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Abstract

We propose a systematic approach to reduce the memory consumption of deep neural net-
work training. Specifically, we design an algorithm that costs O(

√
n) memory to train a n layer

network, with only the computational cost of an extra forward pass per mini-batch. As many of
the state-of-the-art models hit the upper bound of the GPU memory, our algorithm allows deeper
and more complex models to be explored, and helps advance the innovations in deep learning
research. We focus on reducing the memory cost to store the intermediate feature maps and gra-
dients during training. Computation graph analysis is used for automatic in-place operation and
memory sharing optimizations. We show that it is possible to trade computation for memory
giving a more memory efficient training algorithm with a little extra computation cost. In the
extreme case, our analysis also shows that the memory consumption can be reduced to O(logn)
with as little as O(n logn) extra cost for forward computation. Our experiments show that we
can reduce the memory cost of a 1,000-layer deep residual network from 48G to 7G on ImageNet
problems. Similarly, significant memory cost reduction is observed in training complex recurrent
neural networks on very long sequences.

1 Introduction
In this paper, we propose a systematic approach to reduce the memory consumption of deep neural
network training. We mainly focus on reducing the memory cost to store intermediate results (feature
maps) and gradients, as the size of the parameters are relatively small comparing to the size of
the intermediate feature maps in many common deep architectures. We use a computation graph
analysis to do automatic in-place operation and memory sharing optimizations. More importantly,
we propose a novel method to trade computation for memory. As a result, we give a practical
algorithm that cost O(

√
n) memory for feature maps to train a n layer network with only double the

forward pass computational cost. Interestingly, we also show that in the extreme case, it is possible
to use as little as O(log n) memory for the features maps to train a n layer network.

We have recently witnessed the success of deep neural networks in many domains [8], such as
computer vision, speech recognition, natural language processing and reinforcement learning. Many
of the success are brought by innovations in new architectures of deep neural networks. Convolu-
tional neural networks [15, 14, 13, 10] model the spatial patterns and give the state of art results
in computer vision tasks. Recurrent neural networks, such as long short-term memory [12], show
inspiring results in sequence modeling and structure prediction. One common trend in those new
models is to use deeper architectures [18, 14, 13, 10] to capture the complex patterns in a large
amount of training data. Since the cost of storing feature maps and their gradients scales linearly
with the depth of network, our capability of exploring deeper models is limited by the device (usu-
ally a GPU) memory. For example, we already run out of memories in one of the current state-of-art
models as described in [11]. In the long run, an ideal machine learning system should be able to
continuously learn from an increasing amount of training data. Since the optimal model size and
complexity often grows with more training data, it is very important to have memory-efficient train-
ing algorithms.
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Reducing memory consumption not only allows us to train bigger models. It also enables larger
batch size for better device utilization and stablity of batchwise operators such as batch normaliza-
tion [13]. For memory limited devices, it helps improve memory locality and potentially leads to
better memory access patterns. It also enables us to switch from model parallelism to data paral-
lelism for training deep convolutional neural networks, which can be beneficial in certain circum-
stances. Our solution enables us to train deeper convolutional neural networks, as well as recurrent
neural networks with longer unrolling steps. We provide guidelines for deep learning frameworks
to incorporate the memory optimization techniques proposed in this paper. We will also make our
implementation of memory optimization algorithm publicly available.

2 Related Works
We can trace the idea of computational graph and liveness analysis back to the literatures of compiler
optimizations [3]. Analogy between optimizing a computer program and optimizing a deep neural
network computational graph can be found. For example, memory allocation in deep networks is
similar to register allocation in a compiler. The formal analysis of computational graph allows us
save memory in a principled way. Theano [5, 4] is a pioneering framework to bring the computation
graph to deep learning, which is joined by recently introduced frameworks such as CNTK [2],
Tensorflow [1] and MXNet [6]. Theano and Tensorflow use reference count based recycling and
runtime garbage collection to manage memory during training, while MXNet uses a static memory
allocation strategy prior to the actual computation. However, most of the existing framework focus
on graph analysis to optimize computation after the gradient graph is constructed, but do not discuss
the computation and memory trade-off.

