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Abstract

Recent work in language modeling demonstrates
that training large transformer models advances
the state of the art in Natural Language Processing
applications. However, very large models can be
quite difficult to train due to memory constraints.
In this work, we present our techniques for train-
ing very large transformer models and implement
a simple, efficient intra-layer model parallel ap-
proach that enables training transformer models
with billions of parameters. Our approach does
not require a new compiler or library changes, is
orthogonal and complimentary to pipeline model
parallelism, and can be fully implemented with
the insertion of a few communication operations
in native PyTorch. We illustrate this approach
by converging transformer based models up to
8.3 billion parameters using 512 GPUs. We sus-
tain 15.1 PetaFLOPs across the entire applica-
tion with 76% scaling efficiency when compared
to a strong single GPU baseline that sustains 39
TeraFLOPs, which is 30% of peak FLOPs. To
demonstrate that large language models can fur-
ther advance the state of the art (SOTA), we train
an 8.3 billion parameter transformer language
model similar to GPT-2 and a 3.9 billion parame-
ter model similar to BERT. We show that careful
attention to the placement of layer normalization
in BERT-like models is critical to achieving in-
creased performance as the model size grows. Us-
ing the GPT-2 model we achieve SOTA results
on the WikiText103 (10.8 compared to SOTA per-
plexity of 15.8) and LAMBADA (66.5% com-
pared to SOTA accuracy of 63.2%) datasets. Our
BERT model achieves SOTA results on the RACE
dataset (90.9% compared to SOTA accuracy of
89.4%).

1Equal contribution 2NVIDIA. Correspondence to: Mohammad
Shoeybi <mshoeybi@nvidia.com>.

1. Introduction
Natural Language Processing (NLP) is advancing quickly in
part due to an increase in available compute and dataset size.
The abundance of compute and data enables training increas-
ingly larger language models via unsupervised pretraining
(Devlin et al., 2018; Radford et al., 2019). Empirical evi-
dence indicates that larger language models are dramatically
more useful for NLP tasks such as article completion, ques-
tion answering, and natural language inference (Lan et al.,
2019; Raffel et al., 2019). By finetuning these pretrained
language models on downstream natural language tasks,
one can achieve state of the art results as shown in recent
work (Devlin et al., 2018; Peters et al., 2018; Howard &
Ruder, 2018; Radford et al., 2018; 2017; Ramachandran
et al., 2016; Liu et al., 2019b; Dai et al., 2019; Yang et al.,
2019; Liu et al., 2019a; Lan et al., 2019).

As these models become larger, they exceed the memory
limit of modern processors, and require additional memory
management techniques such as activation checkpointing
(Chen et al., 2016). Widely used optimization algorithms
such as ADAM require additional memory per parameter to
store momentum and other optimizer state, which reduces
the size of models that can be effectively trained. Several
approaches to model parallelism overcome this limit by
partitioning the model such that the weights and their asso-
ciated optimizer state do not need to reside concurrently on
the processor. For example, GPipe (Huang et al., 2018) and
Mesh-Tensorflow (Shazeer et al., 2018) provide frameworks
for model parallelism of different kinds. However, they
require rewriting the model, and rely on custom compilers
and frameworks that are still under development.

In this work, we implement a simple and efficient model
parallel approach using intra-layer model-parallelism. We
exploit the inherent structure in transformer based language
models to make a simple model-parallel implementation that
trains efficiently in PyTorch, with no custom C++ code or
compiler required. This approach is orthogonal to pipeline-
based model parallelism as advocated by approaches such
as GPipe (Huang et al., 2018).

To demonstrate the scalability of our approach, we establish
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Figure 1. Model (blue) and model+data (green) parallel FLOPS
as a function of number of GPUs. Model parallel (blue): up to
8-way model parallel weak scaling with approximately 1 billion
parameters per GPU (e.g. 2 billion for 2 GPUs and 4 billion for
4 GPUs). Model+data parallel (green): similar configuration as
model parallel combined with 64-way data parallel.

a baseline by training a model of 1.2 billion parameters
on a single NVIDIA V100 32GB GPU, that sustains 39
TeraFLOPs. This is 30% of the theoretical peak FLOPS
for a single GPU as configured in a DGX-2H server, and
is thus a strong baseline. Scaling the model to 8.3 billion
parameters on 512 GPUs with 8-way model parallelism,
we achieve up to 15.1 PetaFLOPs per second sustained
over the entire application. This is 76% scaling efficiency
compared to the single GPU case. Figure 1 shows more
detailed scaling results.

To analyze the effect of model size scaling on accuracy,
we train both left-to-right GPT-2 (Radford et al., 2019) lan-
guage models as well as BERT (Devlin et al., 2018) bidi-
rectional transformers and evaluate them on several down-
stream tasks. We show that the existing BERT architecture
results in model degradation as the size increases. We over-
come this challenge by rearranging the layer normalization
and residual connection in the transformer layers and show
that with this change, results for the downstream tasks on
development sets improve monotonically as the model size
increases. In addition, we show that our models achieve
test set state of the art (SOTA) results on WikiText103,
cloze-style prediction accuracy on LAMBADA, and reading
comprehension RACE datasets.

In summary, our contributions are as follows:

• We implement a simple and efficient model parallel
approach by making only a few targeted modifications
to an existing PyTorch transformer implementation.

• We perform an in-depth empirical analysis of our
model and data parallel technique and demonstrate
up to 76% scaling efficiency using 512 GPUs.

• We show that careful attention to the placement of
layer normalization in BERT-like models is critical to
achieving increased accuracies as the model grows.

• We demonstrate that scaling the model size results in
improved accuracies for both GPT-2 (studied up to
8.3 billion parameters) and BERT (studied up to 3.9B
parameters) models.

• We showcase that our models achieve state of the art
results on test sets: perplexity on WikiText103 (10.8
ppl), accuracy on LAMBADA (66.5%), and accuracy
on RACE (90.9%).

