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Abstract

Data augmentation is one of the most prevalent
tools in deep learning, underpinning many recent
advances, including those from classification, gen-
erative models, and representation learning. The
standard approach to data augmentation combines
simple transformations like rotations and flips to
generate new images from existing ones. How-
ever, these new images lack diversity along key
semantic axes present in the data. Consider the
task of recognizing different animals. Current
augmentations fail to produce diversity in task-
relevant high-level semantic attributes like the
species of the animal. We address the lack of di-
versity in data augmentation with image-to-image
transformations parameterized by pre-trained text-
to-image diffusion models. Our method edits im-
ages to change their semantics using an off-the-
shelf diffusion model, and generalizes to novel
visual concepts from a few labelled examples.
We evaluate our approach on image classification
tasks in a few-shot setting, and on a real-world
weed recognition task, and observe an improve-
ment in accuracy in tested domains.

1. Introduction
An omnipresent lesson in deep learning is the importance
of internet-scale data, such as ImageNet (Deng et al., 2009),
JFT (Sun et al., 2017), OpenImages (Kuznetsova et al.,
2018), and LAION-5B (Schuhmann et al., 2022), which are
driving advances in Foundation Models (Bommasani et al.,
2021) for image generation. These models use large deep
neural networks (Rombach et al., 2022) to synthesize photo-
realistic images for a diverse landscape of prompts. Indeed,
the recent success of large generative models prompts a
question: can we augment visual recognition datasets with
synthetic images from generative models? Answering this
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Figure 1. Illustration of DA-Fusion. Real images are augmented
using a pretrained diffusion model to generate synthetic examples
for training downstream models. Our method improves few-shot
learning on novel visual concepts by up to +10 percentage points.

question promises to improve image recognition by generat-
ing large-scale image datasets from a handful of real images
without human labelling effort. Images from generative
models are able to capture natural variations in appearance
that standard data augmentation methods are not designed
to produce.

Standard data augmentation aims to mitigate data scarcity
by composing randomly parameterized image transforma-
tions (Antoniou et al., 2017; Perez & Wang, 2017; Shorten
& Khoshgoftaar, 2019; Zhao et al., 2020). Transformations
including flips and rotations are chosen that respect basic
invariances present in the data, such as horizontal reflection
symmetry for a coffee mug. Robustness to this type of im-
age transformation is captured well by existing methods, but
models for recognizing coffee mugs should also be robust
to subtle details of visual appearance like the brand of mug.
Humans are exceptional at noticing these subtle details, able
to distinguish varying brands of mugs from a single exam-
ple. We aim to reproduce this efficiency by equipping data
augmentation with large text-to-image diffusion models.

In this work, we propose a flexible data augmentation strat-
egy that generates variations of real images using text-to-
image diffusion models (DA-Fusion). Our method adapts
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DA-Fusion:

Baseline Augmentation:

Real Train Image:

Figure 2. DA-Fusion improves generation quality. Given an image of the train class from PASCAL (Everingham et al., 2009), we generate
several augmentations using Real Guidance (He et al., 2022) (top row), and compare these to our method (bottom row). Our method
improves class-relevancy over the baseline, which generates a building, field, and road in this example.

the diffusion model to new domains by inserting and fine-
tuning new tokens in the text encoder representing novel
visual concepts. DA-Fusion modifies the appearance of fore-
ground objects and backgrounds in a manner that respects
object-level visual invariances, such as the design of the
graffiti on the truck in Figure 1. We test our method on three
few-shot image classification tasks, including a real-world
weed recognition task that lies outside the vocabulary of the
diffusion model. Using the same hyper-parameters in all
domains, our method outperforms prior work. DA-Fusion
improves data augmentation by up to +10 percentage points,
and ablations confirm that our method is robust to hyper-
parameter assignment. Code for DA-Fusion is released at:
https://github.com/brandontrabucco/da-fusion.

2. Related Work
Generative models have been the subject of growing interest
and rapid advancement. Earlier methods, including VAEs
(Kingma & Welling, 2014) and GANs (Goodfellow et al.,
2014), showed initial promise generating realistic images,
and were scaled up in terms of resolution and sample quality
(Brock et al., 2019; Razavi et al., 2019). Despite the power
of these methods, many recent successes in photorealistic
image generation were the result of diffusion models (Ho
et al., 2020; Nichol & Dhariwal, 2021; Saharia et al., 2022b;
Nichol et al., 2022; Ramesh et al., 2022). Diffusion models
have been shown to generate higher-quality samples com-
pared to their GAN counterparts (Dhariwal & Nichol, 2021),
and developments like classifier free guidance (Ho & Sali-
mans, 2022) have made text-to-image generation possible.
Recent emphasis has been on training these models with
internet-scale datasets like LAION-5B (Schuhmann et al.,

2022). Resulting models (Rombach et al., 2022; Saharia
et al., 2022b; Nichol et al., 2022; Ramesh et al., 2022) have
unlocked many application areas for generative models.