The trade-off between memory and computation has been a long standing topic in systems re-
search. Although not widely known, the idea of dropping intermediate results is also known as
gradient checkpointing technique in automatic differentiation literature [9]. We bring this idea to
neural network gradient graph construction for general deep neural networks. Through the discus-
sion with our colleagues [19], we know that the idea of dropping computation has been applied in
some limited specific use-cases. In this paper, we propose a general methodology that works for
general deep neural networks, including both convolutional and recurrent neural networks. Our re-
sults show that it is possible to train a general deep neural network with sublinear memory cost.
More importantly, we propose an automatic planning algorithm to provide a good memory plan
for real use-cases. The proposed gradient graph optimization algorithm can be readily combined
with all the existing memory optimizations in the computational graph to further reduce the memory
consumption of deep learning frameworks.

There are other ways to train big models, such as swapping of CPU/GPU memory and use of
model parallel training [7, 16]. These are orthogonal approaches and can be used together with our
algorithm to train even bigger models with fewer resources. Moreover, our algorithm does not need
additional communication over PCI-E and can save the bandwidth for model/data parallel training.

3 Memory Optimization with Computation Graph
We start by reviewing the concept of computation graph and the memory optimization techniques.
Some of these techniques are already used by existing frameworks such as Theano [5, 4], Tensor-
flow [1] and MXNet [6]. A computation graph consists of operational nodes and edges that represent
the dependencies between the operations. Fig. 1 gives an example of the computation graph of a
two-layer fully connected neural network. Here we use coarse grained forward and backward op-
erations to make the graph simpler. We further simplify the graph by hiding the weight nodes and
gradients of the weights. A computation graph used in practice can be more complicated and con-
tains mixture of fine/coarse grained operations. The analysis presented in this paper can be directly
used in those more general cases.

Once the network configuration (forward graph) is given, we can construct the corresponding
backward pathway for gradient calculation. A backward pathway can be constructed by traversing
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Figure 1: Computation graph and possible memory allocation plan of a two layer fully connected
neural network training procedure. Each node represents an operation and each edge represents
a dependency between the operations. The nodes with the same color share the memory to store
output or back-propagated gradient in each operator. To make the graph more clearly, we omit the
weights and their output gradient nodes from the graph and assume that the gradient of weights are
also calculated during backward operations. We also annotate two places where the in-place and
sharing strategies are used.

the configuration in reverse topological order, and apply the backward operators as in normal back-
propagation algorithm. The backward pathway in Fig. 1 represents the gradient calculation steps
explicitly, so that the gradient calculation step in training is simplified to just a forward pass on the
entire computation graph (including the gradient calculation pathway). Explicit gradient path also
offers some other benefits (e.g. being able to calculate higher order gradients), which is beyond our
scope and will not be covered in this paper.

When training a deep convolutional/recurrent network, a great proportion of the memory is usu-
ally used to store the intermediate outputs and gradients. Each of these intermediate results corre-
sponds to a node in the graph. A smart allocation algorithm is able to assign the least amount of
memory to these nodes by sharing memory when possible. Fig. 1 shows a possible allocation plan
of the example two-layer neural network. Two types of memory optimizations can be used

• Inplace operation: Directly store the output values to memory of a input value.

• Memory sharing: Memory used by intermediate results that are no longer needed can be
recycled and used in another node.

Allocation plan in Fig. 1 contains examples of both cases. The first sigmoid transformation is carried
out using inplace operation to save memory, which is then reused by its backward operation. The
storage of the softmax gradient is shared with the gradient by the first fully connected layer. Ad hoc
application of these optimizations can leads to errors. For example, if the input of an operation is
still needed by another operation, applying inplace operation on the input will lead to a wrong result.

