuristic is also weaker than mlCoP, however already
significantly better than the bare prover.

Table 3: Performance on the M2k dataset of mlCoP, the bare prover and non-learning rlCoP with
UCT and simple goal-counting proof state evaluation. (200000 inference limit).

System mlCoP bare prover rlCoP without policy/value (UCT only)
Problems proved 876 434 770

4.2 Reinforcement Learning of Policy Only

Next we evaluate on the M2k dataset rlCoP with UCT using only policy learning, i.e., the value
is still estimated heuristically. We run 20 iterations, each with 200000 inference limit. After each
iteration we use the policy training data (Section 3.2) from all previous iterations to train a new
XGBoost predictor. This is then used for estimating the prior action probabilities in the next run.
The 0th run uses no policy. This means that it is the same as in Section 4.1, solving 770 problems.
Table 4 shows the problems solved by iterations 1 to 20. Already the first iteration significantly
improves over mlCoP run with 200000 inference limit. Starting with the fourth iteration, rlCoP is
better than mlCoP run with the much higher 4 ∗ 106 inference limit.

Table 4: 20 policy-guided iterations of rlCoP on the M2k dataset.

Iteration 1 2 3 4 5 6 7 8 9 10
Proved 974 1008 1028 1053 1066 1054 1058 1059 1075 1070

Iteration 11 12 13 14 15 16 17 18 19 20
Proved 1074 1079 1077 1080 1075 1075 1087 1071 1076 1075

4.3 Reinforcement Learning of Value Only

Similarly, we evaluate on the M2k dataset 20 iterations of rlCoP with UCT and value learning, but
with no learned policy (i.e., all prior inference probabilities are the same). Each iteration again uses
a limit of 200000 inferences. After each iteration a new XGBoost predictor is trained on the value
data (Section 3.3) from all previous iterations, and is used to evaluate the proof states in the next
iteration. The 0th run again uses neither policy nor value, solving 770 problems. Table 5 shows the
problems solved by iterations 1 to 20. The performance nearly reaches mlCoP, however it is far
below rlCoP using policy learning.

Table 5: 20 value-guided iterations of rlCoP on the M2k dataset.

Iteration 1 2 3 4 5 6 7 8 9 10
Proved 809 818 821 821 818 824 856 831 842 826

Iteration 11 12 13 14 15 16 17 18 19 20
Proved 832 830 825 832 828 820 825 825 831 815

4.4 Reinforcement Learning of Policy and Value

Finally, we run on the M2k dataset 20 iterations of full rlCoP with UCT and both policy and value
learning. The inference limits, the 0th run and the policy and value learning are as above. Table 6
shows the problems solved by iterations 1 to 20. The 20th iteration proves 1235 problems, which is
19.4% more than mlCoP with 4 ∗ 106 inferences, 13.6% more than the best iteration of rlCoP with
policy only, and 44.3% more than the best iteration of rlCoP with value only. The first iteration im-
proves over mlCoP with 200000 inferences by 18.4% and the second iteration already outperforms
the best policy-only result.

We also evaluate the effect of joint reinforcement learning of policy and value. Replacing the final
policy with the best one from the policy-only runs decreases the performance in 20th iteration from
1235 to 1182. Replacing the final value with the best one from the value-only runs decreases the
performance in 20th iteration from 1235 to 1144.

6

Table 6: 20 iterations of rlCoP with policy and value guidance on the M2k dataset.

Iteration 1 2 3 4 5 6 7 8 9 10
Proved 1037 1110 1166 1179 1182 1198 1196 1193 1212 1210

Iteration 11 12 13 14 15 16 17 18 19 20
Proved 1206 1217 1204 1219 1223 1225 1224 1217 1226 1235

4.5 Evaluation on the Whole Miz40 Dataset

The Miz40 dataset is sufficiently large to allow an ultimate train/test evaluation in which rlCoP is
trained in several iterations on 90% of the problems, and then compared to mlCoP on the 10%
of previously unseen problems. This will provide the final comparison of human-designed proof
search with proof search trained by reinforcement learning on many related problems. We therefore
randomly split Miz40 into a training set of 29272 problems and a testing set of 3252 problems.