Image Editing One application area that diffusion has
popularized makes edits to existing real images. Inpainting
with diffusion is one such approach that allows the user
to specify what to edit as a mask (Saharia et al., 2022a;
Lugmayr et al., 2022). Other works avoid masks and modify
the attention weights of the diffusion process that generated
the image instead (Hertz et al., 2022; Mokady et al., 2022).
Perhaps the most relevant technique to our work is SDEdit
(Meng et al., 2022a), where real images are inserted partway
through the reverse diffusion process. SDEdit is applied
by He et al. (2022) to generate synthetic data for training
classifiers, but differs from our method in two key ways. Our
method adapts the generative model to novel visual concepts
and we consider augmentations to individual objects.

Synthetic Data Training neural networks on synthetic
data from generative models was popularized using GANs
(Antoniou et al., 2017; Tran et al., 2017; Zheng et al.,
2017). Various applications for synthetic data generated
from GANs have been studied, including representation
learning (Jahanian et al., 2022), inverse graphics (Zhang
et al., 2021a), semantic segmentation (Zhang et al., 2021b),
and training classifiers (Tanaka & Aranha, 2019; Dat et al.,
2019; Yamaguchi et al., 2020; Besnier et al., 2020; Xiong
et al., 2020; Wickramaratne & Mahmud, 2021; Haque,
2021). More recently, synthetic data from diffusion models
has also been studied in a few-shot setting (He et al., 2022).
These works position synthetic data from generative models
as an additional dataset, while we develop a framework for
generative models as a stackable transformation.

https://github.com/brandontrabucco/da-fusion
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3. Background
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Nichol & Dhariwal, 2021; Song et al., 2021; Rombach
et al., 2022) are sequential latent variable models inspired
by thermodynamic diffusion (Sohl-Dickstein et al., 2015).
They generate samples via a Markov chain with learned
Gaussian transitions, called the reverse process, starting
from an initial noise distribution p(xT ) = N (xT ; 0, I).

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt) (1)

Transitions pθ(xt−1|xt) are designed to gradually reduce
variance according to a schedule β1, . . . , βT so the final
sample x0 represents a sample from the true distribution.
Transitions are often parameterized by a fixed covariance
Σt = βtI and a learned mean µθ(xt, t) defined below.

µθ(xt, t) =
1
√
αt

(
xt −

βt√
1− α̃t

εθ(xt, t)

)
(2)

This parameterization choice results from deriving the opti-
mal reverse process (Ho et al., 2020), where εθ(·) is a neural
network that is trained to process a noisy sample xt to pre-
dict the noise added to real images by the forward process.
Given real samples x0 and noise ε ∼ N (0, I), the forward
process can be sampled at an arbitrary timestep below.

xt(x0, ε) =
√
α̃tx0 +

√
1− α̃tε (3)

We borrow the notation introduced by Ho et al. (2020) to
define αt = 1− βt and α̃t =

∏t
s=1 αt. These components

allow training and sampling from a diffusion model, which
is used as the generative backbone in this work. In this
work, we use a pretrained Stable Diffusion model trained
by Rombach et al. (2022). Among other differences, this
model includes a text encoder that enables text-to-image
generation (refer to Appendix A for model details).

3.1. Data Preparation

Leafy Spurge We contribute a dataset of top-down drone
images of semi-natural areas in the western United States.
These data were gathered in an effort to better map the ex-
tent of a problematic invasive plant, leafy spurge (Euphorbia
esula), that is a detriment to natural and agricultural ecosys-
tems in temperate regions of North America. Prior drone-
based work to detect leafy spurge achieved an accuracy
of 0.75 (Yang et al., 2020). To our knowledge, top-down
aerial imagery of leafy spurge was not present in the Stable
Diffusion training data. Results of CLIP-retrieval (Beau-
mont, 2022) returned close-up, side-on images of members
of the same genus (Figure 3) in the top 20 results. We ob-
served the first instance of our target species, Euphorbia
esula, as a 35th result. Thus, the Spurge dataset represents

Figure 3. A sample from the Spurge dataset (the first on the left),
compared with top results of CLIP-retrieval queried on the prompt:
”a drone image of leafy spurge”. We note closeup images from
members of the same genus (second, and third) in the top 20 results
and a closeup of the same species for the 35th result (fourth).

a unique opportunity to explore few-shot learning setting,
and state-of-the art classification outcomes would directly
benefit efforts to restore natural ecosystems. Additional
details about the Spurge dataset are in Appendix B.