We can only share memory between the nodes whose lifetime do not overlap. There are multiple
ways to solve this problem. One option is to construct the conflicting graph of with each variable
as node and edges between variables with overlapping lifespan and then run a graph-coloring al-
gorithm. This will cost O(n2) computation time. We adopt a simpler heuristic with only O(n)
time. The algorithm is demonstrated in Fig. 2. It traverses the graph in topological order, and uses
a counter to indicate the liveness of each record. An inplace operation can happen when there is
no other pending operations that depend on its input. Memory sharing happens when a recycled
tag is used by another node. This can also serve as a dynamic runtime algorithm that traverses the
graph, and use a garbage collector to recycle the outdated memory. We use this as a static memory
allocation algorithm, to allocate the memory to each node before the execution starts, in order to
avoid the overhead of garbage collection during runtime.
Guidelines for Deep Learning Frameworks As we can see from the algorithm demonstration
graph in Fig. 2. The data dependency causes longer lifespan of each output and increases the memory
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Figure 2: Memory allocation algorithm on computation graph. Each node associated with a liveness
counter to count on operations to be full-filled. A temporal tag is used to indicate memory sharing.
Inplace operation can be carried out when the current operations is the only one left (input of counter
equals 1). The tag of a node can be recycled when the node’s counter goes to zero.

consumption of big network. It is important for deep learning frameworks to

• Declare the dependency requirements of gradient operators in minimum manner.

• Apply liveness analysis on the dependency information and enable memory sharing.

It is important to declare minimum dependencies. For example, the allocation plan in Fig. 1
won’t be possible if sigmoid-backward also depend on the output of the first fullc-forward. The
dependency analysis can usually reduce the memory footprint of deep network prediction of a n
layer network from O(n) to nearly O(1) because sharing can be done between each intermediate
results. The technique also helps to reduce the memory footprint of training, although only up to a
constant factor.

4 Trade Computation for Memory
4.1 General Methodology
The techniques introduced in Sec. 3 can reduce the memory footprint for both training and prediction
of deep neural networks. However, due to the fact that most gradient operators will depend on the
intermediate results of the forward pass, we still need O(n) memory for intermediate results to train
a n layer convolutional network or a recurrent neural networks with a sequence of length n. In order
to further reduce the memory, we propose to drop some of the intermediate results, and recover them
from an extra forward computation when needed.

More specifically, during the backpropagation phase, we can re-compute the dropped intermedi-
ate results by running forward from the closest recorded results. To present the idea more clearly, we
show a simplified algorithm for a linear chain feed-forward neural network in Alg. 1. Specifically,
the neural network is divided into several segments. The algorithm only remembers the output of
each segment and drops all the intermediate results within each segment. The dropped results are
recomputed at the segment level during back-propagation. As a result, we only need to pay the mem-
ory cost to store the outputs of each segment plus the maximum memory cost to do backpropagation
on each segment.

Alg. 1 can also be generalized to common computation graphs as long as we can divide the
graph into segments. However, there are two drawbacks on directly applying Alg. 1: 1) users have
to manually divide the graph and write customized training loop; 2) we cannot benefit from other
memory optimizations presented in Sec 3. We solve this problem by introducing a general gradient
graph construction algorithm that uses essentially the same idea. The algorithm is given in Alg. 2.
In this algorithm, the user specify a function m : V → N on the nodes of a computation graph
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Algorithm 1: Backpropagation with Data Dropping in a Linear Chain Network
v ← input
for k = 1 to length(segments) do

temp[k]← v
for i = segments[k].begin to segments[k].end− 1 do

v ← layer[i].forward(v)
end

end
g ← gradient(v, label)
for k = length(segments) to 1 do

v ← temp[k]
localtemp← empty hashtable
for i = segments[k].begin to segments[k].end− 1 do

localtemp[i]← v
v ← layer[i].forward(v)

end
for i = segments[k].end− 1 to segments[k].begin do

g ← layer[i].backward(g, localtemp[i])
end

end

to indicate how many times a result can be recomputed. We call m the mirror count function as
the re-computation is essentially duplicating (mirroring) the nodes. When all the mirror counts are
set to 0, the algorithm degenerates to normal gradient graph. To specify re-computation pattern in
Alg. 2, the user only needs to set the m(v) = 1 for nodes within each segment and m(v) = 0 for the
output node of each segment. The mirror count can also be larger than 1, which leads to a recursive
generalization to be discussed in Sec 4.4. Fig. 3 shows an example of memory optimized gradient
graph. Importantly, Alg. 2 also outputs a traversal order for the computation, so the memory usage
can be optimized. Moreover, this traversal order can help introduce control flow dependencies for
frameworks that depend on runtime allocation.

