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From Points to Parts: 3D Object Detection from
Point Cloud with Part-aware and

Part-aggregation Network
Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, Hongsheng Li

Abstract—3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical
applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection
framework, the part-aware and aggregation neural network (Part-A2 net). The whole framework consists of the part-aware stage and
the part-aggregation stage. Firstly, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D
ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted
intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which
results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage
learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations.
Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed
framework. Our Part-A2 net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object
detection dataset by utilizing only the LiDAR point cloud data. Code is available at https://github.com/sshaoshuai/PointCloudDet3D.

Index Terms—3D object detection, point cloud, part location, LiDAR, convolutional neural network, autonomous driving.
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1 INTRODUCTION

W ITH the surging demand from autonomous driving and
robotics, increasing attention has been paid to 3D object

detection [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],
[13]. Though significant achievements have been made in 2D
object detection from images [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], directly extending these 2D detection
methods to 3D detection might lead to inferior performance, since
the point cloud data of 3D scenes has irregular data format and
3D detection with point clouds faces great challenges from the
irregular data format and large search space of 6 Degrees-of-
Freedom (DoF) of 3D objects.

Existing 3D object detection methods have explored several
ways to tackle these challenges. Some works [6], [25], [26] utilize
2D detectors to detect 2D boxes from the image, and then adopt
PointNet [27], [28] to the cropped point cloud to directly regress
the parameters of 3D boxes from raw point cloud. However, these
methods heavily depend on the performance of 2D object detectors
and cannot take the advantages of 3D information for generating
robust bounding box proposals. Some other works [1], [4], [5],
[10], [11] project the point cloud from the bird view to create a 2D
bird-view point density map and apply 2D Convolutional Neural
Networks (CNN) to these feature maps for 3D object detection, but
the hand-crafted features cannot fully exploit the 3D information
of raw point cloud and may not be optimal. There are also some
one-stage 3D object detectors [7], [9], [29] that divide the 3D
space into regular 3D voxels and apply 3D CNN or 3D sparse
convolution [30], [31] to extract 3D features and finally compress
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Fig. 1. Our proposed part-aware and aggregation network can accu-
rately predict intra-object part locations even when objects are partially
occluded. Such part locations can assist accurate 3D object detection.
The predicted intra-object part locations by our proposed method are
visualized by interpolated colors of eight corners. Best viewed in colors.

to bird-view feature map for 3D object detection. These works do
not fully exploit all available information from 3D box annotations
for improving the performance of 3D detection. For instance, the
3D box annotations also imply the point distributions within each
3D objects, which are beneficial for learning more discriminative
features to improve the performance of 3D object detection. Also,
these works are all one-stage detection frameworks which cannot
utilize the RoI-pooling scheme to pool specific features of each
proposal for the box refinement in a second stage.

In contrast, we propose a novel two-stage 3D object detec-
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tion framework, the part-aware and aggregation neural network
(i.e. Part-A2 net), which directly operates on 3D point cloud
and achieves state-of-the-art 3D detection performance by fully
exploring the informative 3D box annotations from the training
data. Our key observation is that, unlike object detection from
2D images, 3D objects in autonomous driving scenes are naturally
and well separated by annotated 3D bounding boxes, which means
the training data with 3D box annotations automatically provides
free-of-charge semantic masks and even the relative location
of each foreground point within the 3D ground truth bounding
boxes (see Fig. 1 for illustration). In the remaining parts of this
paper, the relative location of each foreground point w.r.t. the
object box that it belongs to is denoted as the intra-object part
locations. This is totally different from the box annotations in
2D images, since some parts of objects in the 2D images may
be occluded. Using the ground-truth 2D bounding boxes would
generate inaccurate and noisy intra-object part locations for each
pixel within objects. These 3D intra-object part locations imply
the 3D point distributions of 3D objects. Such 3D intra-object part
locations are informative and can be obtained for free, but were
never explored in 3D object detection.

Motivated by this observation, our proposed Part-A2 net is
designed as a novel two-stage 3D detection framework, which con-
sists of the part-aware stage (Stage-I) for predicting accurate intra-
object part locations and learning point-wise features, and the part-
aggregation stage (Stage-II) for aggregating the part information
to improve the quality of predicted boxes. Our approach produces
3D bounding boxes parameterized with (x, y, z, h, w, l, θ), where
(x, y, z) are the box center coordinates, (h,w, l) are the height,
width and length of each box respectively, and θ is the orientation
angle of each box from the bird’s eye view.

Specifically, in the part-aware stage-I, the network learns to
segment the foreground points and estimate the intra-object part
locations for all the foreground points (see Fig. 1), where the
segmentation masks and ground-truth part location annotations are
directly generated from the ground-truth 3D box annotations.In
addition, it also generates 3D proposals from the raw point cloud
simultaneously with foreground segmentation and part estimation.
We investigate two strategies, i.e., anchor-free v.s. anchor-based
strategies, for 3D proposal generation to handle to different scenar-
ios. The anchor-free strategy is relatively light-weight and is more
memory efficient, while the anchor-based strategy achieves higher
recall rates with more memory and calculation costs. For the
anchor-free strategy, we propose to directly generate 3D bounding
box proposals in a bottom-up scheme by segmenting foreground
points and generating the 3D proposals from the predicted fore-
ground points simultaneously. Since it avoids using the large
number of 3D anchor boxes in the whole 3D space as previous
methods [4], [29] do, it saves much memory. For the anchor-based
strategy, it generates 3D proposals from downsampled bird-view
feature maps with pre-defined 3D anchor boxes at each spatial
location. Since it needs to place multiple 3D anchors with different
orientations and classes at each location, it needs more memory
but can achieve higher object recall.

In the second stage of existing two-stage detection methods,
information within 3D proposals needs to be aggregated by certain
pooling operations for the following box re-scoring and location
refinement. However, the previous point cloud pooling strategy
(as used in our preliminary PointRCNN [32]) result in ambiguous
representations, since different proposals might end up pooling
the same group of points, which lose the abilities to encode the

geometric information of the proposals. To tackle this problem,
we propose a novel differentiable RoI-aware point cloud pooling
operation, which keeps all information from both non-empty and
empty voxels within the proposals, to eliminate the ambiguity of
previous point cloud pooling strategy. This is vital to obtain an
effective representation for box scoring and location refinement,
as the empty voxels also encode the box’s geometry information.

The stage-II aims to aggregate the pooled part features from
stage-I by the proposed RoI-aware pooling for improving the
quality of the proposals. Our stage-II network adopts the sparse
convolution and sparse pooling operations to gradually aggre-
gate the pooled part features of each 3D proposal for accurate
confidence prediction and box refinement. The experiments show
that the aggregated part features could improve the quality of the
proposals remarkably and our overall framework achieves state-
of-the-art performance on KITTI 3D detection benchmark.

Our primary contributions could be summarized into four-
fold. (1) We proposed the Part-A2 net framework for 3D object
detection from point cloud, which boosts the 3D detection perfor-
mance by using the free-of-charge intra-object part information to
learning discriminative 3D features and by effectively aggregating
the part features with RoI-aware pooling and sparse convolutions.
(2) We present two strategies for 3D proposal generation to handle
different scenarios. The anchor-free strategy is more memory
efficient while the anchor-based strategy results in higher object
recall. (3) We propose a differentiable RoI-aware point cloud
region pooling operation to eliminate the ambiguity in existing
point cloud region pooling operations. The experiments show
that the pooled feature representation benefits box refinement
stage significantly. (4) Our proposed Part-A2 net outperforms all
published methods with remarkable margins and ranks 1st with
14 FPS inference speed on the challenging KITTI 3D detection
benchmark [33] as of August 15, 2019, which demonstrates the
effectiveness of our method.

2 RELATED WORK

3D object detection from 2D images. There are several existing
works on estimating the 3D bounding box from images. [34], [35]
leveraged the geometry constraints between 3D and 2D bounding
box to recover the 3D object pose. [36], [37], [38], [39] exploited
the similarity between 3D objects and the CAD models. Chen et
al. [40], [41] formulated the 3D geometric information of objects
as an energy function to score the predefined 3D boxes. Ku et al.
[42] proposed the aggregate losses to improve the 3D localization
accuracy from monocular image. Recently [43], [44] explored the
stereo pair of images to improve the 3D detection performance
from stereo cameras. These works can only generate coarse 3D
detection results due to the lack of accurate depth information and
can be substantially affected by appearance variations.
3D object detection from multiple sensors. Several existing
methods have worked on fusing the information from multiple
sensors (e.g., LiDAR and camera) to help 3D object detection. [1],
[4] projected the point cloud to the bird view and extracted features
from bird-view maps and images separately, which are then
cropped and fused by projecting 3D proposals to the correspond-
ing 2D feature maps for 3D object detection. [5] further explored
the feature fusion strategy by proposing continuous fusion layer to
fuse image feature to bird-view features. Different from projecting
point cloud to bird-view map, [6], [25] utilized off-the-shelf 2D
object detectors to detect 2D boxes first for cropping the point
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Fig. 2. The overall framework of our part-aware and aggregation neural network for 3D object detection. It consists of two stages: (a) the part-aware
stage-I for the first time predicts intra-object part locations and generates 3D proposals by feeding the point cloud to our encoder-decoder network.
(b) The part-aggregation stage-II conducts the proposed RoI-aware point cloud pooling operation to aggregate the part information from each 3D
proposal, then the part-aggregation network is utilized to score boxes and refine locations based on the part features and information from stage-I.

cloud and then applied PointNet [27], [28] to extract features
from the cropped point clouds for 3D box estimation. These
methods may suffers from the time synchronization problem of
multiple sensors in the practical applications. Unlike these sensor
fusion methods, our proposed 3D detection frameworks Part-A2

net could achieve comparable or even better 3D detection results
by using only point cloud as input.

