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CARLA Real Traffic Scenarios — novel training ground and benchmark
for autonomous driving
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Abstract— This work introduces interactive traffic scenarios

in the CARLA simulator, which are based on real-world traffic.

We concentrate on tactical tasks lasting several seconds, which
are especially challenging for current control methods. The
CARLA Real Traffic Scenarios (CRTS) is intended to be a
training and testing ground for autonomous driving systems. To
this end, we open-source the code under a permissive license and
present a set of baseline policies. CRTS combines the realism
of traffic scenarios and the flexibility of simulation. We use it to
train agents using a reinforcement learning algorithm. We show
how to obtain competitive polices and evaluate experimentally
how observation types and reward schemes affect the training
process and the resulting agent’s behavior.

I. INTRODUCTION

The field of autonomous driving is a flourishing research
field stimulated by the prospect of increasing safety and
reducing demand for manual work. The ability to drive a
car safely requires a diverse set of skills. First, it requires
low-level control of a car — being able to keep the lane,
make turns, and perform emergency stops. It also requires
an understanding of the traffic rules (such as speed limits,
right of way, traffic lights) and adhering to them. Finally, it
requires high-level navigation — deciding which route to the
destination is optimal.

Source dataset Maneuver type Our custom N(." of scenarios
maps train ‘ validation
NGSIM highway lane change 2 1750 467
openDD drive through a roundabout 7 51752 12927

TABLE I: CARLA Real Traffic Scenarios (CRTS).

Computer-based systems can tackle these different skills
with varying levels of success. High-level navigation is
effectively solved by widely available GPS-based systems.
There is also a growing body of work showing that the car
control level can be efficiently solved using machine learning
[1], [2]. Perhaps the hardest to automate is tactical planning
tasks with a time horizon of several seconds, which require
interactions with other traffic participants. A classic example
is an unguarded 4-way intersection (investigated in e.g. [3]).
In this work, we focus on changing lanes on highways
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and driving through roundabouts. We present CARLA Real
Traffic Scenarios (CRTS), including 9 new maps and a set
of interactive traffic scenarios in the CARLA simulator [4],
which may serve both for creating and evaluating autonomous
driving systems. Importantly, these are extracted from datasets
collected in the wild: NGSIM [5] and openDD [6] and thus
pose real-world challenges. See Table [I] for basic statistics re-
garding datasets and new maps. Example videos are available
at the project website: https://sites.google.com/
view/carla-real-traffic—scenarios/!

To the best of our knowledge, this is the first publicly
available work that adapts tactical-level real-world traffic data
to a simulator with rich plausible physics and thus has a
number of advantages. First and foremost, it allows for fast
and relatively easy testing and comparison between various
control methods and their implementation details. These
may include planning versus policy approaches, learning
algorithms, and methods with different levels of abstraction.
Moreover, most recently published datasets (e.g. [7], [5],
[8]) provide data from a fixed configuration of sensors. Our
simulation-based solution removes this restriction and allows
for easy data collection and testing of multiple sensor sets.

Using datasets listed in Table [I| as a source of trajectories
offers an important benefit of facing situations that actually
happened in the real world. Based on such trajectories, we
build interactive scenarios. In a scenario, we replace a vehicle
performing a maneuver with the ego vehicle simulated by
CARLA and controlled by an algorithm in a closed-loop
manner. The other vehicles follow the trajectory recorded
in the dataset. The ego vehicle is tasked to execute the
same maneuver. Performance is measured based on the final
output (whether the ego-vehicle reached its target location)
and negative events during driving (e.g. crashes, rapid turns,
changes in speed). In particular, this implies that the policy
steering the ego vehicle can use other than original strategies
to perform maneuvers. We believe that it is important to
understand these strategies if they are different from human
driving styles and in what respects. Similarly to [9], we think
that such an analysis, in the single-agent setting with realistic
surroundings, might provide important clues for building
multi-agent models. Moreover, one may be able to assess
if the policy exploits the simulation’s particularities, which
might be critical in the goal of transferring the policy to the
real world.