First, we again measure the performance of the unguided systems, i.e., comparing mlCoP, the
bare prover and the non-learning rlCoP using only UCT with the simple goal-counting proof state
evaluation heuristic. The results of runs with a limit of 200000 inferences are shown in Table 7.
mlCoP here performs relatively slightly better than on M2k. It solves 13450 problems in total with
a higher limit of 2 ∗ 106 inferences, and 13952 problems in total with a limit of 4 ∗ 106 inferences.

Table 7: Performance on the Miz40 dataset of mlCoP, the bare prover and non-learning rlCoP with
UCT and simple goal-counting proof state evaluation. (200000 inference limit).

System mlCoP bare prover rlCoP without policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

Finally, we run 10 iterations of full rlCoP with UCT and both policy and value learning. Only the
training set problems are however used for the policy and value learning. The inference limit is again
200000, the 0th run is as above, solving 7348 training and 804 testing problems. Table 8 shows the
problems solved by iterations 1 to 10. rlCoP guided by the policy and value learned on the training
data from iterations 0− 4 proves (in the 5th iteration) 1624 testing problems, which is 42.1% more
than mlCoP run with the same inference limit. This is our final result, comparing the baseline
prover with the trained prover on previously unseen data. 42.1% is an unusually high improvement
which we achieved with practically no domain-specific engineering. Published improvements in the
theorem proving field are typically between 3 and 10 %.

Table 8: 10 iterations of rlCoP with policy and value guidance on the Miz40 dataset. Only the
training problems are used for the policy and value learning.

Iteration 1 2 3 4 5 6 7 8 9 10

Training proved 12325 13749 14155 14363 14403 14431 14342 14498 14481 14487
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591 1577 1621

4.6 Examples

There are 577 test problems that rlCoP trained in 10 iterations on Miz40 can solve and standard
mlCoP cannot.9 We show three of the problems which cannot be solved by standard mlCoP even
with a much higher inference limit (4 million). Theorem TOPREALC:10

10 states commutativity of
scalar division with squaring for complex-valued functions. Theorem WAYBEL 0:28

11 states that a

9Since theorem proving is almost never monotonically better, there are also 96 problems solved by mlCoP

and not solved by rlCoP in this experiment. The final performance difference between rlCoP and mlCoP is
thus 577− 96 = 481 problems.

10http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/toprealc#T10
11http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/waybel_0#T28

7

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/toprealc#T10
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/waybel_0#T28

r=0.3099

n=1182

p=0.24

r=0.3501

n=536

p=0.21

r=0.1859

n=28...

p=0.10

r=0.2038

n=9...

p=0.13

r=0.2110

n=14...

p=0.14

r=0.2384

n=21...

p=0.14

r=0.3370

n=181...

p=0.20

r=0.3967

n=279

p=0.30

r=0.1368

n=14...

p=0.15

r=0.0288

n=2...

p=0.56

r=0.4135

n=262

p=0.66

r=0.4217

n=247

36 more MCTS tree levels until proved

p=0.18

r=0.2633

n=8...

p=0.17

r=0.2554

n=6...

p=0.08

r=0.1116

n=3...

p=0.19

r=0.2289

n=58...

p=0.22

r=0.1783

n=40...

p=0.35

r=0.2889

n=548...