• We open source our code along with the training
and evaluation pipelines at https://github.com/
NVIDIA/Megatron-LM

2. Background and Challenges
2.1. Neural Language Model Pretraining

Pretrained language models have become an indispensable
part of NLP researchers’ toolkits. Leveraging large corpus
pretraining to learn robust neural representations of lan-
guage is an active area of research that has spanned the
past decade. Early examples of pretraining and transferring
neural representations of language demonstrated that pre-
trained word embedding tables improve downstream task
results compared to word embedding tables learned from
scratch (Mikolov et al., 2013; Pennington et al., 2014; Turian
et al., 2010). Later work advanced research in this area by
learning and transferring neural models that capture contex-
tual representations of words (Melamud et al., 2016; Mc-
Cann et al., 2017; Peters et al., 2018; Radford et al., 2017;
2019). Recent parallel work (Ramachandran et al., 2016;
Howard & Ruder, 2018; Radford et al., 2018; Devlin et al.,
2018; Liu et al., 2019b; Dai et al., 2019; Yang et al., 2019;
Liu et al., 2019a; Lan et al., 2019) further builds upon these
ideas by not just transferring the language model to extract
contextual word representations, but by also finetuning the
language model in an end to end fashion on downstream
tasks. Through these works, the state of the art has advanced
from transferring just word embedding tables to transferring
entire multi-billion parameter language models. This pro-
gression of methods has necessitated the need for hardware,
systems techniques, and frameworks that are able to oper-
ate efficiently at scale and satisfy increasing computational
needs. Our work aims to provide the tools necessary to take
another step forward in this trend.

2.2. Transformer Language Models and Multi-Head
Attention

Current work in NLP trends towards using transformer mod-
els (Vaswani et al., 2017) due to their superior accuracy

https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
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Figure 2. Transformer Architecture. Purple blocks correspond to
fully connected layers. Each blue block represents a single trans-
former layer that is replicated N times.

and compute efficiency. The original transformer formula-
tion was designed as a machine translation architecture that
transforms an input sequence into another output sequence
using two parts, an Encoder and Decoder. However, recent
work leveraging transformers for language modeling such as
BERT (Devlin et al., 2018) and GPT-2 (Radford et al., 2019)
use only the Encoder or Decoder depending on their needs.
This work explores both a decoder architecture, GPT-2, and
an encoder architecture, BERT.

Figure 2 shows a schematic diagram of the model we used.
We refer the reader to prior work for a detailed descrip-
tion of the model architecture (Vaswani et al., 2017; Devlin
et al., 2018; Radford et al., 2019). It is worthwhile to men-
tion that both GPT-2 and BERT use GeLU (Hendrycks &
Gimpel, 2016) nonlinearities and layer normalization (Ba
et al., 2016) to the input of the multi-head attention and feed
forward layers, whereas the original transformer (Vaswani
et al., 2017) uses ReLU nonlinearities and applies layer
normalization to outputs.

2.3. Data and Model Parallelism in Deep Learning

There are two central paradigms for scaling out deep neu-
ral network training to numerous hardware accelerators:
data parallelism (Valiant, 1990) where a training minibatch
is split across multiple workers, and model parallelism in
which the memory usage and computation of a model is
distributed across multiple workers. By increasing the mini-
batch size proportionally to the number of available work-
ers (i.e. weak scaling), one observes near linear scaling
in training data throughput. However, large batch train-
ing introduces complications into the optimization process
that can result in reduced accuracy or longer time to conver-
gence, offsetting the benefit of increased training throughput
(Keskar et al., 2017). Further research (Goyal et al., 2017;
You et al., 2017; 2019) has developed techniques to miti-

gate these effects and drive down the training time of large
neural networks. To scale out training even further, parallel
work (Chen et al., 2016) has combined data parallelism with
activation checkpointing: recomputing activations in the
backward pass without storing them in the forward pass to
reduce memory requirements.

However, these techniques have one fundamental limitation
in the problem size they can tackle: the model must fit
entirely on one worker. With language models of increasing
size and complexity like BERT and GPT-2, neural networks
have approached the memory capacity of modern hardware
accelerators. One solution to this problem is to employ
parameter sharing to reduce the memory footprint of the
model (Lan et al., 2019), but this limits the overall capacity
of the model. Our approach is to utilize model parallelism
to split the model across multiple accelerators. This not
only alleviates the memory pressure, but also increases the
amount of parallelism independently of the microbatch size.

Within model parallelism, there are two further paradigms:
layer-wise pipeline parallelism, and more general distributed
tensor computation. In pipeline model parallelism, groups
of operations are performed on one device before the outputs
are passed to the next device in the pipeline where a differ-
ent group of operations are performed. Some approaches
(Harlap et al., 2018; Chen et al., 2018) use a parameter
server (Li et al., 2014) in conjunction with pipeline par-
allelism. However these suffer from inconsistency issues.
The GPipe framework for TensorFlow (Huang et al., 2018)
overcomes this inconsistency issue by using synchronous
gradient decent. This approach requires additional logic to
handle the efficient pipelining of these communication and
computation operations, and suffers from pipeline bubbles
that reduce efficiency, or changes to the optimizer itself
which impact accuracy.

Distributed tensor computation is an orthogonal and more
general approach that partitions a tensor operation across
multiple devices to accelerate computation or increase
model size. FlexFlow (Jia et al., 2018), a deep learning
framework orchestrating such parallel computation, pro-
vides a method to pick the best parallelization strategy. Re-
cently, Mesh-TensorFlow (Shazeer et al., 2018) introduced
a language for specifying a general class of distributed ten-
sor computations in TensorFlow (Abadi et al., 2015). The
parallel dimensions are specified in the language by the
end user and the resulting graph is compiled with proper
collective primitives. We utilize similar insights to those
leveraged in Mesh-TensorFlow and exploit parallelism in
computing the transformer’s attention heads to parallelize
our transformer model. However, rather than implementing
a framework and compiler for model parallelism, we make
only a few targeted modifications to existing PyTorch trans-
former implementations. Our approach is simple, does not
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require any new compiler or code re-writing, and can be
fully implemented by inserting a few simple primitives, as
described in the next section.

3. Model Parallel Transformers
We take advantage of the structure of transformer networks
to create a simple model parallel implementation by adding a
few synchronization primitives. A transformer layer consists
of a self attention block followed by a two-layer, multi-layer
perceptron (MLP) as shown in Figure 2. We introduce
model parallelism in both of these blocks separately.

We start by detailing the MLP block. The first part of the
block is a GEMM followed by a GeLU nonlinearity:

Y = GeLU(XA) (1)

One option to parallelize the GEMM is to split the weight
matrix A along its rows and input X along its columns as:

X = [X1, X2], A =

[
A1

A2

]
. (2)

This partitioning will result in Y = GeLU(X1A1 +
X2A2). Since GeLU is a nonlinear function, GeLU(X1A1+
X2A2) 6= GeLU(X1A1)+GeLU(X2A2) and this approach
will require a synchronization point before the GeLU func-
tion.