Our aim is to provide training and testing ground for
other researchers. The set of train scenarios is big enough to
train or fine-tune models used for control. We standardize
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Fig. 1: Scene from openDD dataset together with its in simulation equivalent.

the evaluation protocol by arranging train and validation
split. We note that the validation scenarios allow us to test
generalization to previously unseen circumstances. CRTS
can be useful in various research applications, including
learning methods and more classical planning. We note that
drone-collected datasets can provided extensive stream of
realistic road data as they contain information about multiple
and interacting actors. Moreover, they required relatively
small hardware investment. The price to pay is that they
do not contain precise information about driver actions. For
this reason, standard imitation learning, which is commonly
used in literature [10], is not easily applicable here. In this
work we use reinforcement learning (RL) to circumvent this
restriction. Another advantage of RL is it can acquire novel
solutions or detect corner cases. We show the versatility of

CRTS, which stems from the fact that it runs in simulation.

In particular, we compare how various observations modes
(bird’s-eye view, visual input, and lidar and camera) affect
the training and performance of the resulting policies. We
also study generalization from the train set to the test set,
which has recently become a popular research direction in
RL; see e.g. [11], [12].

To summarize, we submit the following contributions:

e A set of driving scenarios based on real data in the
CARLA simulator, including 9 new custom maps. The
source code for the scenarios is available onlinell] See
Section [

« Competitive driving polices utilizing the PPO algorithm
[13] in various observation and rewards setups. See
Section [[V1

« Quantitative analysis of these policies with respect to
task efficiency and generalization, which indicates that
the bird’s-eye view observations and dense rewards
outperform other tested methods. See Section [[V]

II. CARLA REAL TRAFFIC SCENARIOS (CRTS)

We use recent version 0.9.9.4 of CARLA [4], an open-
source simulator for autonomous driving research based on
Unreal Engine 4. CARLA features open assets, built-in maps,
weather settings, and multiple vehicles with different physical
parameters and various sensors. Two visual quality levels
(LOW and EPIC) are supported. We utilize two datasets,
NGSIM and openDD, of 2D trajectories collected by drones
to obtain a set 3D scenarios with plausible physics delivered
by CARLA.

a) NGSIM: In these scenarios, the ego vehicle is tasked
with performing a lane change maneuver on a highway. The
source of the data is The Next Generation Simulation (NG-
SIM) dataset [5], [14], which contains vehicles trajectories
collected on American highways. For parsing the data, we
used code from [9]. We developed two custom CARLA maps
of the locations covered by the dataset (southbound US 101
in Los Angeles, CA, and eastbound 1-80 in Emeryville, CA).

b) openDD: The openDD dataset [6] is a large-scale
trajectory dataset recorded from bird’s eye view. It focuses on
roundabouts, which are an example of interaction-intensive
traffic not regulated by traffic lights. openDD is the largest
publicly available trajectory dataset recorded from a drone
containing over 84k trajectories distilled from 62 hours of
video data. The data was collected on 7 roundabouts — five
located in Wolfsburg and two in Ingolstadt (both in Germany).
We developed 7 custom CARLA maps corresponding to these
roundabouts, see example in Figure [T]

c) Extraction algorithm: Based on the dataset of tra-
jectories we built interactive scenarios. In a given scenario,
we replace the vehicle performing a maneuver with the ego
vehicle, whose physics is simulated by CARLA and controlled
by an algorithm in a closed-loop manner. The other vehicles
follow the trajectory recorded in the dataset. The ego vehicle
is tasked with executing the same maneuver. Performance
is measured based on final output (whether the ego-vehicle
reached its target location) and negative events during driving
(e.g. crashes or performing the task for too long).

From the NGSIM dataset, we extracted over 2k scenarios
of lane change maneuvers and assigned 1750 for training and

"ttps://github.com/deepsense—ai/
carla-real-traffic-scenariosl We provide also a Python
package producing bird-eye view observation mode, which could be
useful in unrelated projects: https://github.com/deepsense-ai/
carla-birdeye-view,.
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467 for validation. From the openDD dataset, we obtained
over 64k scenarios of roundabout crossing and assigned 51752
for training and 12927 for validation.

Details of the scenario extraction procedure are provided
in Appendix [V-A.T| The scenarios can be accessed using the
standard OpenAl Gym interface [15]. The ego vehicle model
is Audi A2.