(tableau starting atom)

RelStr(c1)

upper(c1)

Subset(union(c2), carrier(c1))

Subset(c2, powerset(carrier(c1))

Figure 2: The MCTS tree for the WAYBEL 0:28 problem at the moment when the proof is found.
For each node we display the predicted probability p, the number of visits n and the average reward
r = w/n. For the (thicker) nodes leading to the proof the corresponding local proof goals are
presented on the right.

union of upper sets in a relation is an upper set. And theorem FUNCOP 1:34
12 states commutativity

of two kinds of function composition. All these theorems have nontrivial human-written formal
proof in Mizar, and they are also relatively hard to prove using state-of-the-art saturation-style ATPs.
Figure 2 partially shows an example of the completed Monte-Carlo tree search for WAYBEL 0:28.
The local goals corresponding to the nodes leading to the proof are printed to the right.

theorem :: TOPREALC :10
for c being complex number for f being complex -valued Function

holds (f (/) c) ^2 = (f ^2) (/) (c ^2)

theorem :: WAYBEL_0 :28
for L being RelStr for A being Subset -Family of L st
(for X being Subset of L st X in A holds X is upper)

holds union A is upper Subset of L

theorem Th34: :: FUNCOP_1 :34
for f, h, F being Function for x being set

holds (F [;] (x,f)) * h = F [;] (x,(f * h))

5 Related Work

Several related systems have been mentioned in Section 1. Many iterations of a feedback loop
between proving and learning have been explored since the MaLARea [42] system, significantly
improving over human-designed heuristics when reasoning in large theories [21, 32]. Such systems
however only learn high-level selection of relevant facts from a large knowledge base, and delegate
the internal proof search to standard ATP systems treated there as black boxes. Related high-level
feedback loops have been designed for invention of targeted strategies of ATP systems [41, 16].

Several systems have been produced recently that use supervised learning from large proof corpora
for guiding the internal proof search of ATPs. This has been done in the connection tableau set-
ting [43, 19, 10], saturation style setting [17, 26], and also as direct automation inside interactive
theorem provers [12, 14, 44]. Reinforcement-style feedback loops however have not been explored
yet in this setting. The closest recent work is [10], where Monte-Carlo tree search is added to con-
nection tableau, however without reinforcement learning iterations, with complete backtracking, and
without learned value. The improvement over the baseline measured in that work is much less sig-
nificant than here. An obvious recent inspiration for this work are the latest reinforcement learning
advances in playing Go and other board games [36, 38, 37, 3].

12http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/funcop_1#T34

8

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/funcop_1#T34

6 Conclusion

In this work we have developed a theorem proving algorithm that uses practically no domain en-
gineering and instead relies on Monte-Carlo simulations guided by reinforcement learning from
previous proof searches. We have shown that when trained on a large corpus of general mathemat-
ical problems, the resulting system is more than 40% stronger than the baseline system in terms of
solving nontrivial new problems. We believe that this is a landmark in the field of automated rea-
soning, demonstrating that building general problem solvers for mathematics, verification and hard
sciences by reinforcement learning is a very viable approach.

Obvious future research includes strong learning algorithms for characterizing mathematical data.
We believe that development of suitable (deep) learning architectures that capture both syntactic
and semantic features of the mathematical objects will be crucial for training strong assistants for
mathematics and hard science by reinforcement learning.

References

[1] J. Alama, T. Heskes, D. Kühlwein, E. Tsivtsivadze, and J. Urban. Premise selection for math-
ematics by corpus analysis and kernel methods. J. Autom. Reasoning, 52(2):191–213, 2014.

[2] A. A. Alemi, F. Chollet, N. Eén, G. Irving, C. Szegedy, and J. Urban. DeepMath - deep se-
quence models for premise selection. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems 2016, pages 2235–2243, 2016.

[3] T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with deep learning and tree search.
In I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, pages 5366–5376, 2017.

[4] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and
simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

[5] C. W. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli, et al. Satisfiability modulo theories.
Handbook of satisfiability, 185:825–885, 2009.

[6] J. C. Blanchette, D. Greenaway, C. Kaliszyk, D. Kühlwein, and J. Urban. A learning-based
fact selector for Isabelle/HOL. J. Autom. Reasoning, 57(3):219–244, 2016.