3D object detection from point clouds only. Zhou et al. [29]
for the first time proposed VoxelNet architecture to learn dis-
criminative features from point cloud and detect 3D object with
only point cloud. [7] improved VoxelNet by introducing sparse
convolution [30], [31] for efficient voxel feature extraction. [9],
[10], [11] projected the point cloud to bird-view maps and applied
2D CNN on these maps for 3D detection. These methods do not
fully exploit all available information from the informative 3D
box annotations and are all one-stage 3D detection methods. In
contrast, our proposed two-stage 3D detection framework Part-A2

net explores the abundant information provided by 3D box anno-
tations and learns to predict accurate intra-object part locations to
learn the point distribution of 3D objects, the predicted intra-object
part locations are aggregated in the second stage for refining the
3D proposals, which significantly improves the performance of 3D
object detection.

Point cloud feature learning for 3D object detection. There
are generally three ways of learning features from point cloud for
3D detection. (1) [1], [4], [5], [10], [11] projected point cloud to
bird-view map and utilized 2D CNN for feature extraction. (2) [6],
[25] conducted PointNet [27], [28] to learn the point cloud features
directly from raw point cloud. (3) [29] proposed VoxelNet and [7]
applied sparse convolution [30], [31] to speed up the VoxelNet
for feature learning. Only the second and third methods have
the potential to extract point-wise features for segmenting the
foreground points and predicting the intra-object part locations
in our framework. Here we design an encoder-decoder point
cloud backbone network similarly with UNet [45] to extract

discriminative point-wise features, which is based on the 3D
sparse convolution and 3D sparse deconvolution operations since
they are more efficient and effective than the point-based backbone
like PointNet++ [28]. The point-based backbone and voxel-based
backbone are experimented and discussed in Sec. 4.1.1.

3D/2D instance segmentation. These approaches are often based
on point-cloud-based 3D detection methods. Several approaches of
3D instance segmentation are based on the 3D detection bounding
boxes with an extra mask branch for predicting the object mask. Yi
et al. [46] proposed an analysis-by-synthesis strategy to generate
3D proposals for 3D instance segmentation. Hou et al. [47]
combined the multi-view RGB images and 3D point cloud to better
generate proposals and predict object instance masks in and end-
to-end manner.

Some other approaches first estimate the semantic segmenta-
tion labels and then group the points into instances based on the
learned point-wise embeddings. Wang et al. [48] calculated the
similarities between points for grouping foreground points of each
instance. Wang et al. [49] proposed a semantic-aware point-level
instance embedding strategy to learn better features for both the
semantic and instance point cloud segmentation. Lahoud et al. [50]
proposed a mask-task learning framework to learn the feature
embedding and the directional information of the instance’s center
for better clustering the points into instances. However, they did
not utilize the free-of-charge intra-object part locations as extra
supervisions as our proposed method does.

There are also some anchor-free approaches for 2D instance
segmentation by clustering the pixels into instances. Brabandere
et al. [51] adopted a discriminative loss function to cluster the
pixels of the same instance in a feature space while Bai et al. [52]
proposed to estimate a modified watershed energy landscape to
separate the pixels of different instances. However, those methods
only group foreground pixels/points into different instances and
did not estimate the 3D bounding boxes. Different with the above
methods, our proposed anchor-free approach estimates intra-object
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part locations and directly generates 3D bounding box proposals
from individual 3D points for achieving 3D object detection.
Part models for object detection. Deformable Part-based Models
(DPM) [53] achieved great success on 2D object detection before
the deep learning models are utilized. [54], [55], [56] extended the
DPM to 3D world to reason the parts in 3D and estimate the object
poses, where [54] modeled the object as a 3D cuboid with both
deformable faces and deformable parts, [55] proposed a 3D DPM
that generates a full 3D object model with continuous appearance
representation, and [56] presented the notion of 3D part sharing
with 3D CAD models to estimate the fine poses. These DPM based
approaches generally adopt several part templates trained with
hand-crafted features to localize the objects and estimate the object
pose. In contrast, we formulate the object parts as point-wise
intra-object part locations in the context of point cloud, where the
training labels of part locations could be directly generated from
3D box annotations and they implicitly encode the part distribution
of 3D objects. Moreover, both the estimation and aggregation of
intra-object part locations are learned by the more robust deep
learning networks instead of the previous hand-crafted schemes.

3 PART-A2 NET: 3D PART-AWARE AND AGGRE-
GATION FOR 3D DETECTION FROM POINT CLOUD

A preliminary version of this work was presented in [32], where
we proposed PointRCNN for 3D object detection from raw point
cloud. To make the framework more general and effective, in this
paper, we extend PointRCNN to a new end-to-end 3D detection
framework, the part-aware and aggregation neural network, i.e.
Part-A2 net, to further boost the performance of 3D object detec-
tion from point cloud.

The key observation is that, the ground-truth boxes of 3D
object detection not only automatically provide accurate segmen-
tation mask because of the fact that 3D objects are naturally
separated in 3D scenes, but also imply the relative locations for
each foreground 3D point within the ground truth boxes. This is
very different from 2D object detection, where 2D object boxes
might only contain portion of an object due to occlusion and
thus cannot provide accurate relative location for each 2D pixel.
These relative locations of foreground points encode valuable
information of foreground 3D points and is beneficial for 3D
object detection. This is because foreground objects of the same
class (like car class) generally have similar 3D shapes and point
distributions. The relative locations of foreground points provide
strong cues for box scoring and localization. We name the relative
locations of the 3D foreground points w.r.t. to their corresponding
boxes the intra-object part locations.

Those intra-object part locations provide rich information for
learning discriminative 3D features from point cloud but were
never explored in previous 3D object detection methods. With
such rich supervisions, we propose a novel part-aware and aggre-
gation 3D object detector, Part-A2 net, for 3D object detection
from point cloud. Specifically, we propose to use the free-of-
charge 3D intra-object part location labels and segmentation labels
as extra supervisions to learn better 3D features in the first stage.
The predicted 3D intra-object part locations and point-wise 3D
features within each 3D proposal are then aggregated in the second
stage to score the boxes and refine their locations. The overall
framework is illustrated in Fig. 2.

(a) Raw point cloud (b) Voxelized point cloud

Fig. 3. Comparison of voxelized point cloud and raw point cloud in
autonomous driving scenarios. The center of each non-empty voxel is
considered as a point to form the voxelized point cloud. The voxelized
point cloud is approximately equivalent to the raw point cloud and 3D
shapes of 3D objects are well kept for 3D object detection.

3.1 Stage-I: Part-aware 3D proposal generation
The part-aware network aims to extract discriminative features
from the point cloud by learning to estimate the intra-object part
locations of foreground points, since these part locations implicitly
encode the 3D object’s shapes by indicating the relative locations
of surface points of 3D objects. Also, the part-aware stage learns
to estimate the intra-object part locations of foreground points and
to generate 3D proposals simultaneously. Two strategies for 3D
proposal generation from point clouds, anchor-free and anchor-
based schemes, are proposed to handle different scenarios.

3.1.1 Point-wise feature learning via sparse convolution
For segmenting the foreground points and estimating their intra-
object part locations, we first need to learn discriminative point-
wise features for describing the raw point clouds. Instead of using
point-based methods like [27], [28], [57], [58], [59], [60], [61] for
extracting point-wise features from the point cloud, as show in
the left part of Fig. 2, we propose to utilize an encoder-decoder
network with sparse convolution and deconvolution [30], [31] to
learn discriminative point-wise features for foreground point seg-
mentation and intra-object part location estimation, which is more
efficient and effective than the previous PointNet++ backbone as
used in our preliminary work [32].

Specifically, we voxelize the 3D space into regular voxels
and extract the voxel-wise features of each non-empty voxel by
stacking sparse convolutions and sparse deconvolutions, where the
initial feature of each voxel is simply calculated as the mean values
of point coordinates within each voxel in the LiDAR coordinate
system. The center of each non-empty voxel is considered as a
point to form a new point cloud with the point-wise features
(i.e. the voxel-wise features), which is approximately equivalent
to the raw point cloud as shown in Fig. 3, since the voxel size is
much smaller (e.g., 5cm×5cm×10cm in our method) compared
to the whole 3D space (∼70m×80m×4m). For each 3D scene
in the KITTI dataset [33], there are generally about 16,000 non-
empty voxels in the 3D space. The voxelized point cloud could not
only be processed by the more efficient sparse convolution based
backbone, but it also keeps approximately equivalent to the raw
point cloud for 3D object detection.

Our sparse convolution based backbone is designed based on
the encoder-decoder architecture. The spatial resolution of input
feature volumes is 8 times downsampled by a series of sparse
convolution layers with stride 2, and is then gradually upsampled
to the original resolution by the sparse deconvolutions for the
voxel-wise feature learning. The detailed network structure is
illustrated in Sec. 3.5 and Fig. 7. Our newly designed 3D sparse
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Fig. 4. Illustration of intra-object part locations for foreground points.
Here we use interpolated colors to indicate the intra-object part location
of each point. Best viewed in colors.

convolution based-backbone results in better 3D box recall than
the PointNet++ based backbone in our preliminary PointRCNN
framework [32] (as shown by experimental results in Table 1),
which demonstrates the effectiveness of this new backbone for the
point-wise feature learning.

3.1.2 Estimation of foreground points and intra-object part
locations
The segmentation masks help the network to distinguish fore-
ground points and background, while the intra-object part loca-
tions provide rich information for the neural network to recognize
and detect 3D objects. For instance, the side of a vehicle is usually
a plane parallel to a side of its corresponding bounding box. By
learning to estimate not only the foreground segmentation mask
but also the intra-object part location of each point, the neural
network develops the ability of inferring the shape and pose of the
objects, which is crucial for 3D object detection.