A. Observation space

One of the crucial advantages of CRTS is its flexibility
due to the use of simulation. In particular, one can easily test
various observation settings. In our experiments we provide
three major options: bird’s-eye view, visual input, and lidar
and camera; see examples in Figure [2]

The bird’s-eye view input covers approximately 47m X 38m
meters of physical space encoded in 186 x 150 pixels. Se-
mantic information is contained in 5 channels corresponding
respectively to road, lanes, centerlines, other vehicles, and
the ego vehicle. See details in Appendix

In visual experiments we use 4 cameras (front, left, right,
and rear), each having a field of vision of 90 degrees and a
resolution of 384 x 160. In front camera experiments we use
only the front-facing camera.

In lidar and camera experiments, we use a single front
camera and 360° lidar inputs. The simulated lidar has a range
of 80 meters, 32 channels, horizontal field of view between
—15°, and +10°; these parameters resemble lidar settings
available in autonomous vehicles (see e.g. [16]). In order to
be able to use a convolutional neural network to process the
lidar input, the raw data (pointcloud) is projected to a 2D
view; this is a popular approach (see [17]).

The observation also includes a high-level naviga-
tional command (either GO_STRAIGHT, TURN_RIGHT, or
TURN_LEFT), as inspired by [10]. These are used to indicate
the lane change direction in NGSIM and the roundabout exit
in openDD.

B. Action space

The ego vehicle is controlled by steering and speed.
The steering wheel’s angle can be set continuously and is
processed by the CARLA engine to steer the wheel (the
angle of the wheels can vary from —80° to 80°, which is
normalized to [—1,1] for the policy output). The speed is
controlled indirectly by issuing commands to a PID controller,
which controls the throttle and break. For both steering and
speed, the policy is modeled using the Gaussian distribution
with the mean and the logarithm of the variance output by a
neural network.

C. Metrics

We suggest reporting the success rate of the performed
maneuver as the primary metric and we recommend that the
performance on a test scenario is reported using an average
result from at least 50 episodes.

As our code is open, other custom metrics can be defined.
One could, for example, imagine measuring the comfort of
driving.

III. RELATED WORK

Autonomous driving is one of most important topics in
contemporary Al research with a potential for huge impact.
It is beyond the scope of this paper to discuss the whole field.
We refer to [2], [3], [17] for general surveys.

Our work concerns several aspects: using realistic simula-
tions, using real-world data, and training end-to-end polices
using reinforcement learning.

Over the years, simulations have become a routinely-
used tool for studying real-world control problems. Their
clear advantages include making data collection cheaper and
alleviating safety issues. From them to be useful, the critical
research problem of transfer to the real environment has to be
solved. Successful attempts, for example [18], usually address
the problem in two ways: by making the simulation more
realistic and by achieving highly adaptable polices. The latter
is often obtained using domain randomization, a technique
pioneered in [19] (and later extended in many works), which
hinges on the assumption that a policy robust to a wide
spectrum of simulated conditions would also be applicable
to one special instance: reality.

Unsurprisingly, using simulation is an attractive research
avenue for the autonomous driving community. The two
popular packages CARLA [4] and AIRSIM [20] use Unreal
engine to build efficient photo-realistic simulations with
plausible physics. Similarly, TORCS [21] is a widely-used
racing car simulator. There are also other simulators which
are attractive for autonomous driving research; we refer to
[22] for a comprehensive survey.

On the other hand autonomous driving companies amass
ever-increasing datasets of driving data collected in the wild.
There is also an increasing number of publicly available
datasets. A non-exhaustive list includes NGSIM [5] and highD
[7] datasets recorded on highways. inD [23] and openDD [6]
concentrate on maneuvers on intersections and roundabouts.
KITTT [8], A2D2 [16], and [24] datasets consists of footage
recorded from cars using various sensors (RGB cameras,
lidar) along with various preprocessing. SDD [25] and CITR
[26] put emphasis on humans and human-car interactions.