PASCAL We leverage the 2012 version of the PASCAL
Visual Object Classes challenge (Everingham et al., 2009).
This dataset contains 11,530 images and 6,929 object seg-
mentation masks. We adapt this dataset into an object clas-
sification task by filtering images that have at least one
object segmentation mask. We assign these images labels
corresponding to the class of object with largest area in the
image, as measured by the pixels contained in the mask.
There are 20 classes in total using this methodology. We
utilize the official training and validation sets for the 2012
challenge, and randomly select q images per class from the
training set, which are used to measure few-shot classifica-
tion accuracy.

COCO We process the 2017 version of the COCO dataset
(Lin et al., 2014) in a similar manner to PASCAL. This
dataset contains 330K images with 1.5M object segmenta-
tion masks. As before, we filter images that have at least one
object segmentation mask. We assign these images labels
corresponding to the class of the largest object, measured
by segmentation mask area. This dataset has 80 classes.
We use the official training and validation sets for the 2017
dataset, and measure few-shot classification accuracy using
the same methodology described for the PASCAL dataset.

4. Data Augmentation With Diffusion
Our goal is to develop a flexible data augmentation strat-
egy using text-to-image diffusion models. In doing so, we
consider four desiderata. Our method should: 1. apply to
all images like classical data augmentations do, even those
representing novel visual concepts previously unseen by the
diffusion model; 2. effectively balance real and synthetic
data; 3. stack with other data augmentations, including those
based on generative models; 4. control what to augment via
optional segmentation masks. We address these components
in the following sections.
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Figure 4. System architecture for DA-Fusion. Given a dataset of images and their class labels, we use multi-class Textual Inversion (Gal
et al., 2022) to adapt the diffusion model to images of novel concepts. For each image in the dataset, we generate M augmented versions
using a pretrained Stable Diffusion checkpoint. Synthetic images are mixed with real data when training downstream models.

4.1. Modelling Novel Visual Concepts

Standard data augmentations apply to all images regardless
of class and content (Perez & Wang, 2017). We aim to
capture this flexibility with our diffusion-based augmenta-
tion. This is challenging because real images may contain
elements the diffusion model is not able to generate out-
of-the-box. How do we generate plausible augmentations
for such images? We propose to address this shortcom-
ing by adapting the diffusion model to new concepts and
fine-tuning new tokens in the text encoder for each concept.

Adapting The Generative Model When generating syn-
thetic images, previous work uses a prompt with the spec-
ified class name (He et al., 2022). However, this is not
possible for novel visual concepts that lie outside the vo-
cabulary of the generative model. This is especially true
in applied domains. We discuss this in Section 3.1 with
our contributed weed-recognition task, which our pretrained
diffusion model is unable to initially generate a plausible
image even when the class name is provided. We propose to
address this shortcoming by inserting c new tokens into the
vocabulary of the model—one for each class. We then per-
form Textual Inversion (Gal et al., 2022) for each new token,
initializing their embeddings ~wi to a class-agnostic value
(see Appendix A), and fine-tuning only these embeddings
using the standard diffusion loss from Ho et al. (2020).

Lsimple(~w0, ~w1, . . . , ~wc) =

E
[
‖ε− εθ(

√
α̃tx0 +

√
1− α̃tε, t)‖2

] (4)

Generating Synthetic Images Many of the existing ap-
proaches generate synthetic images from scratch (Antoniou
et al., 2017; Tanaka & Aranha, 2019; Besnier et al., 2020;
Zhang et al., 2021b;a). However, novel concepts can be par-

ticularly challenging to generate from scratch when only a
handful of labelled examples are observed (Gal et al., 2022).
Rather than generate synthetic images from scratch, we use
image-to-image transformations that splice real images into
the reverse diffusion process following prior work in SDEdit
(Meng et al., 2022a). Given a reverse diffusion process with
S steps, we insert a real image xref

0 with noise ε ∼ N (0, I)
at timestep bSt0c, where t0 ∈ [0, 1] is a hyperparameter
controlling the insertion position of the image.

xbSt0c =
√
α̃bSt0cx

ref
0 +

√
1− α̃bSt0cε (5)

We proceed with reverse diffusion starting from the spliced
image at timestep bSt0c and iterating Equation 2 until a sam-
ple is generated at timestep 0. We discuss the interpretation
and selection of the new hyperparameter t0 in Section 4.3.
Generation is guided with a prompt that includes the fine-
tuned token corresponding to the class of the spliced image
(see Appendix A for details of the prompts used in this
work).