4.2 Drop the Results of Low Cost Operations
One quick application of the general methodology is to drop the results of low cost operations and
keep the results that are time consuming to compute. This is usually useful in a Conv-BatchNorm-Activation
pipeline in convolutional neural networks. We can always keep the result of convolution, but drop
the result of the batch normalization, activation function and pooling. In practice this will translate to
a memory saving with little computation overhead, as the computation for both batch normalization
and activation functions are cheap.

4.3 An O(
√
n) Memory Cost Algorithm

Alg. 2 provides a general way to trade computation for memory. It remains to ask which intermediate
result we should keep and which ones to re-compute. Assume we divide the n network into k
segments the memory cost to train this network is given as follows.

cost-total = max
i=1,...,k

cost-of-segment(i) +O(k) = O
(n
k

)
+O(k) (1)

The first part of the equation is the memory cost to run back-propagation on each of the segment.
Given that the segment is equally divided, this translates into O(n/k) cost. The second part of
equation is the cost to store the intermediate outputs between segments. Setting k =

√
n, we get

the cost of O(2
√
n). This algorithm only requires an additional forward pass during training, but
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Figure 3: Memory optimized gradient graph generation example. The forward path is mirrored to
represent the re-computation happened at gradient calculation. User specifies the mirror factor to
control whether a result should be dropped or kept.

Algorithm 2: Memory Optimized Gradient Graph Construction
Input: G = (V, pred), input computation graph, the pred[v] gives the predecessors array of

node v.
Input: gradient(succ grads, output, inputs), symbolic gradient function that creates a gradient

node given successor gradients and output and inputs
Input: m : V → N+, m(v) gives how many time node v should be duplicated, m(v) = 0

means do no drop output of node v.
a[v]← v for v ∈ V
for k = 1 to maxv∈V m(v) do

for v in topological-order(V ) do
if k ≤ m(v) then

a[v]← new node, same operator as v
pred[a[v]]← ∪u∈pred[v]{a[u]}

end
end

end
V ′ ← topological-order(V )
for v in reverse-topological-order(V ) do

g[v]← gradient([g[v] for v in successor(v)], a[v], [a[v] for v in pred[v]])
V ′ ← append(V ′, topological-order(acenstors(g[v]))− V ′)

end
Output: G′ = (V ′, pred) the new graph, the order in V ′ gives the logical execution order.

reduces the memory cost to be sub-linear. Since the backward operation is nearly twice as time
consuming as the forward one, it only slows down the computation by a small amount.

In the most general case, the memory cost of each layer is not the same, so we cannot simply set
k =

√
n. However, the trade-off between the intermediate outputs and the cost of each stage still

holds. In this case, we use Alg. 3 to do a greedy allocation with a given budget for the memory cost
within each segment as a single parameterB. VaryingB gives us various allocation plans that either
assign more memory to the intermediate outputs, or to computation within each stage. When we do
static memory allocation, we can get the exact memory cost given each allocation plan. We can use
this information to do a heuristic search over B to find optimal memory plan that balances the cost
of the two. The details of the searching step is presented in the supplementary material. We find this
approach works well in practice. We can also generalize this algorithm by considering the cost to
run each operation to try to keep time consuming operations when possible.
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Algorithm 3: Memory Planning with Budget
Input: G = (V, pred), input computation graph.
Input: C ⊂ V , candidate stage splitting points, we will search splitting points over v ⊂ C
Input: B, approximate memory budget. We can search over B to optimize the memory

allocation.
temp← 0, x← 0, y ← 0
for v in topological-order(V ) do

temp← temp+ size-of-output(v)
if v ∈ C and temp > B then

x← x+ size-of-output(v), y ← max(y, temp)
m(v) = 0, temp← 0

else
m(v) = 1

end
end
Output: x approximate cost to store inter-stage feature maps
Output: y approximate memory cost for each sub stage
Output: m the mirror plan to feed to Alg. 2

conv-bn-relu
forward

conv-bn-relu
backward

input input-grad

data dependency Memory allocation for each output of op, 
same color indicates shared memory.

conv-backward

relu-backward

bn-backward
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Figure 4: Recursion view of the memory optimized allocations. The segment can be viewed as a
single operator that combines all the operators within the segment. Inside each operator, a sub-graph
as executed to calculate the gradient.