Methods using deep neural networks (DNN) and learning
have become quite fruitful for autonomous driving. There
are three major paradigms of building DNN-based solutions
(which are partially analogous to the discussion in cognitive
sciences). The first one, mediated perception, is perhaps
the most prominent today; see e.g. [27], [8]. It advocates
using a vast number of sub-components recognizing all
relevant objects (other cars, traffic lights, etc.) to form a
comprehensive representation of the scene, which is then fed
into a deep neural network. On the other side of the spectrum
is the behavior reflex approach, which suggests learning a
direct mapping from raw observations to control actions; see
[28], [29] for two prominent examples. The third paradigm,
direct perception, lays in the middle. It recommends learning
affordances (e.g. the angle of the car relative to the road),
which form a compact representation, which can then be used
by another DNN to control the car; see e.g. [30]. Some other



Fig. 2: Different observations types: bird’s-eye view, 4 cameras, and lidar’s projection on 2D view.

works include [31], which utilizes an augmented form of
behavioral cloning with perturbed trajectories to successfully
train an agent in simulation and shows its performance on a
real car. [10] introduce high-level navigation commands and
propose imitation learning conditioned on them to train an
agent in simulation and test its performance on a toy car. [32]
show that training an agent in a teacher-student framework
(where the teacher has access to privileged information) leads
to state-of-the-art performance on previous benchmarks. [33]
presents a model-based approach to learning autonomous
driving behaviors—a learned RNN model of dynamics is
optimized directly with SGD. [34] raises explicit concerns
about the safety of RL-based solutions. They observe that
policy gradient techniques suffer from high variance when
dealing with catastrophic events of low risk. To alleviate that,
they propose decomposing the policy into a high and a low
level one. The former is learnable, while the latter is hard-
coded to ensure safety. [35] and [36] train a reinforcement
learning agent in simulation and show successful transfer to
a real-world vehicle. As the field grows fast, we only can
only scratch the surface; see [37] for a recent overview of
deep reinforcement learning methods used for autonomous
driving.

Performing maneouvers is an important aspect of driving.
[38] use a deep Q-network with continuous action and state
spaces for automated lane change maneuvers. [39] propose a
new state representation and utilize an asynchronous DQN
architecture in a multi-agent setting. See [40] for a survey on
more classical methods employed in lane change maneuvers.

Another initiative similar to ours is the CARLA autonom-

ous driving leaderboard at https://leaderboardl

carla.org/. It presents a suite of scenarios, infrastructure,
and an evaluation protocol to standardize the evaluation of
autonomous driving methods. This aim is in many aspects
similar to ours. The key distinction is that our scenarios are
modeled using real-life data. Moreover, CRTS is meant to
be more of an open-ended research suite than a challenge;
thus, it contains a suite of scenarios which is sufficiently
large to enable meaningful training and does not impose
strong constraints (e.g., sensor choice). All-in-all, these two
initiatives (the CARLA autonomous driving leaderboard and
CRTS) share many similarities and goals and we imagine
they could be merged at some point.

IV. EXPERIMENTS

Our experiments’ main aim was to show how CRTS can
be used in a versatile way to answer research questions con-
cerning autonomous driving, sometimes arriving at counter-
intuitive conclusions. The results are intended to be baselines
for other researchers who would like to utilize CRTS. There
are numerous further open questions, some of which we list
in Section [Vl

The specific research questions are: a) can reinforcement
learning be used to obtain maneuvering polices perform on
test scenarios? b) how does the observation mode affect the
training and the quality of resulting polices? c¢) how do the
trained maneuvering strategies compare to realistic (human)
ones?

In our experiments we used a slightly modified PPO
algorithm [13]. PPO is one of the most popular model-free
RL algorithms known for its flexibility and stability. Being an
on-policy algorithm, it usually requires a substantial number
of training samples. Importantly, using a simulator mitigates
this issue.

a) Rewards: The choice of the reward function is an
important aspect of RL. This can both affect the training
performance and the quality of the final policy. Our driving
scenarios allow for easy experimentation with various choices.
In our benchmark PPO experiments, we used dense rewards
for intermediate progress towards completing a maneuver.
This, in particular, made our training rather stable and
independent of the random initialization. In Section [[V]
[Cl we provide more details and present experiments with
other rewards schemes. Interestingly, in some cases, a sparse
rewards setting offers competitive training performance.

b) Generalization: Generalization is a critical and multi-
faceted topic in machine learning. In our experiments, we test
generalization between scenariosﬂ We note, however, that
CRTS can be used to test generalization in other domains,
such as perception (by varying weather setting and other
visual details) or dynamics (by varying the car model and
physics settings).