Another option is to splitA along its columnsA = [A1, A2].
This partitioning allows the GeLU nonlinearity to be inde-
pendently applied to the output of each partitioned GEMM:

[Y1, Y2] = [GeLU(XA1),GeLU(XA2)] (3)

This is advantageous as it removes a synchronization point.
Hence, we partition the first GEMM in this column parallel
fashion and split the second GEMM along its rows so it takes
the output of the GeLU layer directly without requiring any
communication as shown in Figure 3a. The output of the
second GEMM is then reduced across the GPUs before
passing the output to the dropout layer. This approach splits
both GEMMs in the MLP block across GPUs and requires
only a single all-reduce operation in the forward pass (g
operator) and a single all-reduce in the backward pass (f
operator). These two operators are conjugates of each other
and can be implemented in PyTorch with only a few lines of
code. As an example, the implementation of the f operator
is provided below:
class f(torch.autograd.Function):

def forward(ctx, x):
return x

def backward(ctx, gradient):
all_reduce(gradient)
return gradient

Code 1. Implementation of f operator. g is similar to f with
identity in the backward and all-reduce in the forward
functions.

(a) MLP

(b) Self-Attention

Figure 3. Blocks of Transformer with Model Parallelism. f and g
are conjugate. f is an identity operator in the forward pass and all
reduce in the backward pass while g is an all reduce in the forward
pass and identity in the backward pass.

As shown in Figure 3b, for the self attention block we exploit
inherent parallelism in the multihead attention operation,
partitioning the GEMMs associated with key (K), query
(Q), and value (V ) in a column parallel fashion such that
the matrix multiply corresponding to each attention head is
done locally on one GPU. This allows us to split per atten-
tion head parameters and workload across the GPUs, and
doesnt require any immediate communication to complete
the self-attention. The subsequent GEMM from the output
linear layer (after self attention) is parallelized along its
rows and takes the output of the parallel attention layer di-
rectly, without requiring communication between the GPUs.
This approach for both the MLP and self attention layer
fuses groups of two GEMMs, eliminates a synchronization
point in between, and results in better scaling. This enables
us to perform all GEMMs in a simple transformer layer
using only two all-reduces in the forward path and two in
the backward path (see Figure 4).

The transformer language model has an output embedding
with the dimension of hidden-size (H) times vocabulary-
size (v). Since the vocabulary size is on the order of tens
of thousands of tokens for modern language models (for
example, GPT-2 used a vocabulary size of 50,257), it is ben-
eficial to parallelize the output embedding GEMM. How-
ever, in transformer language models, the output embed-
ding layer shares weights with the input embedding, requir-
ing modifications to both. We parallelize the input embed-
ding weight matrix EH×v along the vocabulary dimension
E = [E1, E2] (column-wise). Since each partition now only
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Figure 4. Communication operations in a transformer layer. There
are 4 total communication operations in the forward and backward
pass of a single model parallel transformer layer.

contains a portion of the embedding table, an all-reduce (g
operator) is required after the input embedding. For the
output embedding, one approach is to perform the parallel
GEMM [Y1, Y2] = [XE1, XE2] to obtain the logits, add an
all-gather Y = all-gather([Y1, Y2]), and send the results to
the cross-entropy loss function. However, for this case, the
all-gather will communicate b × s × v elements (b is the
batch-size and s is the sequence length) which is huge due to
vocabulary size being large. To reduce the communication
size, we fuse the output of the parallel GEMM [Y1, Y2] with
the cross entropy loss which reduces the dimension to b× s.
Communicating scalar losses instead of logits is a huge re-
duction in communication that improves the efficiency of
our model parallel approach.

Much of our model parallel approach can be characterized
as techniques aimed at reducing communication and keep-
ing the GPUs compute bound. Rather than having one GPU
compute part of the dropout, layer normalization, or residual
connections and broadcast the results to other GPUs, we
choose to duplicate the computation across GPUs. Specifi-
cally, we maintain duplicate copies of layer normalization
parameters on each GPU, and take the output of the model
parallel region and run dropout and residual connection
on these tensors before feeding them as input to the next
model parallel regions. To optimize the model we allow
each model parallel worker to optimize its own set of pa-
rameters. Since all values are either local to or duplicated
on a GPU, there is no need for communicating updated
parameter values in this formulation.

We present further details about the hybrid model and data
parallelism and handling random number generation in Ap-
pendix B for reference. In summary, our approach as de-
scribed above is simple to implement, requiring only a few
extra all-reduce operations added to the forward and back-
ward pass. It does not require a compiler, and is orthogonal
and complementary to the pipeline model parallelism advo-
cated by approaches such as (Huang et al., 2018).

4. Setup
Pretrained language understanding models are central tasks
in natural language processing and language understanding.
There are several formulations of language modeling. In
this work we focus on GPT-2 (Radford et al., 2019), a left-
to-right generative transformer based language model, and
BERT (Devlin et al., 2018), a bi-directional transformer
model based on language model masking. We explain our
configurations for these models in the following section and
refer to the original papers for more details.

4.1. Training Dataset

To collect a large diverse training set with longterm de-
pendencies we aggregate several of the largest language
modeling datasets. We create an aggregate dataset consist-
ing of Wikipedia (Devlin et al., 2018), CC-Stories (Trinh &
Le, 2018), RealNews (Zellers et al., 2019), and OpenWeb-
text (Radford et al., 2019). To avoid training set leakage
into our downstream tasks we remove the Wikipedia articles
present in the WikiText103 test set (Merity et al., 2016).
We also remove unnecessary newlines from the CC-Stories
corpus introduced by preprocessing artifacts. For BERT
models we include BooksCorpus (Zhu et al., 2015) in the
training dataset, however, this dataset is excluded for GPT-2
trainings as it overlaps with LAMBADA task.

We combined all the datasets and then filtered out all the
documents with content length less than 128 tokens from
the aggregated dataset. Since similar content might appear
multiple times in the aggregated datasets, we used locality-
sensitive hashing (LSH) to deduplicate content with a jac-
card similarity greater than 0.7. The resulting aggregate
corpus contains 174 GB of deduplicated text.