[7] J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED. J.
Formalized Reasoning, 9(1):101–148, 2016.

[8] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM.

[9] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large
linear classification. Journal of machine learning research, 9(Aug):1871–1874, 2008.

[10] M. Färber, C. Kaliszyk, and J. Urban. Monte Carlo tableau proof search. In L. de Moura, editor,
26th International Conference on Automated Deduction (CADE), volume 10395 of LNCS,
pages 563–579. Springer, 2017.

[11] T. Gauthier and C. Kaliszyk. Premise selection and external provers for HOL4. In X. Leroy
and A. Tiu, editors, Proc. of the 4th Conference on Certified Programs and Proofs (CPP’15),
pages 49–57. ACM, 2015.

[12] T. Gauthier, C. Kaliszyk, and J. Urban. TacticToe: Learning to reason with HOL4 tactics. In
T. Eiter and D. Sands, editors, 21st International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning, LPAR-21, volume 46 of EPiC Series in Computing, pages
125–143. EasyChair, 2017.

[13] A. Grabowski, A. Korniłowicz, and A. Naumowicz. Mizar in a nutshell. J. Formalized Rea-
soning, 3(2):153–245, 2010.

[14] T. Gransden, N. Walkinshaw, and R. Raman. SEPIA: search for proofs using inferred automata.
In Automated Deduction - CADE-25 - 25th International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings, pages 246–255, 2015.

9

[15] R. Hähnle. Tableaux and related methods. In Robinson and Voronkov [34], pages 100–178.

[16] J. Jakubuv and J. Urban. BliStrTune: hierarchical invention of theorem proving strategies.
In Y. Bertot and V. Vafeiadis, editors, Proceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs, CPP 2017, pages 43–52. ACM, 2017.

[17] J. Jakubuv and J. Urban. ENIGMA: efficient learning-based inference guiding machine. In
H. Geuvers, M. England, O. Hasan, F. Rabe, and O. Teschke, editors, Intelligent Computer
Mathematics - 10th International Conference, CICM 2017, volume 10383 of Lecture Notes in
Computer Science, pages 292–302. Springer, 2017.

[18] C. Kaliszyk and J. Urban. Learning-assisted automated reasoning with Flyspeck. J. Autom.
Reasoning, 53(2):173–213, 2014.

[19] C. Kaliszyk and J. Urban. FEMaLeCoP: Fairly efficient machine learning connection prover. In
M. Davis, A. Fehnker, A. McIver, and A. Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning - 20th International Conference, volume 9450 of Lecture Notes in
Computer Science, pages 88–96. Springer, 2015.

[20] C. Kaliszyk and J. Urban. MizAR 40 for Mizar 40. J. Autom. Reasoning, 55(3):245–256, 2015.

[21] C. Kaliszyk, J. Urban, and J. Vyskočil. Machine learner for automated reasoning 0.4 and
0.5. In S. Schulz, L. de Moura, and B. Konev, editors, 4th Workshop on Practical Aspects of
Automated Reasoning, PAAR@IJCAR 2014, Vienna, Austria, 2014, volume 31 of EPiC Series
in Computing, pages 60–66. EasyChair, 2014.

[22] C. Kaliszyk, J. Urban, and J. Vyskočil. Certified connection tableaux proofs for HOL Light
and TPTP. In X. Leroy and A. Tiu, editors, Proc. of the 4th Conference on Certified Programs
and Proofs (CPP’15), pages 59–66. ACM, 2015.

[23] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In J. Fürnkranz, T. Scheffer,
and M. Spiliopoulou, editors, Machine Learning: ECML 2006, 17th European Conference on
Machine Learning, volume 4212 of LNCS, pages 282–293. Springer, 2006.

[24] D. Kühlwein, T. van Laarhoven, E. Tsivtsivadze, J. Urban, and T. Heskes. Overview and evalu-
ation of premise selection techniques for large theory mathematics. In B. Gramlich, D. Miller,
and U. Sattler, editors, IJCAR, volume 7364 of LNCS, pages 378–392. Springer, 2012.