Table [ presents the success rate on the test set. Our key
conclusions are that the bird’s-eye view generalizes almost

’In this work we fix the low-quality CARLA settings, set the standard
weather, and choose the ego vehicle to be Audi A2.
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Fig. 3: Above: training curve for different variants of bird’s-eye view
comparisons on NGSIM. In each case three experiments were run.

Below: the same situation from openDD in three views. From left to right:
base, front only, no centerline.

perfectly and is considerably better than the other observation
modalities and that the dense rewards are important to obtain
good generalization. Details are provided in the subsequent
sections.

Our result is a datapoint in the paradigm discussion outlined
in Section [T} supporting mediated perception rather than the
behavior reflex approach. The importance of these conclusions
depends strongly on how well they transfer to the real
world. Assessing such transfer is generally an open research
question — two popular complementary methods are domain
randomization (see e.g. [18]) and quantifying sim-to-real
alignment (see e.g. [41]).

A. Bird’s-eye view experiments

Bird’s-eye view, see Section [[I-A] and Figure [ is a
top-down view of the road situation. It contains privileged
information, unavailable for normal road actors. It has been
popularized in [32] in their two-phase training procedures.
It also resembles information that could be extracted from a
perception system and HD-maps in a typical AV stack; see
e.g. [42].

An interesting question is if (and how much) bird’s-eye
facilitates training; see Section l@ Here, we analyze
the influence of various elements. Along with the “basic”
experiment we ran the following modifications: front only, no
centerline, and frame stack; see Appendix [V-B.T] for technical
details.

Fig. 4: Bird’s-eye view and saliency map

Experimentally, we found little difference during training,
see Figure [3] These results are somewhat surprising for us.
In the front only experiments, we remove the rear part of the
observation. Contrary to our initial intuitions, it barely affects
the training. In the front only experiments, we remove the rear
part of the observation. Contrary to our initial intuitions, it
barely affects the training. One important piece of information
missing in the bird’s-eye view experiments is that of (relative)
speed of other vehicles. A standard way to mitigate it is to
use framestack (stacking a few consecutive observations, 4 in
our case), which allows us to infer the speed. Again, contrary
to what we expected, the training performance is weaker,
probably due to optimization issues with the bigger input.

It is important to compare to evaluations on the test
scenarios. Here the picture is much different. All ablations
present worse performance compared to the standard bird’s-
eye view setup. While underperforming of the front only
experiments is expected, the seemingly redundant centerlines
and much worse behavior of framestack policies might be
surprising. The latter can be possibly explained by overfitting
to bigger input and is subject to further studies.

a) Custom/semantic saliency map: Using neural net-
works for policies has the disadvantage of being relatively
hard to interpret and debug. In order to alleviate this issue,
we developed a new simple method of generating semantic
saliency maps, which measure the contribution of other traffic
participants towards decisions taken by the policy. This is
achieved by erasing a participant (a car) from the input,
passing the modified observation through the network, and
comparing how much the output (steering and speed) has
changed. In Figure ] you can see an example of a situation
faced by the ego vehicle (green), together with its semantic
saliency map. As expected, it mostly pays attention to the
nearest cars.

B. Other modalities

a) Comparison of various observation modes: As men-
tioned before, using a simulator makes it easy to test the
performance of algorithms with different possible inputs.
Apart from the bird’s-eye view input, we examined visual
input (consisting of 4 RGB cameras), and a lidar-based
setup (consisting of lidar and one front-facing camera). The
observation spaces for both experiments are detailed in

Section [[I=Al



Base experiments
bird’s-eye

Bird’s-eye ablations

visual lidar & camera front only no centerline framestack
ngsim 0.787+0.029 0.770+£0.022  0.776£0.014 | 0.782£0.035 0.782+£0.016  0.805+0.022
opendd | 0.862+£0.037 0.886+0.023 0.8054+0.106 | 0.824+0.058 0.833+0.029 0.762+0.083

TABLE II: Means and standard deviations of success rates of various models, obtained over three experiments. For each experiment success rate is calculated

on the same scenarios from the validation set.