4.4 More General View: Recursion and Subroutine
In this section, we provide an alternative view of the memory optimization scheme described above.
Specifically, we can view each segment as a bulk operator that combines all the operations inside the
segment together. The idea is illustrated in Fig. 4. The combined operator calculates the gradient
by executing over the sub-graph that describes its internal computation. This view allows us to
treat a series of operations as subroutines. The optimization within the sub-graph does not affect
the external world. As a result, we can recursively apply our memory optimization scheme to each
sub-graph.

Pay Even Less Memory with Recursion Let g(n) to be the memory cost to do forward and
backward pass on a n layer neural network. Assume that we store k intermediate results in the graph
and apply the same strategy recursively when doing forward and backward pass on the sub-path. We
have the following recursion formula.

g(n) = k + g (n/(k + 1)) (2)

Solving this recursion formula gives us

g(n) = k logk+1(n) (3)
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As a special case, if we set k = 1, we get g(n) = log2 n. This is interesting conclusion as all the
existing implementations takes O(n) memory in feature map to train a n layer neural network. This
will require O(log2 n) cost forward pass cost, so may not be used commonly. But it demonstrates
how we can trade memory even further by using recursion.

4.5 Guideline for Deep Learning Frameworks
In this section, we have shown that it is possible to trade computation for memory and combine it
with the system optimizations proposed in Sec 3. It is helpful for deep learning frameworks to

• Enable option to drop result of low cost operations.

• Provide planning algorithms to give efficient memory plan.

• Enable user to set the mirror attribute in the computation graph for memory optimization.

While the last option is not strictly necessary, providing such interface enables user to hack their own
memory optimizers and encourages future researches on the related directions. Under this spirit, we
support the customization of graph mirror plan and will make the source code publicly available.

5 Experiments
5.1 Experiment Setup
We evaluate the memory cost of storing intermediate feature maps using the methods described
in this paper. We our method on top of MXNet [6], which statically allocate all the intermediate
feature maps before computation. This enables us to report the exact memory cost spend on feature
maps. Note that the memory cost of parameters and temporal memory (e.g. required by convolution)
are not part of the memory cost report. We also record the runtime total memory cost by running
training steps on a Titan X GPU. Note that all the memory optimizations proposed in this paper gives
equivalent weight gradient for training and can always be safely applied. We compare the following
memory allocation algorithms

• no optimization, directly allocate memory to each node in the graph without any optimization.

• inplace, enable inplace optimization when possible.

• sharing, enable inplace optimization as well as sharing. This represents all the system opti-
mizations presented at Sec. 3.

• drop bn-relu, apply all system optimizations, drop result of batch norm and relu, this is only
shown in convolutional net benchmark.

• sublinear plan, apply all system optimizations, use plan search with Alg 3 to trade computa-
tion with memory.

5.2 Deep Convolutional Network
We first evaluate the proposed method on convolutional neural network for image classification. We
use deep residual network architecture [11] (ResNet), which gives the state of art result on this task.
Specifically, we use 32 batch size and set input image shape as (3, 224, 224). We generate different
depth configuration of ResNet 1 by increasing the depth of each residual stage.

We show the results in Fig. 5. We can find that the system optimizations introduced in Sec. 3
can help to reduce the memory cost by factor of two to three. However, the memory cost after
optimization still exhibits a linear trend with respect to number of layers. Even with all the system
optimizations, it is only possible to train a 200 layer ResNet with the best GPU we can get. On the
other hand, the proposed algorithm gives a sub-linear trend in terms of number of layers. By trade
computation with memory, we can train a 1000 layer ResNet using less than 7GB of GPU memory.