Formulation of intra-object part location. As shown in
Fig. 4, we formulate intra-object part location of each foreground
point as its relative location in the 3D ground-truth bound-
ing box that it belongs to. We denote three continuous values
(x(part), y(part), z(part)) as the target intra-object part location
of the foreground point (x(p), y(p), z(p)), which can be calculated
as follows[
x(t) y(t)

]
=
[
x(p) − x(c) y(p) − y(c)

] [ cos(θ) sin(θ)
− sin(θ) cos(θ)

]
,

x(part) =
x(t)

w
+ 0.5, y(part) =

y(t)

l
+ 0.5,

z(part) =
z(p) − z(c)

h
+ 0.5, (1)

where (x(c), y(c), z(c)) is the box center, (h,w, l) is the box
size (height, width, length), and θ is the box orientation in
bird-view. The relative part location of a foreground point
x(part), y(part), z(part) ∈ [0, 1] , and the part location of the
object center is therefore (0.5, 0.5, 0.5). Note that intra-object lo-
cation coordinate system follows the similar definition of KITTI’s
global coordinate system, where the direction of z is perpendicular
to the ground, and x and y are parallel to the horizontal plane.

Learning foreground segmentation and intra-object part lo-
cation estimation. As shown in Fig. 2, given the above sparse

convolution based backbone, two branches are appended to the
output features of the encoder-decoder backbone for segment-
ing the foreground points and predicting their intra-object part
locations. Both branches utilize the sigmoid function as last non-
linearity function for generating outputs. The segmentation scores
of foreground points indicate the confidence of the predicted
intra-object part locations since the intra-object part locations are
defined and learned on foreground points only in the training stage.
Since the number of foreground points is generally much smaller
than that of the background points in large-scale outdoor scenes,
we adopt the focal loss [21] for calculating point segmentation
loss Lseg to handle the class imbalance issue

Lseg(pt) = −αt(1− pt)γ log(pt), (2)

where pt =

{
p for forground points,
1− p otherwise.

where p is the predicted foreground probability of a single 3D
point and we keep αt = 0.25 and γ = 2 as the original paper. All
points inside the ground-truth boxes are utilized as positive points
and others are considered as negative points for training.

For estimating the intra-object part location (denoted as
(x(part), y(part), z(part))) of each foreground point, since they
are bounded between [0, 1], we apply the binary cross entropy
losses to each foreground point as follows

Lpart(u
(part)) =− u(part) log(ũ(part))

− (1− u(part)) log(1− ũ(part))

for u ∈ {x, y, z}, (3)

where ũ(part) is the predicted intra-object part location from the
network output, and u(part) is the corresponding ground-truth
intra-object part location. Note that the part location estimation
is only conducted for foreground points.

3.1.3 3D proposal generation from point cloud
To aggregate the predicted intra-object part locations and the
learned point-wise 3D features for improving the performance
of 3D object detection in the second stage, we need to generate
3D proposals to group the foreground points that belong to the
same object. Here we investigate two strategies for 3D proposal
generation from point cloud, the anchor-free scheme and anchor-
based scheme, to handle different scenarios. The anchor-free
strategy is more memory efficient while the anchor-based strategy
achieves higher recall with more memory cost.

Anchor-free 3D proposal generation. Our model with this
strategy is denoted as Part-A2-free. We propose a novel scheme
similarly to our preliminary PointRCNN [32] to generate 3D
proposals in a bottom-up manner. As shown in the left part of
Fig. 2, we append an extra branch to the decoder of our sparse
convolution backbone to generate 3D proposal from each point
that is predicted as foreground.

However, if the algorithm directly estimates object’s center
locations from each foreground point, the regression targets would
vary in a large range. For instance, for a foreground point at the
corner of an object, its relative offsets to the object center is much
larger than those of a foreground point on the side of an object.
If directly predicting relative offsets w.r.t. each foreground point
with conventional regression losses (e.g., L1 or L2 losses), the
loss would be dominated by errors of corner foreground points.
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Fig. 5. Illustration of bin-based center localization. The surrounding area
along X and Y axes of each foreground point is split into a series of
bins to locate the object center.

To solve the issue of large varying ranges of the regression
targets, we propose the bin-based center regression loss. As
shown in Fig. 5, we split the surrounding bird-view area of each
foreground point into a series of discrete bins along the X and Y
axes by dividing a search range S of each axis into bins of uniform
length δ, which represents different object centers (x, y) on the
X-Y plane. We observe that conducting bin-based classification
with cross-entropy loss for the X and Y axes instead of direct
regression with smooth-L1 loss [14] results in more accurate and
robust center localization. To refine small localization after the
assignment into each X-Y bin, a small residual is also estimated.
The overall regression loss for the X or Y axes therefore consists
of bin classification loss and the residual regression loss within
the classified bin. For the center location z along the vertical Z
axis, we directly utilize smooth-L1 loss for the regression since
most objects’ z values are generally within a very small range.
The object center regression targets could therefore be formulated
as

bin(p)
x =

⌊
x(c) − x(p) + S

δ

⌋
, bin(p)

y =

⌊
y(c) − y(p) + S

δ

⌋
,

res(p)
u

u∈{x,y}
=

1

δ

(
u(c) − u(p) + S −

(
bin(p)

u · δ +
δ

2

))
, (4)

res(p)
z = z(c) − z(p),

where δ is the bin size, S is the search range, (x(p), y(p), z(p)) is
the coordinates of a foreground point of interest, (x(c), y(c), z(c))
is the center coordinates of its corresponding object, bin(p)

x and
bin(p)

y are ground-truth bin assignments and res(p)
x and res(p)

y are
the ground-truth residual for further location refinement within the
assigned bin.

Since our proposed bottom-up proposal generation strategy is
anchor-free, it does not have an initial value for box orientation.
Hence we directly divide the orientation 2π into discrete bins with
bin size w, and calculate the bin classification target bin(p)

θ and
residual regression target res(p)

θ as

bin(p)
θ =

⌊
(θ + w

2 ) mod 2π

ω

⌋
, (5)

res(p)
θ =

2

ω

(
((θ +

w

2
) mod 2π)−

(
bin(p)

θ · ω +
ω

2

))
,

Thus the overall 3D bounding box regression loss Lbox could
be formulated as

L(p)
bin =

∑
u∈{x,y,θ}

(Lce(b̂in
(p)

u , bin(p)
u ) + Lsmooth-L1(r̂es(p)

u , res(p)
u )),

L(p)
res =

∑
v∈{z,h,w,l}

Lsmooth-L1(r̂es(p)
v , res(p)

v ), (6)

Lbox = L(p)
bin + L(p)

res ,

where b̂in
(p)

u and b̂in
(p)

u are the predicted bin assignments and
residuals of the foreground point p, bin(p)

u and res(p)
u are the

ground-truth targets calculated as above, r̂es(p)
v is the predicted

center residual in vertical axis or the size residual with respect to
the average object size of each class in the entire training set, res(p)

v

is the corresponding ground-truth target of r̂es(p)
v , Lce denotes

the cross-entropy classification loss, and Lsmooth-L1 denotes the
smooth-L1 loss. Note that the box regression loss Lbox is only
applied to the foreground points.

In the inference stage, regressed x, y and θ are obtained by
first choosing the bin center with the highest predicted confidence
and then adding the predicted residuals.

Based on this anchor-free strategy, our method not only fully
explores the 3D information from point cloud for 3D proposal
generation, but also avoids using a large set of predefined 3D
anchor boxes in the 3D space by constraining the 3D proposals to
be only generated by foreground points.

Anchor-based 3D proposal generation. Our model with this
strategy is denoted as Part-A2-anchor. The stage-I is illustrated
in Fig. 2, the sparse convolution based encoder takes a voxelized
point cloud with shape M × N × H , and produces an 8-time
X- and Y -axially downsampled M

8 ×
N
8 2D bird-view feature

map with H
16 ×D feature channels, where H

16 denotes the feature
volume being 16-time downsampled along the Z axis, D is the
feature dimension of each encoded feature voxel, and “×D”
denotes concatenating the features at each x−y bird-view location
of different heights to obtain a 1D feature vector. We then append
a Region Proposal Network (RPN) head similar with [7] to the
above bird-view feature map for 3D proposal generation with pre-
defined 3D anchors. Each class has 2×M

8 ×
N
8 predefined anchors

with the specified anchor size for each class, where each pixel on
the bird-view feature map has one anchor parallel to the X axis
and one anchor parallel to the Y axis. Each class will have its own
predefined anchors since the object sizes of different classes vary
significantly. For instance, we use (l = 3.9, w = 1.6, h = 1.56)
meters for cars, (l = 0.8, w = 0.6, h = 1.7) meters for
pedestrians and (l = 1.7, w = 0.6, h = 1.7) meters for cyclists
on the KITTI dataset.

The anchors are associated with the ground-truth boxes by
calculating the 2D bird-view Intersection-over-Union (IoU), where
the positive IoU thresholds are empirically set as 0.6, 0.5, 0.5,
and the negative IoU thresholds are 0.45, 0.35, 0.35 for cars,
pedestrians and cyclists, respectively. We append two convolution
layers with kernel size 1 × 1 × 1 to the bird-view feature map
for proposal classification and box regression. We use focal loss
similarly to Eq. (2) for anchor scoring, and directly use the
residual-based regression loss for the positive anchors. Here we
directly adopt the commonly used smooth-L1 loss for regression
since the center distances between anchors and their corresponding
ground-truth boxes are generally within a smaller range than those
of the anchor-free strategy due to the IoU thresholds. With the
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candidate anchor (x(a), y(a), z(a), h(a), w(a), l(a), θ(a)) and the
target ground truth (x(gt), y(gt), z(gt), h(gt), w(gt), l(gt), θ(gt)),
the residual-based box regression targets for center, angle and size
are defined as

∆x(a)= x(gt)−x(a)

d(a) , ∆y(a)= y(gt)−y(a)

d(a) , ∆z(a)= z(gt)−z(a)

h(a) ,

∆l(a)=log

(
l(gt)

l(a)

)
, ∆h(a)=log

(
h(gt)

h(a)

)
, ∆w(a)=log

(
w(gt)

w(a)

)
, (7)

∆θ(a)=sin(θ(gt)−θ(a)), where d(a)=
√

(l(a))2+(w(a))
2
,

where the orientation target is encoded as sin(θ(gt) − θ(a)) to
eliminate the ambiguity of cyclic values of orientation. However,
this method encodes two opposite directions to the same value, so
we adopt an extra convolution layer with kernel size 1 × 1 × 1
to the bird-view feature map as in [7] for classifying two opposite
directions of orientation, where the direction target is calculated
by the following approach: if θ(gt) is positive, the direction target
is one, otherwise the direction target is zero (Note that θ(gt) ∈
[−π, π)). We use cross entropy loss similarly to Eq. (3) for the
binary classification of orientation direction, which is denoted as
term Ldir. Then the overall 3D bounding box regression loss Lbox

could be formulated as

Lbox =
∑

res∈{x,y,z,l,h,w,θ}

Lsmooth-L1(∆̂res(a),∆res(a)) + βLdir,

(8)

where ∆̂res(a) is the predicted residual for the candidate anchor,
∆res(a) is the corresponding ground-truth target calculated as
Eq. (7), and the loss weight β = 0.1. Note that the box regression
loss Lbox is only applied to the positive anchors.