During training, all three modalities showed similar per-
formance. However, as evident from Table [T, there is a
difference in performance on the validation set. The bird’s-
eye view policy was best, visual input was slightly worse,
and lidar plus camera was noticeably weaker. A possible
explanation of this fact might be that data augmentation is
required to achieve generalization in RL, as argued in recent
work [43], [44].

We run one additional ablation experiment: in the front
camera experiments we use only one camera. Interestingly,
in most cases, that is enough to successfully perform a
lane change maneuver, because cars on the highway usually
maintain a certain distance and the learned policy will try to
exploit this by changing the lane as fast as possible when
there are no other cars in front.

C. Reward experiments

Rewards experiments
dense

sparse  no failure penalty
ngsim 0.828  0.741 0.707
opendd | 0914  0.829 0.757

TABLE III: Success rates on test scenarios for CRTS scenarios with bird’s-eye
view input.

In all the above experiments, we used the dense reward
scheme. In this section we show comparison to two other
schemes: sparse and no failure penalty. In the sparse scheme,
the agent gets 41 for the successful completion of a scenario
maneuver and —1 when it fails. In the dense scheme,
additional rewards are given for partial completion of a
maneuver. In our case, we divide every scenario into 10
parts, each part worth 0.1. The no failure scheme is the same
as dense except that the —1 failure penalty is not issued. The
details of the rewards are described in Appendix [V-A.2]

The sparse rewards are perhaps the most natural, as they
are close to the success rate metrics. We add the —1 penalty
to make the learning of failure cases faster. Making rewards
denser is often used in practice (sometimes referred to as
“reward shaping”). The rationale is to make learning easier
by decreasing the effective planning horizon. The major
drawback is that such “shaping” is only a proxy of the desired
objective and may lead training into an unintended direction
(often unexpected to the experimenter).

In Figure [5] we report success rate on the training set. We
can see that the dense rewards perform best; the sparse starts
training considerably later, but after that, quickly catches up
reaching slightly lower level. Perhaps surprisingly, removing
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Fig. 5: Reward schemes comparison for NGSIM scenarios with bird’s-eye
view input.

Fig. 6: Ego-vehicle position (green) and original car (blue).

the failure penalty significantly hinders the later phases of
training. The results on the test set, see Table “stretch”
the above differences, making the dense reward setting a clear
winner.

D. Qualitative analysis of driving styles

There are many interesting questions concerning obtained
driving polices. Perhaps the most compelling one is asking if
they are “natural”. In an attempt to answer it we developed a
tool for comparing the ego vehicle behavior with the original



drive from the data-set; see Figure [6]’| We observed that, in
general, our policies drive much faster than the original ones.
This aggressive driving style might be due to a lack of rewards
for comfort and traffic rule following (we also observed a
couple of situations driving of on the left lane). The quality
of driving looks correct, although a few cases of avoidable
crashes were observed. In the front-view experiments, there
are rare instances of crashes with an unobserved rear vehicle.

V. CONCLUSIONS AND FURTHER WORK

Our work introduces CRTS — a new training and evaluation
ground for autonomous driving based on real-world data. Our
benchmark follows good practices of providing a train/test
split. We hope that CRTS will serve as a platform for devel-
oping new methods and a sanity check before deployment in
the real world.

We provide benchmark evaluations using reinforcement
learning; we observe that there is still much room for
improvement. We compare various observation settings and
asses generalization and realism of obtained behaviors.

There are many research directions to pursue further.
Perhaps the most apparent is adding more scenarios in number
and type (e.g. [7]). In this work we focused on the maneuver
success rate. This can be extended to serve more specific
purposes, e.g. for measuring comfort. Generalization in other
domains, like changing weather settings and vehicle models
can also be tested. We saw that a sparse reward setting
yields considerably worse results. It could be an interesting
reinforcement learning problem to achieve better performance,
perhaps using an algorithm like SAC that would provide
better exploration and sample efficiency. Another direction is
experiments with neural architecture — perhaps using LSTMs
would bring better results. Our scenarios could be used with
other learning methods (e.g. imitation learning or steering
via waypoints) or more classical planning methods.