4.2. Training Optimization and Hyperparameters

To train our models efficiently we utilize mixed precision
training with dynamic loss scaling to take advantage of the
V100’s Tensor Cores (Micikevicius et al., 2017; NVIDIA,
2018). We start by initializing our weights W with a sim-
ple normal distribution W ∼ N (0, 0.02). We then scale
weights immediately before residual layers by 1√

2N
where

N is the number of transformer layers comprised of self at-
tention and MLP blocks. For our optimizer we utilize Adam
(Kingma & Ba, 2014) with weight decay (Loshchilov &
Hutter, 2019) λ = 0.01. Additionally, we use global gradi-
ent norm clipping of 1.0 to improve the stability of training
large models. In all cases, a dropout of 0.1 is used. Lastly,
to better manage our memory footprint we utilize activation
checkpointing (Chen et al., 2016) after every transformer
layer.

For GPT-2 models, all training is performed with sequences
of 1024 subword units at a batch size of 512 for 300k itera-
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tions. Our learning rate of 1.5e-4 utilizes a warmup period
of 3k iterations before following a single cycle cosine decay
over the remaining 297k iterations. We stop the decay at a
minimum learning rate of 1e-5.

For BERT models, we largely follow the training process
described in (Lan et al., 2019). We use the original BERT
dictionary with vocab size of 30,522. In addition, we re-
place the next sentence prediction head with sentence order
prediction as suggested by (Lan et al., 2019) and use whole
word n-gram masking of (Joshi et al., 2019). For all cases,
we set the batch size to 1024 and use a learning rate of 1.0e-
4 warmed up over 10,000 iterations and decayed linearly
over 2 million iterations. Other training parameters are kept
the same as (Devlin et al., 2018).

5. Experiments
All of our experiments use up to 32 DGX-2H servers (a total
of 512 Tesla V100 SXM3 32GB GPUs). Our infrastruc-
ture is optimized for multi-node deep learning applications,
with 300 GB/sec bandwidth between GPUs inside a server
via NVSwitch and 100 GB/sec of interconnect bandwidth
between servers using 8 InfiniBand adapters per server.

5.1. Scaling Analysis

To test the scalability of our implementation, we consider
GPT-2 models with four sets of parameters detailed in Table
1. To have consistent GEMM sizes in the self attention layer,
the hidden size per attention head is kept constant at 96
while the number of heads and layers are varied to obtain
configurations ranging from 1 billion to 8 billion parameters.
The configuration with 1.2 billion parameters fits on a single
GPU whereas the 8 billion parameter model requires 8-way
model parallelism (8 GPUs). The original vocabulary size
was 50,257, however, to have efficient GEMMs for the logit
layer, it is beneficial for the per-GPU vocabulary size to
be a multiple of 128. Since we study up to 8-way model
parallelism, we pad the vocabulary such that it is divisible
by 128× 8 = 1024, resulting in a padded vocabulary size
of 51,200. We study both model and model+data parallel
scaling. For the model parallel scaling, a fixed batch size of
8 is used across all configurations. Data parallel scaling is
necessary for training many state of the art models which
typically use a much larger global batch size. To this end,
for the model+data parallel cases we fix the global batch
size to 512 for all experiments which corresponds to 64-way
data parallelism.

5.1.1. MODEL AND DATA PARALLELISM

Throughout this section, we will showcase weak scaling
with respect to the model parameters for both model parallel
and model+data parallel cases. Weak scaling is typically

Table 1. Parameters used for scaling studies. Hidden size per atten-
tion head is kept constant at 96.

Number Number Model Model
Hidden Attention of of parallel +data

Size heads layers parameters GPUs parallel
(billions) GPUs

1536 16 40 1.2 1 64
1920 20 54 2.5 2 128
2304 24 64 4.2 4 256
3072 32 72 8.3 8 512

100% 95%

82% 77%

96%
83% 79% 74%
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Figure 5. Model and model + data parallel weak scaling efficiency
as a function of the number of GPUs.

done by scaling the batch-size, however, this approach does
not address training large models that do not fit on a single
GPU and it leads to training convergence degradation for
large batch sizes. In contrast, here we use weak scaling to
train larger models that were not possible otherwise. The
baseline for all the scaling numbers is the first configuration
(1.2 billion parameters) in Table 1 running on a single GPU.
This is a strong baseline as it achieves 39 TeraFLOPS during
the overall training process, which is 30% of the theoretical
peak FLOPS for a single GPU in a DGX-2H server.

Figure 5 shows scaling values for both model and
model+data parallelism. We observe excellent scaling num-
bers in both settings. For example, the 8.3 billion parame-
ters case with 8-way (8 GPU) model parallelism achieves
77% of linear scaling. Model+data parallelism requires fur-
ther communication of gradients and as a result the scaling
numbers drop slightly. However, even for the largest config-
uration (8.3 billion parameters) running on 512 GPUs, we
achieve 74% scaling relative to linear scaling of the strong
single GPU baseline configuration (1.2 billion parameters).
Further scaling analysis is provided in Appendix D

5.2. Language Modeling Results Using GPT-2

To demonstrate that large language models can further ad-
vance the state of the art, we consider training GPT-2 models
of the sizes and configurations listed in Table 2. The 355M
model is equivalent in size and configuration of BERT-Large
model (Devlin et al., 2018). The 2.5B model is bigger than
the previous largest GPT-2 model, and the 8.3B model is
larger than any left-to-right transformer language model
ever trained, to the best of our knowledge. To train and eval-
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Table 2. Model configurations used for GPT-2.
Hidden Time

Parameter Layers Hidden Attn Size Total per
Count Size Heads per GPUs Epoch

Head (days)
355M 24 1024 16 64 64 0.86
2.5B 54 1920 20 96 128 2.27
8.3B 72 3072 24 128 512 2.10

Table 3. Zero-shot results. SOTA are from (Khandelwal et al.,
2019) for Wikitext103 and (Radford et al., 2019) for LAMBADA.

Model Wikitext103 LAMBADA
Perplexity ↓ Accuracy ↑

355M 19.31 45.18%
2.5B 12.76 61.73%
8.3B 10.81 66.51%

Previous SOTA 15.79 63.24%

uate our language models we use the procedure described in
section 4. Table 2 also lists the time it takes to advance one
epoch which is equivalent to 68,507 iterations. For example,
for the 8.3B model on 512 GPUs, each epoch takes around
two days. Compared to the configurations used for our scal-
ing studies in Table 1, the 2.5B model is the same, the 8.3B
model has 24 attention heads instead of 32, and the 355M is
much smaller than any seen previously while still using 64
GPUs to train, leading to the much lower time per epoch.