1We count a conv-bn-relu as one layer
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Figure 5: The memory cost of different allocation strategies on deep residual net configurations.
The feature map memory cost is generated from static memory allocation plan. We also use nvidia-
smi to measure the total memory cost during runtime (the missing points are due to out of memory).
The figures are in log-scale, so y = αxβ will translate to log(y) = β log(x) + logα. We can find
that the graph based allocation strategy indeed help to reduce the memory cost by a factor of two
to three. More importantly, the sub-linear planning algorithm indeed gives sub-linear memory trend
with respect to the workload. The real runtime result also confirms that we can use our method to
greatly reduce memory cost deep net training.

64 128 256 512 1024 2048
Number of unrolling steps

0.25

0.5

1

2

4

8

16

32

64

128

256

512

In
te

rm
ed

ia
te

 fe
at

ur
e 

m
ap

 m
em

or
y 

co
st

 (G
B)

no optimization

inplace

sharing

sublinear plan

(a) Feature map memory cost estimation

64 128 256 512 1024 2048
Number of unrolling steps

0.25

0.5

1

2

4

8

16

G
P
U

 m
e
m

o
ry

 c
o
st

 (
G

B
)

sharing(total)

sharing(feature map cost)

sublinear plan(total)

sublinear plan(feature map cost)

(b) Runtime total memory cost

Figure 6: The memory cost of different memory allocation strategies on LSTM configurations.
System optimization gives a lot of memory saving on the LSTM graph, which contains a lot of fine
grained operations. The sub-linear plan can give more than 4x reduction over the optimized plan
that do not trade computation with memory.

5.3 LSTM for Long Sequences
We also evaluate the algorithms on a LSTM under a long sequence unrolling setting. We unrolled a
four layer LSTM with 1024 hidden states equals 64 over time. The batch size is set to 64. The input
of each timestamp is a continuous 50 dimension vector and the output is softmax over 5000 class.
This is a typical setting for speech recognition[17], but our result can also be generalized to other
recurrent networks. Using a long unrolling step can potentially help recurrent model to learn long
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Figure 7: The runtime speed of different allocation strategy on the two settings. The speed is
measured by a running 20 batches on a Titan X GPU. We can see that using sub-linear memory plan
incurs roughly 30% of additional runtime cost compared to linear memory allocation. The general
trend of speed vs workload remains linear for both strategies.

term dependencies over time. We show the results in Fig. 6. We can find that inplace helps a lot here.
This is because inplace optimization in our experiment enables direct addition of weight gradient to
a single memory cell, preventing allocate space for gradient at each timestamp. The sub-linear plan
gives more than 4x reduction over the optimized memory plan.

5.4 Impact on Training Speed
We also measure the runtime cost of each strategy. The speed is benchmarked on a single Titan X
GPU. The results are shown in Fig. 7. Because of the double forward cost in gradient calculation,
the sublinear allocation strategy costs 30% additional runtime compared to the normal strategy. By
paying the small price, we are now able to train a much wider range of deep learning models.

6 Conclusion
In this paper, we proposed a systematic approach to reduce the memory consumption of the inter-
mediate feature maps when training deep neural networks. Computation graph liveness analysis is
used to enable memory sharing between feature maps. We also showed that we can trade the com-
putation with the memory. By combining the techniques, we can train a n layer deep neural network
with only O(

√
n) memory cost, by paying nothing more than one extra forward computation per

mini-batch.
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A Search over Budget B
Alg. 3 allows us to generate an optimized memory plan given a single parameter B. This algorithm
relies on approximate memory estimation for faster speed. After we get the plan, we can use the
static allocation algorithm to calculate the exact memory cost. We can then do a grid search over B
to find a good memory plan.

To get the setting of the grid, we first run the allocation algorithm with B = 0, then run the
allocation algorithm again with B =

√
xy. Here x and y are the outputs from Alg. 3 in the first run.

Here x is the approximate cost to store inter-stage feature maps and y is the approximate cost to run
each stage. B =

√
xy an estimation of each stage’s memory cost. This can already give a good

memory plan. We then set grid around B =
√
xy to further refine the solution.

In practice, we find that using a size 6 grid on [B/
√
2,
√
2B] can already give good memory

plans in the experiments. We implemented the allocation algorithm in python without any attempt
to optimize for speed. Our code costs a few seconds to get the plans needed in the experiments.
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