[25] R. Letz, K. Mayr, and C. Goller. Controlled integration of the cut rule into connection tableau
calculi. Journal of Automated Reasoning, 13:297–337, 1994.

[26] S. M. Loos, G. Irving, C. Szegedy, and C. Kaliszyk. Deep network guided proof search. In
T. Eiter and D. Sands, editors, 21st International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning, LPAR-21, volume 46 of EPiC Series in Computing, pages
85–105. EasyChair, 2017.

[27] W. McCune. Otter 2.0. In International Conference on Automated Deduction, pages 663–664.
Springer, 1990.

[28] J. Meng and L. C. Paulson. Translating higher-order clauses to first-order clauses. J. Autom.
Reasoning, 40(1):35–60, 2008.

[29] J. Otten. Restricting backtracking in connection calculi. AI Commun., 23(2-3):159–182, 2010.

[30] J. Otten and W. Bibel. leanCoP: lean connection-based theorem proving. J. Symb. Comput.,
36(1-2):139–161, 2003.

[31] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[32] B. Piotrowski and J. Urban. ATPboost: Learning premise selection in binary setting with ATP
feedback. CoRR, abs/1802.03375, 2018.

[33] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM (JACM), 12(1):23–41, 1965.

[34] J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, 2001.

10

[35] S. Schäfer and S. Schulz. Breeding theorem proving heuristics with genetic algorithms. In
G. Gottlob, G. Sutcliffe, and A. Voronkov, editors, Global Conference on Artificial Intelligence,
GCAI 2015, volume 36 of EPiC Series in Computing, pages 263–274. EasyChair, 2015.

[36] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–
489, 2016.

[37] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis. Mastering chess and
shogi by self-play with a general reinforcement learning algorithm. CoRR, abs/1712.01815,
2017.

[38] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
Nature, 550(7676):354, 2017.

[39] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. Cambridge
Univ Press, 1998.

[40] J. Urban. MPTP 0.2: Design, implementation, and initial experiments. J. Autom. Reasoning,
37(1-2):21–43, 2006.

[41] J. Urban. BliStr: The Blind Strategymaker. In G. Gottlob, G. Sutcliffe, and A. Voronkov,
editors, Global Conference on Artificial Intelligence, GCAI 2015, volume 36 of EPiC Series in
Computing, pages 312–319. EasyChair, 2015.

[42] J. Urban, G. Sutcliffe, P. Pudlák, and J. Vyskočil. MaLARea SG1 - Machine Learner for Au-
tomated Reasoning with Semantic Guidance. In A. Armando, P. Baumgartner, and G. Dowek,
editors, IJCAR, volume 5195 of LNCS, pages 441–456. Springer, 2008.

[43] J. Urban, J. Vyskočil, and P. Štěpánek. MaLeCoP: Machine learning connection prover. In
K. Brünnler and G. Metcalfe, editors, TABLEAUX, volume 6793 of LNCS, pages 263–277.
Springer, 2011.

[44] D. Whalen. Holophrasm: a neural automated theorem prover for higher-order logic. CoRR,
abs/1608.02644, 2016.

11

	1 Introduction
	2 The Game of Connection Based Theorem Proving
	2.1 The Bare Prover

	3 Guidance
	3.1 Monte-Carlo Guidance
	3.2 Policy Learning and Guidance
	3.3 Value Learning and Guidance
	3.4 Features
	3.5 Learners and Their Integration

	4 Experimental Results
	4.1 Performance without Learning
	4.2 Reinforcement Learning of Policy Only
	4.3 Reinforcement Learning of Value Only
	4.4 Reinforcement Learning of Policy and Value
	4.5 Evaluation on the Whole Miz40 Dataset
	4.6 Examples

	5 Related Work
	6 Conclusion