Discussion of the two 3D proposal generation strategies. Both
of these two 3D proposal generation strategies have their ad-
vantages and limitations. The proposed anchor-free strategy is
generally light-weight and memory efficient because it does not
requires evaluating a large number of anchors at each spatial
location in the 3D space. The efficiency is more obvious for multi-
class object detection since different classes in 3D object detection
generally require different anchor boxes, while the anchor-free
scheme can share the point-wise feature for generating proposals
for multiple classes. The second anchor-based proposal generation
strategy achieves slightly higher recall by covering the whole
bird-view feature map with its predefined anchors for each class,
but has more parameters and requires more GPU memory. The
detailed experiments and comparison are discussed in Sec. 4.1.4.

3.2 RoI-aware point cloud feature pooling
Given the predicted intra-object part locations and the 3D pro-
posals, we aim to conduct box scoring and proposal refinement by
aggregating the part information and learned point-wise features of
all the points within the same proposal. In this subsection, we first
introduce the canonical transformation to reduce the effects from
the rotation and location variations of different 3D proposals, then
we propose the RoI-aware point cloud feature pooling module to
eliminate the ambiguity of previous point cloud pooling operation
and to encode the position-specific features of 3D proposals for
box refinement.

Canonical transformation. We observe that if the box refinement
targets are normalized in a canonical coordinate system, it can be
better estimated by the following box refinement stage. We trans-
form the pooled points belonging to each proposal to individual

Previous point
cloud pooling

RoI-aware point cloud
pooling

Ambiguous boxes

Empty voxels are kept
for encoding the shape

Fig. 6. Illustration of the proposed RoI-aware point cloud feature pooling.
The previous point cloud pooling approach could not effectively encode
the proposal’s geometric information (blue dashed boxes). Our proposed
RoI-aware point cloud pooling method could encode the box’s geometric
information (the green box) by keeping the empty voxels, which could be
efficiently processed by following sparse convolution.

canonical coordinate systems of the corresponding 3D proposals.
The canonical coordinate system for one 3D proposal denotes that
(1) the origin is located at the center of the box proposal; (2) the
local X ′ and Y ′ axes are approximately parallel to the ground
plane with X ′ pointing towards the head direction of proposal and
the other Y ′ axis perpendicular to X ′; (3) the Z ′ axis remains
the same as that of the global coordinate system. All pooled
points’ coordinates p of the box proposal should be transformed
to the canonical coordinate system as p̃ by proper rotation and
translation. The positive 3D proposals and their corresponding
ground-truth 3D boxes are also transformed to the canonical
coordinate system to calculate the residual regression targets
for box refinement. The proposed canonical coordinate system
substantially eliminates much rotation and location variations of
different 3D proposals and improves the efficiency of feature
learning for later box location refinement.

RoI-aware point cloud feature pooling. The point cloud pooling
operation in our preliminary work PointRCNN [32] simply pools
the point-wise features from the 3D proposals whose correspond-
ing point locations are inside the 3D proposal. All the inside
points’ features are aggregated by the PointNet++ encoder for
refining the proposal in the second stage. However, we observe
that this operation loses much 3D geometric information and
introduces ambiguity between different 3D proposals. This phe-
nomenon is illustrated in Fig. 6, where different proposals result
in the same pooled points. The same pooled features introduces
adverse effects to the following refinement stage.

Therefore, we propose the RoI-aware point cloud pooling
module to evenly divide each 3D proposal into regular voxels
with a fixed spatial shape (Lx × Ly × Lz), where Lx, Ly, Lz
are the integer hyperparameters of the pooling resolution in each
dimension of the 3D proposals (e.g., 14 × 14 × 14 is adopted in
our framework) and independent of different 3D proposal sizes.

Specifically, let F = {fi ∈ RC0 , i ∈ 1, · · · , n} de-
note the point-wise features of all the inside points in a 3D
proposal b, and they are scattered in the divided voxels of
the 3D proposal according to their local canonical coordinates
X = {(x(ct)

i , y
(ct)
i , z

(ct)
i ) ∈ R3, i ∈ 1, · · · , n}, where n is

the number of inside points. Then the RoI-aware voxel-wise max
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pooling and average pooling operations could be denoted as

Q = RoIAwareMaxPool(X , F , b), Q ∈ RLx×Ly×Lz×C0 ,
(9)

Q = RoIAwareAvgPool(X , F , b), Q ∈ RLx×Ly×Lz×C0 ,
(10)

where Q is the pooled 3D feature volumes of proposal b. Specifi-
cally, the feature vector at the kth voxel Qk of the voxel-wise max
pooling and average pooling could be computed as

Qk =

{
max {fi ∈ Nk} if |Nk| > 0,

0 if |Nk| = 0,

or (11)

Qk =

{
1
|Nk|

∑
i fi, fi ∈ Nk if |Nk| > 0,

0 if |Nk| = 0,

where Nk is the set of points belonging to the kth voxel and
k ∈ {1, · · · , Lx×Ly×Lz}. Note that here the features of empty
voxels (|Nk| = 0) would be set to zeros and marked as empty for
the following sparse convolution based feature aggregation.

The proposed RoI-aware point cloud pooling module encodes
different 3D proposals with the same local spatial coordinates,
where each voxel encodes the features of a corresponding fixed
grid in the 3D proposal box. This position-specific feature pooling
better captures the geometry of the 3D proposal and results in an
effective representation for the follow-up box scoring and location
refinement. Moreover, the proposed RoI-aware pooling module is
differentiable, which enables the whole framework to be end-to-
end trainable.

3.3 Stage-II: Part location aggregation for confidence
prediction and 3D box refinement
By considering the spatial distribution of the predicted intra-
object part locations and the learned point-wise part features in
a 3D box propsoal from stage-I, it is reasonable to aggregate
all the information within a proposal for box proposal scoring
and refinement. Based on the pooled 3D features, we train a sub-
network to robustly aggregate information to score box proposals
and refine their locations.

Fusion of predicted part locations and semantic part features.
As shown in the right part of Fig. 2, we adopt the proposed
RoI-aware point cloud pooling module to obtain discriminative
features of each 3D proposal. Let b denote a single 3D pro-
posal, and for all of its inside points (with canonical coordinate
X = {(x(ct)

i , y
(ct)
i , z

(ct)
i ) ∈ R3, i ∈ 1, · · · , n}), we denote

F1 = {(x(part)
i , y

(part)
i , z

(part)
i , si) ∈ R4, i ∈ 1, · · · , n} as

their predicted point-wise part locations and semantic scores from
stage-I, and denote F2 = {f (sem)

i ∈ RC , i ∈ 1, · · · , n} as their
point-wise semantic part features learned by backbone network.
Here n is the total number of inside points of proposal b. Then
the part feature encoding of proposal b could be formulated as
follows

Q(part) = RoIAwareAvgPool (X , F1, b) ,

Q(sem) = RoIAwareMaxPool (X , F2, b) , (12)

Q
(roi)
k =

[
G(Q

(part)
k ), Q

(sem)
k

]
, k ∈ {1, · · · , Lx × Ly × Lz},

where G denotes a submanifold sparse convolution layer to
transform the pooled part locations to the same feature dimensions

C to match Q(sem), and [·, ·] denotes feature concatenation.
Here Q(part), Q(sem) and Q(roi) have the same spatial shape
(14 × 14 × 14 by default). The fused features Q(roi) encode
both geometric and semantic information of the box proposals
by the backbone network. Note that here we use the average
pooling for pooling the predicted intra-object part locations F1 to
obtain representative predicted part location of each voxel of the
proposal, while we use the max pooling for pooling the semantic
part features F2.

Sparse convolution for part information aggregation. For each
3D proposal, we need to aggregate fused features Q(roi) from all
inside spatial locations of this proposal for robust box scoring
and refinement. As shown in the right part of Fig. 2, we stack
several 3D sparse convolutional layers with kernel size 3× 3× 3
to aggregate all part features of a proposal as the receptive filed
increases. Here we also insert a sparse max-pooling with kernel
size 2 × 2 × 2 and stride 2 between the sparse convolutional
layers to down-sample the feature volume to 7× 7× 7 for saving
the computation cost and parameters. Finally we vectorize it to a
feature vector (empty voxels are kept as zeros) and feed it into two
branches for box scoring and location refinement.

Compared with the naive method to directly vectorize the
pooled 3D feature volume to a feature vector, our sparse con-
volution based part aggregation strategy could learn the spatial
distribution of the predicted part locations effectively by aggregat-
ing features from local to global scales. The sparse convolution
strategy also enables a larger 14× 14× 14 pooling size by saving
much computations, parameters and GPU memory.

3D IoU guided box scoring. For the box scoring branch of stage-
II, inspired by [35], [62], we normalize the 3D Intersectoin-over-
Union (IoU) between 3D proposal and its corresponding ground
truth box as the soft label for proposal quality evaluation. The
proposal quality q(a) is defined as

q(a) =


1 if IoU > 0.75,

0 if IoU < 0.25,

2IoU− 0.5 otherwise,
(13)

which is also supervised by a binary cross entropy loss Lscore de-
fined similarly to Eq. (3). Our experiments in Sec. 4.1.7 show that
comparing with the traditional classification based box scoring,
the IoU guided box scoring leads to slightly better performance.