Figure 6 shows validation perpelixity as a function of num-
ber of iterations. As the model size increases, the validation
perpelixity decreases and reaches a validation perplexity of
9.27 for the 8.3B model. We report the zero-shot evaluation
of the trained models on the LAMBADA and WikiText103
datasets in Table 3. For more details on evaluation method-
ology, see Appendix E. We observe the trend that increasing
model size also leads to lower perplexity on WikiText103
and higher cloze accuracy on LAMBADA. Our 8.3B model
achieves state of the art perplexity on the WikiText103 test
set at a properly adjusted perplexity of 10.81. At 66.51%
accuracy, the 8.3B model similarly surpasses prior cloze
accuracy results on the LAMBADA task. We have included
samples generated from the 8.3 billion parameters model
in the Appendix C. Recently researchers from Microsoft in
collaboration with NVIDIA trained a 17 billion parameter
GPT-2 model called Turing-NLG (Microsoft, 2020) using
Megatron and showed that the accuracies further improve
as they scale the model, highlighting the value of larger
models.

To ensure we do not train on any data found in our test sets,
we calculate the percentage of test set 8-grams that also
appear in our training set as done in previous work (Rad-
ford et al., 2019). The WikiText103 test set has at most

Figure 6. Validation set perplexity. All language models are trained
for 300k iterations. Larger language models converge notice-
ably faster and converge to lower validation perplexities than their
smaller counterparts.

Table 4. Model configurations used for BERT.
Parameter Layers Hidden Attention Total

Count Size Heads GPUs
336M 24 1024 16 128
1.3B 24 2048 32 256
3.9B 48 2560 40 512

10.8% overlap and the LAMBADA test set (Paperno et al.,
2016) has at most 1.4% overlap. We should note that the
WikiText103 test set has already 9.09% overlap with the
WikiText103 training set (Radford et al., 2019). As these
are consistent with previous work, we are confident that no
documents from our test data are inadvertently included in
our training data.

5.3. Bi-directional Transformer Results Using BERT

In this section, we apply our methodology to BERT-style
transformer models and study the effect of model scaling
on several downstream tasks. Prior work (Lan et al., 2019)
found that increasing model size beyond BERT-large with
336M parameters results in unexpected model degradation.
To address this degradation, the authors of that work (Lan
et al., 2019) introduced parameter sharing and showed that
that their models scale much better compared to the original
BERT model.

We further investigated this behaviour and empirically
demonstrated that rearranging the order of the layer nor-
malization and the residual connections as shown in Figure
7 is critical to enable the scaling of the BERT-style mod-
els beyond BERT-Large. The architecture (b) in Figure 7
eliminates instabilities observed using the original BERT
architecture in (a) and also has a lower training loss. To
the best of our knowledge, we are the first to report such a
change enables training larger BERT models.
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Table 5. Development set results for MNLI, QQP, SQuAD 1.1 and SQuAD 2.0 and test set results for RACE. The trained tokens represents
consumed tokens during model pretraining (proportional to batch size times number of iterations) normalized by consumed tokens during
model pretraining for our 336M model.

Model
trained tokens MNLI m/mm QQP SQuAD 1.1 SQuAD 2.0 RACE m/h

ratio accuracy accuracy F1 / EM F1 / EM accuracy
(dev set) (dev set) (dev set) (dev set) (test set)

RoBERTa (Liu et al., 2019b) 2 90.2 / 90.2 92.2 94.6 / 88.9 89.4 / 86.5 83.2 (86.5 / 81.8)
ALBERT (Lan et al., 2019) 3 90.8 92.2 94.8 / 89.3 90.2 / 87.4 86.5 (89.0 / 85.5)
XLNet (Yang et al., 2019) 2 90.8 / 90.8 92.3 95.1 / 89.7 90.6 / 87.9 85.4 (88.6 / 84.0)

Megatron-336M 1 89.7 / 90.0 92.3 94.2 / 88.0 88.1 / 84.8 83.0 (86.9 / 81.5)
Megatron-1.3B 1 90.9 / 91.0 92.6 94.9 / 89.1 90.2 / 87.1 87.3 (90.4 / 86.1)
Megatron-3.9B 1 91.4 / 91.4 92.7 95.5 / 90.0 91.2 / 88.5 89.5 (91.8 / 88.6)

ALBERT ensemble (Lan et al., 2019) 95.5 / 90.1 91.4 / 88.9 89.4 (91.2 / 88.6)
Megatron-3.9B ensemble 95.8 / 90.5 91.7 / 89.0 90.9 (93.1 / 90.0)

Figure 7. Training loss for BERT model using the original architec-
ture (a) and the rearranged architecture (b). Left figure shows the
training loss for 336M and 752M BERT model. While the original
architecture performs well on the 336M model, the modifications
in (b) enable stable training with lower training loss.

Using the architecture change in Figure 7(b), we consider
three different cases as detailed in Table 4. The 336M model
has the same size as BERT-large. The 1.3B is the same as
the BERT-xlarge configuration that was previously shown
to get worse results than the 336M BERT-large model (Lan
et al., 2019). We further scale the BERT model using both
larger hidden size as well as more layers to arrive at the 3.9B
parameter case. In all cases, the hidden size per attention
head is kept constant at 64. 336M and 1.3B models are
trained for 2 million iterations while the 3.9B model is
trained for 1.5 million iterations and is still training.

On a 3% held-out set, 336M, 1.3B, and 3.9B models achieve
validation set perplexity of 1.58, 1.30, and 1.16, respectively,
a monotonic decrease with the model size. We finetune
the trained models on several downstream tasks including
MNLI and QQP from the GLUE benchmark (Wang et al.,
2019), SQuAD 1.1 and SQuAD 2.0 from the Stanford Ques-
tion answering dataset (Rajpurkar et al., 2016; 2018), and
the reading comprehension RACE dataset (Lai et al., 2017).
For finetuning, we follow the same procedure as (Liu et al.,
2019b). We first perform hyperparameter tuning on batch

size and learning rate. Once we obtain the best values, we
report the median development set results over 5 different
random seeds for initialization. The hyperparameters used
for each model and task are provided in the Appendix A.
Table 5 shows the development set results for MNLI, QQP,
SQuAD 1.1, and SQuAD 2.0 and test set results for RACE.
For the test set results of RACE, we first use the develop-
ment set to find the checkpoint that gives us the median
score on the 5 random seeds and we report the results from
that checkpoint on the test set. We also report 5-way ensem-
ble results for the development set of SQuAD and test set
of RACE. From Table 5 we observe that (a) as the model
size increases, the downstream task performance improves
in all cases, (b) our 3.9B model establishes state of the art
results on the development set compared to other BERT
based models, and (c) our 3.9B model achieves both single
model as well as ensembled SOTA results on RACE test set.