Another research avenue is casting the problem into a
multi-agent setup by making other driving actors controllable.
An important new challenge, in this case, will be maintaining
behaviors resembling real-world ones.

APPENDIX
A. Benchmark scenarios

1) Scenario extraction algorithm: In this section we
describe the procedure of creating scenarios. In both the cases
of NGSIM [14] and openDD [6], the datasets are scanned
for maneuver events — lane change and entering roundabouts,
respectively. The car performing the maneuver is declared
to be the ego vehicle and a scenario is formed by mapping
all traffic participants except for the ego vehicle to CARLA.
A vehicle appearing in the field of view for the first time is
spawned within the location and velocity matching the dataset.
The model of vehicle is chosen from the CARLA library to
match the dimension of the replayed car (measured using
the Jaccard similarity). Later, consistency with the dataset

3We also strongly recommend visiting our website https://sites,
google.com/view/carla-real-traffic—scenarios/ to see
the corresponding videos.

is enforced every 100ms (by setting again the locations and
velocities).

The initial speed and position of the ego vehicle is
determined in the same way and in subsequent frames it
is maintained by the CARLA physics engine according to
the received actions.

The set of such created scenarios is divided randomly into
the train and test set in the 80/20 ratio.

a) NGSIM: The lane change event is declared as
changing the lane id corresponding to a given vehicle. The
scenarios starts 5 sec before the lane change event. The
scenario is considered successful if, at least for 1 sec, the ego
vehicle is located less than 30cm of the target lane and its
yaw is smaller than 10 degrees. The scenario is unsuccessful
if either a collision occurs, the car leaves both the starting
and target lane or there is a timeout of 10 sec.

During the scenario the chauffeur commands are issued:
LANE_CHANGE_ (dir) if the ego vehicle is on the starting
lane, dir € {left,right} denoted the direction to the target
lane, otherwise LANE_FOLLOW is issued.

For the NGSIM we remap position of the rear and front
axle of vehicle (to match the CARLA convention). We also
smooth positions using a 1.5 sec window.

b) openDD: The scenarios begin when the ego vehicle is
approx. 20 meters before the roundabout entry. The scenario is
considered successful if the ego vehicle exits the roundabout
via the same exit as the reference driver. The scenario is
unsuccessful if either a collision occurs, the car moves away
more than 3m from the original trajectory or there is a timeout
of 1.5 times of the time of the original drive.

During the whole scenario LANE_FOLLOW command is
issued until the car passes the last exit before the target one.
Then the command changes to TURN_RIGHT.

The openDD dataset is recored at 30 fps, which we
downsample to match our 10 fps.

2) Rewards:

a) NGSIM: The distance to the target lane is segmented
into 10 pieces. A reward of 0.1 is issued each time the car
moves a segment closer to the target lane and is penalized
with —0.1 if it moves to a more distant segment.

At the end of the scenario a reward of 1 (resp. —1) is
issued if the scenario is successful (resp. unsuccessful).

b) openDD: The original trajectory is segmented into
10 pieces. The agent is rewarded with 0.1 for passing each
segment. At the end of the scenario a reward of 1 (resp. —1)
is issued if the scenario is successful (resp. unsuccessful).

c) Sparse reward: In the above setting +0.1 “dense”
rewards are issued for partial progress. In the sparse regime
these are omitted.

d) No failure penalty: We do not issue —1 for unsuc-
cessful scenarios.

B. Training details

1) Observations for bird’s-eye view: The observation in
all bird’s-eye view baseline experiments is a tensor of shape
(186,150,5), which corresponds to a real-world area of
approximately 47m x 38m. The ego vehicle is located in the


https://sites.google.com/view/carla-real-traffic-scenarios/
https://sites.google.com/view/carla-real-traffic-scenarios/

center; see Figure[d There are five channels, each representing
a distinct category of CARLA world features: roads (grey
area on Figure E]), lanes (solid and dashed white lines),
centerlines (red lines), other vehicles (orange), and the ego
vehicle (green). In front only experiments we use (186,150, 5)
tensors covering only area in front of the ego vehicle. In no
centerline experiments the input is (186,150,4) as we omit
the centerline channel. In framestack experiments we stack 4
consecutive observations into (186,150,20) tensors.
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