3.4 Overall loss
Our whole network is end-to-end trainable and the overall loss
function is consist of the part-aware loss and part-aggregation loss.

Losses of part-aware stage-I. For the part-aware stage-I, the loss
function consists of three terms with equal loss weights, including
focal loss for foreground point segmentation, binary cross entropy
loss for the regression of part locations and smooth-L1 loss for
3D proposal generation,

Laware = Lseg +
1

Npos
Lpart + λ

1

Mpos
Lbox (14)

where loss weight λ = 2.0, Npos is the total number of foreground
points, Mpos = Npos for Part-A2-free model and Mpos is the
total number of positive anchors for Part-A2-anchor model. For
Lbox loss, as mentioned in Sec. 3.1.3, we adopt the bin-based box
generation loss for Part-A2-free, and adopt the residual-based box
regression loss for Part-A2-anchor model.
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Fig. 7. The sparse convolution based encoder-decoder backbone net-
work of part-aware stage-I of the Part-A2-anchor model.

Losses of part-aggregation stage-II. For the part-aggregation
stage-II, the loss function includes a binary cross entropy loss
term for box quality regression and a smooth-L1 loss term for 3D
box proposal refinement,

Laggregation = Lscore +
1

Tpos
Lbox refine, (15)

where Tpos is the number of positive proposals, and we conducted
the residual-based box regression loss for Lbox refine as used in
Eq. (7), which includes box center refinement loss, size refinement
loss and angle refinement loss. Besides that, we also add the
corner regularization loss Lcorner as used in [6], and the final box
refinement loss is as follows

Lbox refine =
∑

res∈{x,y,z,l,h,w,θ}

Lsmooth-L1(∆̂res(r),∆res(r)) + Lcorner

(16)

where ∆̂res(r) is the predicted residual for the 3D proposal,
∆res(r) is the corresponding ground-truth target calculated simi-
larly to Eq. (7), and all losses here have the same loss weights.
Note that here the angle refinement target is directly encoded
as ∆θ(r) = (θ(gt) − θ(r)) since the angle difference between
proposals and their corresponding ground-truth boxes are within a
small range due to the IoU constraint for positive proposals.

Overall loss. Hence the overall loss function of our Part-A2 net
for end-to-end training is calculated as

Ltotal = Laware + Laggregation (17)

where the losses of these two stages have equal loss weights.

3.5 Implementation details
We design a UNet-like architecture [45] for learning point-wise
feature representations with 3D sparse convolution and 3D sparse
deconvolution on the obtained sparse voxels. The spatial resolution
is downsampled 8 times by three sparse convolutions of stride
2, each of which is followed by several submanifold sparse
convolutions. As illustrated in Fig. 7, we also design a similar
up-sampling block as that in [63] based on sparse operations for
refining the fused features.
Network details. As shown in Fig. 7, for the part-aware stage-I
of Part-A2-anchor model, the spatial feature volumes have four

scales with feature dimensions 16-32-64-64, and we use three
3D sparse convolution layers with kernel size 3 × 3 × 3 and
stride 2 to downsample the spatial resolution by 8 times. We
stack two submanifold convolution layers in each level with kernel
size 3 × 3 × 3 and stride 1. There are four sparse up-sampling
blocks (see Fig. 7 for network details) in the decoder to gradually
increase feature dimensions as 64-64-32-16. Note that the stride
of the last up-sampling block is 1 and the stride of other three
up-sampling blocks is 2. For the Part-A2-free net, we increase the
feature dimensions of decoder to 128 in each scale and use simple
concatenation to fuse the features from the same level of encoder
and the previous layer of decoder, since the learned point-wise
features of decoder should encode more discriminative features
for the bottom-up 3D proposal generation.

For the part-aggregation stage, as shown in Fig. 2, the pooling
size of RoI-aware point cloud pooling module is 14 × 14 × 14,
which is downsampled to 7× 7× 7 after processed by the sparse
convolutions and max-pooling with feature dimensions 128. We
vectorize the downsampled feature volumes to a single feature
vector for the final box scoring and location refinement.

Training and inference details. We train the entire network
end-to-end with the ADAM optimizer and a batch size 6 for 50
epochs. The cosine annealing learning rate strategy is used with an
initial learning rate 0.001. We randomly select 128 proposals from
each scene for training stage-II with 1 : 1 positive and negative
proposals, where the positive proposals for box refinement have
3D IoU with their corresponding ground truth box of at least
0.55 for all classes, otherwise they are negative proposals, and the
scoring target is defined as Eq. (13) for the confidence prediction.

We conduct common data augmentation during training, in-
cluding random flipping, global scaling with scaling factor uni-
formly sampled from [0.95, 1.05], global rotation around the
vertical axis by an angle uniformly sampled from [−π4 ,

π
4 ]. In

order to simulate objects with various environment as [7], we
also randomly “copy” several ground-truth boxes with their inside
points from other scenes and “paste” them to current training
scenes. The whole training process of our proposed part-aware
and part-aggregation networks takes about 17 hours on a single
NVIDIA Tesla V100 GPU.

For inference, only 100 proposals are kept from part-aware
stage-I with NMS threshold 0.85 for Part-A2-free and 0.7 for Part-
A2-anchor, which are then scored and refined by the following
part-aggregation stage-II. We finally apply the rotated NMS with
threshold 0.01 to remove redundant boxes and generate the final
3D detection results. The overall inference time is about 70ms on
a single Tesla V100 GPU card.

3.6 Pros and cons.
Our proposed 3D object detection framework has some advan-

tages and disadvantages under different situations.
Compared with the previous 3D object detection methods [1],

[4], [5], [6], [7], [26], [29], [64], (1) our proposed method for
the first time introduces the learning of intra-object part locations
to improve the performance of 3D object detection from point
cloud, where the predicted intra-object part locations effectively
encode the point distribution of 3D objects to benefit the 3D
object detection. (2) The proposed RoI-aware feature pooling
module eliminates the ambiguity of previous point cloud pooling
operations and transforms the sparse point-wise features to the
regular voxel features to encode the position-specific geometry and
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semantic features of 3D proposals, which effectively bridges the
proposal generation network and the proposal refinement network,
and results in high detection accuracy. (4) Besides, the learning
process of part locations could also be adopted to other tasks
for learning more discriminative point-wise features, such as the
instance segmentation of point cloud. The proposed RoI-aware
pooling module could also be flexibly utilized on transforming
the point-wise features from point-based networks (such as Point-
Net++) to the sparse voxel-wise features, that could be processed
by more efficient sparse convolution networks.

On the other hand, our method also has some limitations.
Since our method aims at high performing 3D object detection
in autonomous driving scenarios, some parts of our method could
not be well applied for the 3D object detection of indoor scenes.
This is because the 3D bounding boxes in indoor scenes may
overlap with each other (such as chairs under the table), therefore
the 3D bounding box annotations of indoor scenes could not
provide the accurate point-wise segmentation labels. Also, there
are some categories whose orientation is not well-defined (such as
the round tables), hence we could not generate accurate labels of
the proposed intra-object part locations.

However, our proposed anchor-free proposal generation
strategy still shows great potential on the 3D proposal generation
of indoor scenes since the indoor objects do not always stay on
the ground and our anchor-free strategy avoids to set 3D anchors
in the whole 3D space.

4 EXPERIMENTS

In this section, we evaluate our proposed method with exten-
sive experiments on the challenging 3D detection benchmark of
KITTI [33] dataset. In Sec. 4.1, we present extensive ablation
studies and analysis to investigate individual components of our
models. In Sec. 4.2, we demonstrate the main results of our
methods by comparing with state-of-the-art 3D detection methods.
Finally we visualize some qualitative results of our proposed 3D
detection model in Sec. 4.3.

Dataset. There are 7481 training samples and 7518 test samples
in the dataset of KITTI 3D detection benchmark. The training
samples are divided into the train split (3712 samples) and val split
(3769 samples) as the frequently used partition of KITTI dataset.
All models are only trained on the train split, and evaluated on the
val and test splits.

Models. There are three main models in our experiments, i.e.,
Part-A2-free model, Part-A2-anchor model and our preliminary
PointRCNN model [32]. The network details of Part-A2-free and
Part-A2-anchor models have been demonstrated in Sec. 3, and
the whole framework is illustrated in Fig. 2. As discussed in
Sec. 3.1.3, the key differences between these two versions of
Part-A2 models is that Part-A2-free generates 3D proposals in
the bottom-up (anchor-free) manner, while the Part-A2-anchor net
generates 3D proposals with the proposed anchor-based scheme.
PointRCNN is in the preliminary version of this work [32]. It
utilizes PointNet++ [28] to extract point-wise features, which
are used to generate 3D proposals in a bottom-up manner via
segmenting the foreground points as demonstrated in Sec. 3.1.3.
Furthermore, in the stage-II of PointRCNN, we pool the inside
points and their point-wise features for each 3D proposals, which
are then fed to a second PointNet++ encoder to extract features of
each 3D proposal for proposal confidence prediction and 3D box
proposal refinement.

Method Backbone Proposal
Scheme Recall

PointRCNN PointNet++ Anchor-free 74.81
Part-A2-free SparseConvUNet Anchor-free 81.54

Part-A2-anchor SparseConvUNet Anchors-based 85.58

TABLE 1
Recall (with 100 proposals) of the proposal generation stage by

different backbone network and different proposal generation strategy.
The experiments are conducted on the car class at moderate difficulty

of the val split of KITTI dataset, and the evaluation metric is the 3D
rotated IoU with threshold 0.7.

4.1 From points to parts: ablation studies for Part-A2

net
In this section, we provide extensive ablation experiments and
analysis to investigate the individual components of our proposed
Part-A2 net models.