6. Conclusion and Future Work
In this work, we successfully surpassed the limitations posed
by traditional single-GPU-per-model training by implement-
ing model parallelism with only a few modifications to
the existing PyTorch transformer implementations. We ef-
ficiently trained transformer based models up to 8.3 bil-
lion parameter on 512 NVIDIA V100 GPUs with 8-way
model parallelism and achieved up to 15.1 PetaFLOPs sus-
tained over the entire application. We also showed that for
BERT models, careful attention to the placement of layer
normalization in BERT-like models is critical to achieving
increased accuracies as the model size increases. We study
the effect of model size on down-stream task accuracy and
achieve far superior results on downstream tasks and estab-
lish new SOTA for WikiText103, LAMBADA, and RACE
datasets. Finally, we open sourced our code to enable future
work leveraging model parallel transformers.

There are several directions for future work. Continuing
to increase the scale of pretraining is a promising line of
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investigation that will further test existing deep learning
hardware and software. To realize this, improvements in
the efficiency and memory footprint of optimizers will be
needed. In addition, training a model with more than 16
billion parameters will demand more memory than is avail-
able within 16 GPUs of a DGX-2H box. For such models, a
hybrid intra-layer and inter-layer model parallelism along
with inter-node model parallelism would be more suitable.
Three other directions of investigation include (a) pretrain-
ing different model families (XLNet, T5), (b) evaluating per-
formance of large models across more difficult and diverse
downstream tasks (e.g. Generative Question Answering,
Summarization, and Conversation), and (c) using knowl-
edge distillation to train small student models from these
large pretrained teacher models.
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A. BERT Finetuning Hyperparameters
Table 6 presents the hyperparameters used for each model
and task during finetuning.

B. Model Parallel Supplementary Material
In this section, we present further details about the hybrid
model and data parallelism and handling random number
generation.

B.1. Hybrid Model and Data Parallelism

Model parallelism is orthogonal to data parallelism, and so
we can use both simultaneously to train large models in a
reasonable amount of time. Figure 8 shows a grouping of
GPUs for hybrid model and data parallelism. Two or more
GPUs within the same server form model parallel groups
(for example GPUs 1 to 8 in Figure 8), and contain one

Table 6. Hyperparameters for finetuning BERT model on down-
stream tasks.

Task Model Batch Learning Training
size rate epochs

336M
MNLI 1.3B 128 1e-5 10

3.8B
336M 128 5e-5

QQP 1.3B 128 3e-5 12
3.8B 256 4e-5
336M 64 3e-5

SQUAD 1.1 1.3B 48 3e-5 2
3.8B 48 1e-5
336M 48 3e-5

SQUAD 2.0 1.3B 64 3e-5 2
3.8B 48 1e-5
336M 32 2e-5

RACE 1.3B 16 1e-5 3
3.8B 32 2e-5

instance of the model distributed across these GPUs. The
remaining GPUs, which could be within the same server but
more typically are located in other servers, run additional
model parallel groups. GPUs with the same position in each
of the model parallel groups (for example GPUs 1, 9, ...,
505 in Figure 8) form data parallel groups so that all GPUs
within a data parallel group hold the same model param-
eters. During back propagation we run multiple gradient
all-reduce operations in parallel to reduce weight gradients
within each distinct data parallel group. The total number
of required GPUs is the product of the number of model
and data parallel groups. For example, for the 8.3 billion
parameter model we use 8 GPUs per model parallel group
and 64-way data parallelism, for a total of 512 GPUs. All
communication is implemented in PyTorch by Python calls
to NCCL. GPUs within each model parallel group perform
all-reduces amongst all GPUs within the group. For data
parallelism, each of the all-reduce operations takes place
with one of the GPUs from each model parallel group.

B.2. Model Parallel Random Number Generation

Techniques that utilize random number generation, such
as dropout, are a staple of modern deep learning training.
Transformers have dropout layers outside the model parallel
regions before residual connections and within model paral-
lel regions in the self attention block. Because some dropout
layers are in a model parallel region, while others are not,
we need to treat random number generation carefully to
ensure dropout works correctly. To synchronize residual
connection dropout across model parallel workers we seed
the random number generators at the beginning of training
with the same seed. This results in identical dropout patterns
across all model parallel workers. However, dropout within
a model parallel region should result in different random
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patterns for each worker to achieve randomness across the
entire operation. To achieve this we maintain a separate
random number generator for dropout within model parallel
regions. This random number generator is uniquely seeded
for each model parallel worker.

Figure 8. Grouping of GPUs for hybrid model and data parallelism
with 8-way model parallel and 64-way data parallel.

C. Text Samples
Below are some text samples generated by Megatron-LM
using a context prompt. Some of the texts are cut short.

Context: There is a major force uniting Americas fiercely
partisan politicians: big technology companies. Democrats
and Republicans at the federal and state levels are coming
together to scrutinize the power of the Silicon Valley giants
and, potentially, to rein them in. Letitia James, the Demo-
cratic attorney general of New York, announced on Friday
that attorneys general in eight states four Democrats and
four Republicans and the District of Columbia had begun
an antitrust investigation of Facebook.

Megatron-LM: The probe, which Ms. James said was
likely to result in a lawsuit, is the latest in a string of high-
profile regulatory actions, in state and federal courts, that
challenge the market dominance of tech companies. The
Justice Department is also investigating Facebook’s data
practices and whether the company violated a 2011 consent
decree with the Federal Trade Commission that required
the company to obtain explicit consent from users before
sharing their personal information with third parties.

What might prompt a bipartisan coalition to sue Facebook?
It isn’t clear that there’s any one thing. But lawmakers and
regulators have been increasingly alarmed by the company’s
recent controversies, which include a data breach affecting
more than 50 million users, the spread of fake news on
the platform, and the spreading of propaganda by Russian-
backed accounts during the 2016 election.

It’s also not clear how serious the Democratic attorneys gen-
eral are about filing a lawsuit. While the attorneys general
announced their investigation in a press release, they said
they had not yet reached a decision on whether to sue. In
the past, some of the attorneys general have focused their
efforts on trying to extract settlements from the tech compa-
nies without filing lawsuits.

”As attorneys general who have investigated and prosecuted
health-care fraud, price-fixing, and other violations of our
states’ antitrust laws, we are committed to holding compa-
nies accountable when they fail to protect consumers and
competition in the market,” Ms. James said in a statement.

The investigation, which was first reported by The New
York Times, was announced as the companies that dom-
inate the tech industry are facing scrutiny from antitrust
regulators around the world. Google, Twitter, Facebook
and Amazon have faced a series of antitrust probes and
class-action lawsuits in the United States and Europe ...
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Context: A flower, sometimes known as a bloom or
blossom, is the reproductive structure found in flowering
plants (plants of the division Magnoliophyta, also called
angiosperms). The biological function of a flower is to ef-
fect reproduction, usually by providing a mechanism for the
union of sperm with eggs.

Megatron-LM: The structural components of the flower
are the petals and sepals, which are the reproductive organs,
the hypanthium, which forms the base of the flower, and
the calyx, which is the stigma. A flower is a composite
structure, made up of sepals and petals, the sepals being
composed of three fused tepals and the petals of two fused
petals, though there are a few exceptions to this rule. The
three sepals are fused to form a tube called the calyx, which
is the structure that attracts the pollinating insects. The
petals are composed of two fused sepals (the outer ones)
which open and fold inward (clasp) at the tips, forming
the petals. The four sepals and petals are united to form
a corolla, the outermost structure of a flower that carries
pollen.

The structure of the flower has important functional signif-
icance, including protection of the ovary from insects and
the transfer of pollen between the male and female parts
of a flower. The structure of the flower is also used by the
plants to attract pollinators, for example by the shape of the
petals and the colours of the stamens.

The structure of a flower varies widely between plants. The
simplest flowers are unbranched and made up of only two
sepals and a single petal. Other examples are composed
of several petals joined together, with the innermost sepals
completely fused to form a tube called the calyx. The petals
are usually coloured to attract insects, which can only see
certain wavelengths of light. The sepals are often coloured
too, but usually have a more limited range of colours.

Some flowers have additional structures, such as stamens,
anthers and ovaries. The presence of stamens and anthers
in some flowers is used for cross-pollination. The ovary is
the organ where the female gametes are produced, and is
the first structure that is developed in an embryo of a flower.
The ovary is the female flower’s reproductive system, and
consists of the ovary wall, the ovule, and the oviduct.

Flowers vary in their size and shape, from tiny to huge, and
are often brightly coloured. Flowers may be seen as part of
a larger structure, such as a flower head, an inflorescence, a
bract, a spathe, or a carpels.

The term ”flower” is usually applied to the floral structures
that are visible externally, but many ...

Context: OpenAI did not release the full GPT-2 model
due to concerns of malicious use, but they did release a
smaller version equivalent in size to the original GPT (117
M parameters), trained on the new, larger dataset. Although
not as powerful as the large model, the smaller version still
has some language generation chops.

Megatron-LM: In December 2016, DeepMind released an
even larger model, GPT-3, with more than 1.5 billion pa-
rameters. DeepMind has no plans to release the model, so
the question remains whether other AI researchers will be
able to copy and build on it.

Other language models have been built using other tech-
niques. In 2016, a team of researchers at Columbia Uni-
versity, the University of Toronto, and Google DeepMind
showed that neural network-based models, including deep
neural networks, can learn the grammatical rules of a lan-
guage. A group at Google DeepMind demonstrated that
these rules could be represented in a network as a kind of
decision tree, where the nodes in the tree are the words in
the sentence, and the rules for the words are represented
by the decision nodes at the end of the tree. The network
would go through the network in order to choose the next
word in the sentence based on whether it follows the rules
or not. In 2017, the team at DeepMind released a paper
detailing the training and performance of their model.

The problems with the model are many. One of the biggest
issues is that grammatical rules are ambiguous. For exam-
ple, the phrase ”I came down” could mean I came down
from the stairs, or I came down from the sky. In English,
there are numerous other examples of sentences that are
ambiguous. The model does not have any way to tell the dif-
ference between the ambiguous sentences, and so it simply
makes a prediction about the entire sentence based on what
rules it does know. This makes the model vulnerable to the
phenomenon of overfitting. In order to avoid this, models
must be trained using a large set of data, so that the model
can find useful patterns in the data, and use those patterns
to help make predictions. This approach is also prone to
errors, as it relies on the training data to help make correct
predictions, and the data might be incorrectly labeled, re-
sulting in a model that produces a poor set of predictions.
In the case of GPT-2, the model only has about 100 training
sentences for each type of phrase (subject-verb-object).

Additionally, languages have different rules for different
types of phrasing. In English, the subject-verb-object con-
struction is fairly universal, but other languages have differ-
ent rules, which makes training a GPT more complicated.

Finally, there is an inherent trade-off between the number
of rules and the performance of the model ...
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Context: The 36th International Conference on Machine
Learning (ICML 2019) will be held in Long Beach, CA,
USA from June 10th to June 15th, 2019. The conference
will consist of one day of tutorials (June 10), followed
by three days of main conference sessions (June 11-13),
followed by two days of workshops (June 14-15).

Megatron-LM: With a broad scope, the conference ad-
dresses the challenges and opportunities in machine learning
for practitioners and researchers. The conference program
will feature sessions that cover different machine learning
topics, from reinforcement learning to computational biol-
ogy and from AI to deep learning. It is the world’s premier
forum for exploring and presenting advances in machine
learning.

ICML 2019 will offer an impressive range of sessions,
which will be of interest to practitioners, researchers, and
students. Some of the topics we will cover include:

Reinforcement learning

Soft Computing

Computational biology

Convolutional networks

Deep learning

Statistical learning theory

Statistical learning machine

Natural language processing

Biology

Awards

Since its first edition, the conference has grown and evolved.
Today, it is the premier forum for showcasing state-of-the-
art research in machine learning. The conference is widely
recognized as the preeminent venue for showcasing the
latest research in machine learning, and a place where prac-
titioners, researchers, and students can exchange ideas and
insights.