4.1.1 SparseConvUNet v.s. PointNet++ backbones for 3D
point-wise feature learning
As mentioned in Sec. 3.1, instead of utilizing PointNet++ as the
backbone network, we design a sparse convolution based UNet
(denoted as SparseConvUNet) for point-wise feature learning, and
the network details are illustrated in Fig. 7. We first compare
the PointRCNN with PointNet++ backbone and Part-A2-free with
SparseConvUNet backbone with the same loss functions to test
these two different backbone networks.

Table 1 shows that our SparseConvUNet based Part-A2-free
(2nd row) achieves 81.54% recall with 3D IoU threshold 0.7,
which is 6.73% higher than the recall of PointNet++ based
PointRCNN (1st row), and it demonstrates that our new designed
SparseConvUNet could learn more discriminative point-wise fea-
tures from the point cloud for the 3D proposal generation. As
shown in Table 5, we also provide the recall values of different
number of proposals for these two backbones. We could find
the recall of the sparse convolution based backbone consistently
outperforms the recall of the PointNet++ based backbone, which
further validates that the sparse convolution based backbone is
better than the PointNet++ based backbone for point-wise feature
learning and 3D proposal generation.

Table 1 and Table 5 also show that our Part-A2-anchor model
achieves higher recall than the Part-A2-free model. Therefore, in
our remaining experimental sections, we mainly adopt the Part-
A2-anchor model for ablation studies and experimental compari-
son unless specified otherwise.

4.1.2 Ablation studies for RoI-aware point cloud pooling
In this section, we designed ablation experiments to validate
the effectiveness of our proposed RoI-aware point cloud pooling
module with the Part-A2-anchor model, and we also explored
more pooling sizes to investigate the trend of performance when
increasing the RoI pooling size.

Effects of RoI-aware point cloud region pooling. As discussed
in Sec. 3.2, the proposed RoI-aware point cloud pooling module
normalizes different 3D proposals to the same coordinate system
to encode geometric information of proposals. It solves the am-
biguous encoding by previous 3D point cloud pooling schemes as
shown in Fig. 6. The 3D proposals are divided into regular voxels
to encode the position-specific features for each 3D proposal.

To validate the effects of the RoI-aware pooling module, we
conduct the following comparison experiments. (a) We replace
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Pooling Scheme Stage-II APEasy APMod. APHard

RoI fixed-sized pool sparse conv 88.78 78.61 78.05
RoI-aware pool FCs 89.46 79.32 78.77
RoI-aware pool sparse conv 89.47 79.47 78.54

TABLE 2
Effects of RoI-aware point cloud pooling by replacing the RoI-aware

pooling or the sparse convolution, and the pooling sizes of all the
settings are 14× 14× 14. The results are the 3D detection
performance of car class on the val split of KITTI dataset.

RoI Pooling Size APEasy APMod. APHard

6× 6× 6 89.02 78.85 78.04
8× 8× 8 89.09 78.97 78.15

10× 10× 10 89.44 79.15 78.42
12× 12× 12 89.61 79.35 78.50
14× 14× 14 89.47 79.47 78.54
16× 16× 16 89.52 79.45 78.56

TABLE 3
Effects of using different RoI-aware pooling sizes in our

part-aggregation stage. The results are the 3D detection performance
of car class on the val split of KITTI dataset.

RoI-aware pooling by fixed-sized RoI pooling, i.e. pooling all 3D
proposals with the same fixed-size (l = 3.9, w = 1.6, h = 1.56
meters for car) 3D box calculated from the mean object size of the
training set with 14×14×14 grids. The center and orientation of
the 3D grid are set as its corresponding 3D proposal’s center and
orientation, respectively. This is very similar to the pooling scheme
used in PointRCNN, where not all geometric information is well
preserved during pooling. (b) We replace sparse convolutions of
stage-II with several FC layers. As shown in Table 2, removing
RoI-aware pooling substantially decreases detection accuracy,
while replacing sparse convolutions of stage-II with FC layers
achieves similar performance, which proves the effectiveness of
our proposed RoI-aware pooling but not the sparse convolution
contributes to the main improvements.

Effects of RoI pooling size. The 14 × 14 pooling size was
very commonly chosen for 2D object detection, and we follow the
same setting to use 14 × 14 × 14 as the 3D RoI-aware pooling
size. We also test different RoI pooling sizes as shown in Table
3. The pooling size shows robust performance for different 3D
objects. Similar performances can be observed if the pooling sizes
are greater than 12× 12× 12.

4.1.3 Sparse convolution v.s. fully-connected layers for part
aggregation.
In our Part-A2 net, after applying the RoI-aware point cloud
pooling module, there are several ways to implement the part-
aggregation stage. The simplest strategy is to directly vectorize
the pooled feature volumes to a feature vector followed by several
fully-connected layers for box scoring and refinement. From the
1st row of Table 4, we could see that this naive way already
achieved promising results, which are benefited from the effective
representations of our RoI-aware point cloud pooling since each
position of the feature vector encodes a specific intra-object
position of the object of interest to help learn the shape of the
box better. In the 2nd row of Table 4, we further investigate
using sparse convolution with kernel size 3 × 3 × 3 to aggregate
the features from local to global scales gradually, which achieves
slightly better results with the same pooling size 7 × 7 × 7. The
3rd row shows that fully-connected layers with larger pooling
size 14 × 14 × 14 achieves improved performance, but this

Pooling
Size Stage-II Downsampling

in Stage-II APEasy APMod. APHard

7× 7× 7 FCs 89.17 79.11 78.03
7× 7× 7 sparse conv 89.24 79.21 78.11

14× 14× 14 FCs 89.46 79.32 78.77
14× 14× 14 sparse conv X 89.47 79.47 78.54

TABLE 4
Comparison of several different part-aggregation network structures.
The results are the 3D detection performance of car class on the val

split of KITTI dataset.

design consumes much calculations and GPU memory. As we
mentioned in Sec. 3.3, our proposed part-aggregation network
adopts a large pooling size 14 × 14 × 14 to capture details and
then use sparse max-pooling to downsample the feature volumes
for feature encoding, which achieves the best performance in the
easy and moderate difficulty levels as shown in Table 4 with lower
computation and GPU memory cost than fully-connected layers.

4.1.4 Ablation studies for 3D proposal generation

We investigate the two strategies for 3D proposal generation from
point cloud, one is the anchor-based strategy and the other is
our proposed anchor-free strategy, in Part-A2-anchor and Part-
A2-free models. In this section, we first experiment and discuss
two proposal generation strategies in details to provide a reference
to choose better strategy for different settings of 3D proposal
generation. Then we compare the performance of different center
regression looses for the two strategies.

Anchor-free v.s. anchor-based 3D proposal generation. We
validate the effectiveness of our proposal generation strategies
with state-of-the-art two-stage 3D detection methods. As shown
in Table 5, our preliminary PointRCNN with anchor-free proposal
generation and PointNet++ backbone already achieve significantly
higher recall than previous methods. With only 50 proposals,
PointRCNN obtains 96.01% recall at IoU threshold 0.5, which
outperforms recall 91% of AVOD [4] by 5.01% at the same
number of proposals, note that the latter method uses both 2D
image and point cloud for proposal generation while we only use
point cloud as input.

We also report the recall of 3D bounding box at IoU threshold
0.7 by our anchor-free and anchor-based strategies in Table 5.
Part-A2-free model (with anchor-free proposal generation strat-
egy) achieves 77.12% recall at IoU threshold 0.7 with only 50
proposals, which is much higher than the recall of our preliminary
work PointRCNN since Part-A2-free model adopts better sparse
convolution based backbone. Our Part-A2-anchor model (with
anchor-based proposal generation strategy) further improves the
recall to 83.71% at IoU threshold 0.7 with 50 proposals. This is
because the anchor-based strategy has a large number of anchors
to more comprehensively cover the entire 3D space to achieve a
higher recall. However, the improvement comes with sacrifices,
as it needs different sets of anchors for different classes at each
spatial location. For instance, the anchor size of pedestrians is
(l = 0.8m,w = 0.6m,h = 1.7m) while the anchor size of cars
is (l = 3.9m,w = 1.6m,h = 1.56m). They are unlikely to
share the same anchor. In contrast, our anchor-free strategy still
generates a single 3D proposal from each segmented foreground
point even for many classes, since we only need to calculate the
3D size residual with respect to the corresponding average object
size based on its semantic label.
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RoIs #
Recall (IoU=0.5) Recall (IoU=0.7)

MV3D AVOD PointRCNN PointRCNN Part-A2

-free
Part-A2

-anchor
10 - 86.00 86.66 29.87 66.31 80.68
20 - - 91.83 32.55 74.46 81.64
30 - - 93.31 32.76 76.47 82.90
40 - - 95.55 40.04 76.88 83.05
50 - 91.00 96.01 40.28 77.12 83.71

100 - - 96.79 74.81 81.54 85.58
200 - - 98.03 76.29 84.93 89.32
300 91.00 - 98.21 82.29 86.03 91.64

TABLE 5
Recall of generated proposals by compared methods with different

numbers of RoIs and 3D IoU thresholds for the car class at moderate
difficulty of the val split. Note that only MV3D [1] and AVOD [4] of

previous methods reported the recall rates of proposals.

Method Class IoU Thresh APEasy APMod. APHard

Part-A2-free Car 0.7 88.48 78.96 78.36
Part-A2-anchor Car 0.7 89.47 79.47 78.54

Part-A2-free Cyclist 0.5 88.18 73.35 70.75
Part-A2-anchor Cyclist 0.5 88.31 73.07 70.20

Part-A2-free Pedestrian 0.5 70.73 64.13 57.45
Part-A2-anchor Pedestrian 0.5 70.37 63.84 57.48

TABLE 6
3D object detection results of Part-A2-free net and Part-A2-anchor net

on the KITTI val split set.

The 3D detection results of the Part-A2-free and Part-A2-
anchor models on cars, cyclists and pedestrians are reported in
Table 6. We could see that the 3D detection results of cyclist
and pedestrian by Part-A2-free are comparable to those by Part-
A2-anchor model, while the results of cars by Part-A2-free are
lower than those by Part-A2-anchor on the moderate and easy
difficulties. Hence the bottom-up Part-A2-free model has better
potential on multi-class 3D detection on small-size objects (such
as cyclists and pedestrians) with lower memory cost, while the
anchor-based Part-A2-anchor model may achieve a slightly better
performance on 3D detection of large-size objects such as cars.
That is because the predefined anchors are closer to the center
locations of objects with large sizes, while the bottom-up proposal
generation strategy suffers from difficulty of regressing large
residuals from the object surface points to object centers.

Center regression losses of 3D bounding box generation. We
compare different center regression losses on our Part-A2-free
net and our Part-A2-anchor net, including the proposed bin-based
regression loss (Eq. (4)) and the residual-based regression loss
(first row of Eq. (7)). As shown in Fig. 8, for the Part-A2-free
net with anchor-free proposal generation strategy, the bin-based
regression loss (solid blue line) converges faster than the residual-
based regression loss (solid red line). In contrast, for the Part-
A2-anchor net with anchor-based proposal generation scheme, the
residual-based regression loss (dashed red line) converges faster
and better than the bin-based regression loss (dashed blue line).
It demonstrates that the proposed bin-based center regression loss
is more suitable with the anchor-free proposal generation strategy
to achieve better performance, since the center regression targets
of anchor-free scheme (generally from a surface point to the
object center) vary a lot and bin-based localization could better
constrain the regression targets and make the convergence faster
and more stable. Fig. 8 shows that the Part-A2-anchor net achieves
better recall with the residual-based center regression loss and we
also adopt residual-based center localization loss for the Part-A2-

Fig. 8. Recall v.s. training iterations for different center regression losses
of Part-A2-free net and Part-A2-anchor net. The results are generated
according to the generated proposals of Part-A2-free net and Part-A2-
anchor net on the car class of the val split with IoU threshold 0.5.

anchor net as mentioned in Sec. 3.1.3.

4.1.5 Benefits of intra-object part location prediction for 3D
object detection
To validate the effectiveness of utilizing the free-of-charge intra-
object part locations for 3D detection, we test removing the
part location supervisions from our Part-A2-anchor model. In
the backbone network, we only remove the branch for predicting
intra-object part locations and keep other modules unchanged. The
point-wise part locations for RoI-aware pooling are replaced with
the canonical coordinates of each point.

As shown in Table 7, compared with the model trained without
intra-object part location supervisions (the 3rd vs the 4th rows),
the models with part location supervisions achieves better recall
and average precision on all difficulty levels of the val split of the
car class. The remarkable improvements on recall and precision
indicate that the network learned better 3D features for scoring
box and refining locations for detection with detailed and accurate
supervisions of the intra-object part locations.

4.1.6 One-stage v.s. two-stage 3D object detection
Table 7 shows that without the stage-II for box scoring and
refinement, the proposal recalls of our first proposal stage are com-
parable (80.90 v.s. 80.99). However, the performance improves
significantly (82.92 v.s. 84.33) after the 100 proposals are refined
by the part-aggregation stage. It demonstrates that the predicted
intra-object part locations are beneficial for stage-II, and our
part-aggregation stage-II could effectively aggregate the predicted
intra-object part locations to improve the quality of the predicted
3D boxes. The performance gaps between stage-I and stage-II (1st

row v.s. 3rd row, 2nd row v.s. 4th row) also demonstrate that our
stage-II improves the 3D detection performance significantly by
re-scoring the box proposals and refining their box locations.

4.1.7 Effects of IoU guided box scoring
As mentioned in Sec. 3.3, we apply the normalized 3D IoU to
estimate the quality of the predicted 3D boxes, which is used as
the ranking score in the final NMS (non-maximum-suppression)
operation to remove the redundant boxes. Table 8 shows that com-
paring with the traditional classification score for NMS, our 3D
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Stage-I Stage-II Part
Prediction

Recall
box#100 APEasy APMod. APHard

X 80.90 88.48 77.97 75.84
X X 80.99 88.90 78.54 76.44
X X 82.92 89.23 79.00 77.66
X X X 84.33 89.47 79.47 78.54

TABLE 7
Effects of intra-object part location supervisions and stage-II refinement
module, and the evaluation metrics are the recall and average precision

with 3D rotated IoU threshold 0.7. The results are the 3D detection
performance of car class on the val split of KITTI dataset, and the

detection results of stage-I are generated by directly applying NMS to
the box proposals from stage-I.

NMS Ranking Score APEasy APMod. APHard

classification 89.13 78.81 77.95
3D IoU guided scoring 89.47 79.47 78.54

TABLE 8
Effects of 3D IoU guided box scoring for ranking the quality of the

predicted 3D boxes. The results are the 3D detection performance of
car class on the val split of KITTI dataset.

IoU guided scoring method increases the performance marginally
in all difficulty levels, which validates the effectiveness of using
normalized 3D IoU to indicate the quality of predicted 3D boxes.

4.1.8 Memory cost of anchor-free and anchor-based pro-
posal generation
As shown in Table 9, we compare the model complexity of the
anchor-free and anchor-based proposal generation strategies by
calculating the number of parameters and the number of generated
boxes with different number of object classes. Part-A2-free model
(with anchor-free proposal generation strategy) consistently gener-
ates∼16k proposals (i.e., the number of points of the point cloud),
which is independent with the number of classes, while the number
of generated boxes (i.e., the predefined anchors) of Part-A2-anchor
model (with anchor-based proposal generation), increases linearly
with the number of classes since each class has its own anchors
with specified object sizes for each class. The number of anchors
of Part-A2-anchor model achieves 211.2k for detecting objects of
3 classes, which shows that our anchor-free proposal generation
strategy is a relatively light-weight and memory efficient strategy
especially for multiple classes.

We also report the inference GPU memory cost for three
classes detection (car, pedestrian and cyclist) on KITTI [33]
dataset. The inference is conducted by PyTorch framework on a
single NVIDIA TITAN Xp GPU card. For the inference of a single
scene, Part-A2-free model consumes about 1.16GB GPU memory
while Part-A2-anchor model consumes 1.63GB GPU memory.
For the inference with six scenes simultaneously, Part-A2-free
model consumes about 3.42GB GPU memory while Part-A2-
anchor model consumes 5.46GB GPU memory. It demonstrates
that the Part-A2-free model (with anchor-free proposal generation
strategy) is more memory efficient than Part-A2-anchor model
(with anchor-based proposal generation).

4.1.9 Analysis of false positive samples
Fig. 9 shows the ratios of false positives of our best perfor-
mance Part-A2-anchor model on the KITTI validation dataset with
different score thresholds, which are caused by confusion with
background, poor localization, and confusion with objects from

Number of
classes

Part-A2-free Part-A2-anchor
Number of
parameters

Number of
generated boxes

Number of
parameters

Number of
anchors

1 1775269 ∼16k 4648588 70.4k
3 1775527 ∼16k 4662952 211.2k

TABLE 9
The number of parameters on proposal generation head, and the
number of generated boxes with different number of classes for

Part-A2-free model and Part-A2-anchor model. The parameters of (5,
10, 100) are counted by setting faked number of classes and the

number of generated boxes are for the KITTI scene.

Fig. 9. Ratios of high-scored false positives for the car class on the val
split of KITTI dataset that are due to poor localization, confusion with
other objects, or confusion with background or unlabeled objects.

other categories. It can be seen that, the majority of false positives
are from background and poor localization. The confusion of
background mainly comes from the fact that the sparse point
cloud could not provide enough semantic information for some
background like the flower terrace. The LiDAR-only 3D detection
methods may mistakenly recognize them as foreground objects
like car since they have similar geometry shape in the point
cloud. The ratio of false positives from poor localization increases
significantly with the increasing score threshold. This is because
the evaluation requirement of 3D rotated IoU constraint for 3D
detection is more strict than the evaluation metric of 2D detection.

4.2 Main results and comparison with state-of-the-arts
on KITTI benchmark

In this section, we report the comparison results with state-of-the-
art 3D detection methods on the KITTI benchmark. We mainly
report the performance of our Part-A2-anchor model as it is able
to reach higher accuracy in our ablation studies.

Comparison with state-of-the-art 3D detection methods. We
evaluate our methods on the 3D detection benchmark and the
bird’s eye view detection benchmark of the KITTI test split, whose
results are evaluated on KITTI’s offical test server. The results are
shown in Table 10.

For the 3D object detection benchmark, by only using LiDAR
point clouds, our proposed Part-A2 net outperforms all previous
peer-reviewed LiDAR only methods on all difficulty levels for
all the three classes, and outperforms all previous multi-sensor
methods on the most important “moderate“ difficulty level for
both car and cyclist classes. For the bird’s view detection of car,
pedestrian and cyclist, our method outperforms previous state-of-
the-art methods by large margins on almost all the difficulty levels.
As of August 15, 2019, our proposed Part-A2-anchor net ranks
1st place among all methods on the most important car class of
3D object detection leaderboard of KITTI 3D Object Detection
Benchmark [65], while our method also ranks 1st among all
LiDAR-only methods on the cyclist class.
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Method Modality 3D Detection (Car) BEV Detection (Car) 3D Detection (Ped.) BEV Detection (Ped.) 3D Detection (Cyc.) BEV Detection (Cyc.)
Mod. Easy Hard Mod. Easy Hard Mod. Easy Hard Mod. Easy Hard Mod. Easy Hard Mod. Easy Hard

MV3D [1] RGB + LiDAR 62.35 71.09 55.12 76.90 86.02 68.49 - - - - - - - - - - - -
ContFuse [5] RGB + LiDAR 66.22 82.54 64.04 85.83 88.81 77.33 - - - - - - - - - - - -