The conference is a peer-reviewed venue that draws its pres-
tige and influence from the excellence of the presentations
and the quality of the invited speakers. With over 50% of all
talks selected based on their content by an expert committee,
it is clear that the conference’s high standards of research
and quality keep a very high bar.

Context: Rescue workers on Tuesday found a flight
recorder from the Russian plane that crashed into the Black
Sea over the weekend, the defense ministry said. All 92
people aboard the Russian military’s Tu-154 plane are be-
lieved to have died Sunday morning when it crashed two
minutes after taking off from the southern Russian city of
Sochi.

Megatron-LM: A child holds up a portrait of a dead relative
at a makeshift morgue in a building belonging to a local
government in the town of Petropavlovsk-Kamchatsky. A
Russian Defense Ministry Tu-154 plane with 92 people
on board crashed into the Black Sea on Sunday morning
shortly after taking off from the southern Russian city of
Sochi. (Yuri Kochetkov/EPA)

According to the ministry, the plane was found at a depth
of more than 1,000 feet and the recorder was damaged.
”The defense ministry has decided to hand over the recorder
to the Interstate Aviation Committee, which is the main
investigative body in the air crash,” the statement said.

The search for the plane’s black boxes is being hampered by
strong winds and rough seas. Investigators have launched a
criminal probe into the crash, which officials said was likely
caused by a technical fault.

Russian President Vladimir Putin declared Wednesday a
day of mourning for the victims.

D. Further Scaling Analysis
In this section we study the effect of number of attention
heads on the scaling results. We also present strong scaling
results for our 1.2 billion parameter model.

D.1. Attention Heads and Scaling

This section studies the effect of attention heads on model
parallel scaling. To this end, we consider the 8.3 billion
parameter configuration with 8-way model parallelism and
vary the number of heads from 16 to 32. The results are
presented in Table 7. As the number of attention heads
increases, some of the GEMMS inside the self-attention
layer become smaller and also the number of elements in
the self attention softmax increases. This results in a slight
decrease in scaling efficiency. Future research should be
wary of this hyperparameter to design large transformer
models that balance model speed and model accuracy.

D.2. Strong Scaling

Our model parallelism is primarily designed to enable train-
ing models larger than what can fit in the memory of a
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Table 7. Effect of number of attention heads on scaling on 8.3
billion of parameters with 8-way model parallelism.

Attention heads Hidden size per head Scaling Efficiency
16 192 82%
24 128 80%
32 96 77%

Table 8. Speedup obtained for the 1.2 billion parameters model
using model parallelism while keeping the batch size constant.

# of GPUs 1 2 4 8
Speedup 1.0 1.64 2.34 2.98

single GPU, but it can also accelerate the training of smaller
models without increasing the batch size. To measure this
acceleration we train a model with a fixed 1.2 billion parame-
ters. We use a fixed batch size of 8 samples per iteration and
increase the number of GPUs using model parallelism. The
results are listed in Table 8. Using two GPUs makes training
64% faster. Above that we see diminishing returns as the
per-GPU computation decreases and the memory bandwidth
and communication overheads begin to dominate.

E. Evaluating Language Models Using
WikiText103 and LAMBADA

In this section we detail our evaluation methodology for the
WikiText103 dataset (Merity et al., 2016) and cloze-style
prediction accuracy on the LAMBADA dataset(Paperno
et al., 2016).

E.1. Wikitext103 Perplexity

WikiText103 perplexity is an evaluation criterion that has
been well studied over the past few years since the creation
of the benchmark dataset. Perplexity is the exponentiation
of the average cross entropy of a corpus (Mikolov et al.,
2011). This makes it a natural evaluation metric for lan-
guage models which represent a probability distribution
over entire sentences or texts.

PPL = exp(− 1

To

T∑
t

logP (t|0 : t− 1)) (4)

To calculate perplexity in (4) we tokenize the WikiText103
test corpus according to our subword vocabulary and sum
the cross entropy loss from each token [0, T ]. We then nor-
malize the cross entropy loss by the number of tokens in the
original tokenization scheme To. The WikiText103 test cor-
pus already comes pre-tokenized with word level tokens that
prior works have used to compute perplexity. To evaluate
our models’ perplexities on a level playing field with prior

works we must normalize by the original number of tokens,
To, rather than the number of tokens, T , actually in the tok-
enized data fed as input to our model. This pre-tokenization
also introduces artifacts in the text that are not present in our
training data. To alleviate this distributional mismatch, we
first preprocess the WikiText103 test dataset with invertible
detokenizers to remove various artifacts related to punctua-
tion and whitespace. The value of To is calculated before
this preprocessing. For WikiText103’s test set To = 245566
and T = 270329.

We must also make one further transformer-specific mod-
ification to the perplexity calculation. Unlike RNN-based
language models, transformers operate on a fixed window in-
put size. Therefore they cannot fully calculate P (t|0 : t−1)
and can only calculate P (t|t − w : t − 1) where w is the
size of our context: 1024 tokens. However, calculating this
value for every token in our dataset is prohibitively expen-
sive since we must compute approximately T evaluations
of a w sized context. To evaluate our models efficiently we
take a middle ground approach termed overlapping evalu-
ation where we advance the sliding window by some over-
lap o each time and only compute the cross entropy losses
corresponding to the last o tokens of the window. In our
experiments we utilize an overlap o of 32, and compute
losses over all sliding windows in such a fashion.

E.2. LAMBADA Cloze Accuracy

The capability to handle long term contexts is crucial for
state of the art language models and is a necessary prerequi-
site for problems like long-form generation and document-
based question answering. Cloze-style datasets like LAM-
BADA are designed to measure a model’s ability to operate
in and reason about these types of long term contexts. Cloze-
style reading comprehension uses a context of word tokens
x = x1:t with one token xj masked; the models objective
is to correctly predict the value of the missing jth token. To
accurately predict the missing token, the model requires an
in-depth understanding of the surrounding context and how
language should be used in such a context. LAMBADA
uses cloze-style reading comprehension to test generative
left-to-right language models by constructing examples of 4-
5 sentences where the last word in the context xt is masked.
Our models utilize subword units, so for LAMBADA evalu-
ation we utilize the raw, unprocessed LAMBADA dataset
and require that our model predict the multiple subword
tokens that make up the word token. We use teacher forc-
ing, and consider an answer correct only when all output
predictions are correct. This formulation is equivalent to the
original task of word token prediction.