AVOD-FPN [4] RGB + LiDAR 71.88 81.94 66.38 83.79 88.53 77.90 42.81 50.80 40.88 51.05 58.75 47.54 52.18 64.00 46.61 57.48 68.09 50.77
F-PointNet [6] RGB + LiDAR 70.39 81.20 62.19 84.00 88.70 75.33 44.89 51.21 40.23 50.22 58.09 47.20 56.77 71.96 50.39 61.96 75.38 54.68

PC-CNN-V2 [8] RGB + LiDAR 73.80 84.33 64.83 86.10 88.49 77.26 - - - - - - - - - - - -
UberATG-MMF [64] RGB + LiDAR 76.75 86.81 68.41 87.47 89.49 79.10 - - - - - - - - - - - -

VoxelNet [29] LiDAR only 65.11 77.47 57.73 79.26 89.35 77.39 33.69 39.48 31.51 40.74 46.13 38.11 48.36 61.22 44.37 54.76 66.70 50.55
SECOND [7] LiDAR only 73.66 83.13 66.20 79.37 88.07 77.95 42.56 51.07 37.29 46.27 55.10 44.76 53.85 70.51 40.90 56.04 73.67 48.78

PointPillars [9] LiDAR only 74.99 79.05 68.30 86.10 88.35 79.83 43.53 52.08 41.49 50.23 58.66 47.19 59.07 75.78 52.92 62.25 79.14 56.00
PointRCNN (Ours) LiDAR only 75.76 85.94 68.32 85.68 89.47 79.10 41.78 49.43 38.63 47.53 55.92 44.67 59.60 73.93 53.59 66.77 81.52 60.78

Part-A2-anchor (Ours) LiDAR only 77.86 85.94 72.00 84.76 89.52 81.47 44.50 54.49 42.36 51.12 59.72 48.04 62.73 78.58 57.74 68.12 81.91 61.92

TABLE 10
Performance evaluation on KITTI official test server (test split). The 3D object detection and bird’s eye view detection are evaluated by mean

average precision with 11 recall positions. The rotated IoU threshold is 0.7 for car and 0.5 for pedestrian/cyclist.

Method Reference Modality AP (IoU=0.7)
Mod. Easy Hard

MV3D [1] CVPR 2017 RGB & LiDAR 62.68 71.29 56.56
ContFuse [5] ECCV 2018 RGB & LiDAR 73.25 86.32 67.81

AVOD-FPN [4] IROS 2018 RGB & LiDAR 74.44 84.41 68.65
F-PointNet [6] CVPR 2018 RGB & LiDAR 70.92 83.76 63.65
VoxelNet [29] CVPR 2018 LiDAR only 65.46 81.98 62.85
SECOND [7] Sensors 2018 LiDAR only 76.48 87.43 69.10

PointRCNN (Ours) CVPR 2019 LiDAR only 78.63 88.88 77.38
Part-A2-free (Ours) - LiDAR only 78.96 88.48 78.36

Part-A2-anchor (Ours) - LiDAR only 79.47 89.47 78.54

TABLE 11
Performance comparison of 3D object detection on the car class of the

KITTI val split set.

Method Reference Modality AP (IoU=0.7)
Mod. Easy Hard

MV3D [1] CVPR 2017 RGB & LiDAR 78.10 86.55 76.67
F-PointNet [6] CVPR 2018 RGB & LiDAR 84.02 88.16 76.44
ContFuse [5] ECCV 2018 RGB & LiDAR 87.34 95.44 82.43
VoxelNet [29] CVPR 2018 LiDAR only 84.81 89.60 78.57
SECOND [7] Sensors 2018 LiDAR only 87.07 89.96 79.66

PointRCNN (Ours) CVPR 2019 LiDAR only 87.89 90.21 85.51
Part-A2-free (Ours) - LiDAR only 88.05 90.23 85.85

Part-A2-anchor (Ours) - LiDAR only 88.61 90.42 87.31

TABLE 12
Performance comparison of bird-view object detection on the car class

of the KITTI val split set.

Method Class AP (IoU=0.5)
Mod. Easy Hard

PointRCNN Cyclist 69.70 86.13 65.40
Part-A2-free Cyclist 73.35 88.18 70.75

Part-A2-anchor Cyclist 73.07 88.31 70.20
PointRCNN Pedestrian 63.70 69.43 58.13
Part-A2-free Pedestrian 64.13 70.73 57.45

Part-A2-anchor Pedestrian 63.84 70.37 57.48

TABLE 13
3D object detection results of cyclist and pedestrian of different models

on the KITTI val split set.

mAbsErrorx mAbsErrory mAbsErrorz mAbsError
Overall 7.24% 6.42% 5.17% 6.28%

False Positives 12.97% 12.09% 7.71% 10.92%

TABLE 14
Mean distance error of predicted intra-object part locations by

part-aware stage for the car class of KITTI val split. As shown in Fig. 4,
here x, y, z are along the direction of width, length and height of the

object, respectively. Note that here the false positives denotes the false
positives samples caused by inaccurate localizations.

x-axis y-axis z-axis Overall
0.468 0.442 0.552 0.531

TABLE 15
Pearson correlation coefficient between the errors of the predicted

intra-object part locations and the errors of the predicted 3D bounding
boxes.

Fig. 10. Statistics of predicted intra-object part location errors for the car
class on the val split of KITTI dataset.

Results on validation set. For the most important car category,
our methods are compared with state-of-the-art methods on KITTI
val split including both 3D object detection (shown in Table 11)
and 3D object localization (shown in Table 12). We could see that
on the most important “moderate” difficulty level, our Part-A2 net
outperforms state-of-the-art methods on both two tasks with large
margins by using only the point clouds as inputs. In addition,
our Part-A2 net achieves new state-of-the-art performance on all
difficulty levels of the KITTI 3D object detection val split, which
demonstrates the effectiveness of our proposed methods for 3D
object detection.

As shown in Table 13, we also report the performance of
our methods for cyclist and pedestrian on the validation set
for reference. Note that compared with PointRCNN, our latest
method Part-A2-anchor net improves the performance of cyclist
significantly while achieves comparable results on pedestrian. The
reason for slightly inferior performance on pedestrians might be
that the orientation of pedestrian is hard to be recognized from
the sparse point cloud, which is harmful for the prediction of part
locations in our Part-A2-anchor net. Multi-sensor methods that
integrate RGB images would have advantages for detecting small
objects like pedestrians.

Evaluation of Part-A2-anchor net for predicting intra-object
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Fig. 11. Qualitative results of Part-A2-anchor Net on the KITTI test split. The predicted 3D boxes are drawn with green 3D bounding boxes, and the
estimated intra-object part locations are visualized with interpolated colors as shown in Fig. 4. Best viewed in colors.

part locations. The intra-object part locations predicted by our
part-aware stage-I are crucial for the part-aggregation stage-II to
accurately score the box and refine the box location. Here we
evaluate the accuracy of predicted intra-object part locations by
the following metric:

AbsErroru =
1

||G||
∑
i∈G
|ũ(part)
i − u(part)

i |, u ∈ {x, y, z}, (18)

where ũ(part)
i is the predicted part location, u(part)

i is the ground
truth part location, and G is the set of foreground points for each
sample. The final mAbsErroru is the mean value of AbsErroru for
all samples.

As shown in Table 14, for the most important car category, the
mean error of our predicted intra-object part locations is 6.28%,
which shows that the part-aware network accurately predicts the
intra-object part locations since the average error is only±6.28cm
per meter for the cars. Based on this accurate intra-object part lo-
cations, our part-aggregation stage-II could better score the boxes
and refine the box locations by utilizing the predicted geometric
information. Here we also report the detailed error statistics of
predicted intra-object part locations on different difficulty levels
of the KITTI val split in Fig. 10 for reference.

We further analyze the correlations between the errors of the
predicted intra-object part locations and the errors of the pre-
dicted 3D bounding boxes by calculating the Pearson correlation
coefficient, which is [−1, 1] with 1 denotes fully positive linear
correlation and −1 is fully negative linear correlation. Here we

utilize 1− IoU to indicate the errors of the predicted 3D bounding
boxes, where IoU is the 3D Intersection-over-Union (IoU) between
the predicted 3D bounding box and its best matched ground-truth
box. As shown in Table 15, we could see that the errors of intra-
object part locations have obviously positive correlation with the
errors of the predicted 3D bounding boxes. The overall correlation
coefficient is 0.531 and the most correlated axis is the z-axis in the
height direction where the correlation coefficient achieves 0.552,
which demonstrates that accurate intra-object part locations are
beneficial for predicting more accurate 3D bounding boxes.

We also report the errors of intra-object part locations on the
false positive samples which are caused by inaccurate localization
(see row 2 of Table. 14), and we could see that the predicted
part location errors increase significantly in all three axes, which
indicate that inaccurately predicted intra-object part locations may
lead to unsatisfactory 3D object localization and decrease the
performance of 3D object detection.

4.3 Qualitative results

We present some representative results generated by our proposed
Part-A2-anchor net on the test split of KITTI dataset in Fig. 11.
From the figure we could see that our proposed part-aware network
could estimate accurate intra-object part locations by using only
point cloud as inputs, which are aggregated by our designed part-
aggregation network to generate accurate 3D bounding boxes.
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5 CONCLUSION

In this paper, we extend our preliminary work PointRCNN to a
novel 3D detection framework, the part-aware and aggregation
neural network (Part-A2 net), for detecting 3D objects from raw
point clouds. Our part-aware stage-I learns to estimate the accurate
intra-object part locations by using the free-of-charge intra-object
location labels and foreground labels from the ground-truth 3D
box annotations. Meanwhile, the 3D proposals are generated by
two alternative strategies, anchor-free scheme and anchor-based
scheme. The predicted intra-object part locations of each object
are pooled by the novel RoI-aware point cloud pooling scheme.
The following part-aggregation stage-II can better capture the
geometric information of object parts to accurately score the boxes
and refine their locations.

Our approach significantly outperforms existing 3D detection
methods and achieves new state-of-the-art performance on the
challenging KITTI 3D detection benchmark. Extensive experi-
ments were carefully designed and conducted to investigate the
individual components of our proposed framework.
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