4.2. Balancing Real & Synthetic Data

Training models on images from generative models often
presents a trade-off between the diversity and size of the
synthetic dataset, and the risk of over-emphasizing spuri-
ous qualities present in the synthetic data (Antoniou et al.,
2017). This is especially important considering that several
recent papers have observed the benefit of curating orders
of magnitude more synthetic data compared to the real data
(Tanaka & Aranha, 2019; Besnier et al., 2020; Zhang et al.,
2021b;a; He et al., 2022). The common solution assigns
different sampling probabilities to real and synthetic images
to manage imbalance He et al. (2022). We adopt a similar
method for balancing real and synthetic data in Equation 6,
where α denotes the probability that a synthetic image is
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Augmenting The Background:

Augmenting The Foreground:

Figure 5. Foreground and background augmentations. Our method
can be applied independently to each region of the image and
maintains an improvement over prior work. In this example of
the boat class from the PASCAL dataset, we augment the boat
(foreground) separately from the water and hills (background).

present at the l-th location in the minibatch of images B.

i ∼ U({1, . . . , N}), j ∼ U({1, . . . ,M}) (6)

Bl+1 ← Bl ∪
{
Xi w.p. (1− α) else X̃ij

}
(7)

HereX ∈ RN×H×W×3 denotes a dataset ofN real images,
and i ∈ Z specifies the index of a particular image Xi. For
each image, we generate M augmentations, resulting in a
synthetic dataset X̃ ∈ RN×M×H×W×3 withN×M image
augmentations, where X̃ij ∈ RH×W×3 enumerates the jth
augmentation for the ith image in the dataset. Indices i and
j are sampled uniformly from the available N real images
and theirM augmented versions respectively. Given indices
ij, with probability (1− α) a real image image Xi is added
to the batch B, otherwise its augmented image X̃ij is added.
Hyper-parameter details are presented in Appendix A, and
we find α = 0.5 to work effectively in all domains tested,
which equally balances real and synthetic images.

4.3. Stackable Augmentations

Having appropriately balanced the real and synthetic im-
ages, our goal becomes to maximize the augmentation di-
versity. This goal is shared with the standard data augmenta-
tion (Perez & Wang, 2017; Shorten & Khoshgoftaar, 2019),
where simple transformations are typically composed, yield-
ing more sophisticated and diverse data. Despite the preva-
lence of composition for the data augmentation, methods
using generative models treat their ”augmentations” like a
secondary dataset, not stackable transformations (Antoniou
et al., 2017; Tanaka & Aranha, 2019; Yamaguchi et al., 2020;
Zhang et al., 2021b;a; He et al., 2022). Inspired by the suc-
cess of standard data augmentation, we propose stackable

data augmentations based on generative models.

We define a sequence of augmentations A that consists of
tuples of image transformationsDi and respective activation
probabilities pi ∈ [0, 1] that collectively sum to one. This
definition supports multiple options for selecting which aug-
mentations to use, and a complete empirical study of them is
an exciting future direction. In this work we opt for a simple
approach: randomly sampling one augmentation Da from
A weighted by the probability pa. Refer to Appendix A for
hyperparameters associated with this stacking approach.

Di : RH×W×3 → RH×W×3 (8)

A =
[
(D1, p1), (D2, p2), . . . , (Dk, pk)

]
(9)

To ensure stacking augmentations creates diversity in the
samples, the image transformations Di should be suffi-
ciently unique. Several options are possible here, and we
consider a first-principles heuristic that transforms increas-
ingly higher-level features of the image as i increases. This
heuristic ensures each Di operates with a different granular-
ity on the image. We accomplish this with SDEdit (Meng
et al., 2022a), and insert a noisy source image at a fraction
t0 = i/k through the diffusion process to guide generation.
Source images are taken from X , observed training images.
Previous work in He et al. (2022) shows the effectiveness
of SDEdit for creating synthetic images, and our work turns
this methodology into a stackable data augmentation.

4.4. Object-Centric Augmentations

Our approach thus far applies to all images, regardless of
their class and content. However, real images often con-
tain multiple classes with different visual invariances. Con-
sidering these visual differences, applying transformations
at the object level has an appealing property. While tra-
ditional data augmentations violate this principle (Perez
& Wang, 2017; Shorten & Khoshgoftaar, 2019), ours per-
mits independent transformations that separate objects and
backgrounds. To accomplish this, we leverage inpainting
(Lugmayr et al., 2022; Saharia et al., 2022a). Given a pixel-
wise mask v ∈ [0, 1]H×W specifying which image content
to modify, we insert content into the diffusion process at
locations where vij is close to one. In particular, after every
timestep t in the reverse diffusion process, we assign the
current sample xt to a new value, where η ∼ N (0, I) is unit
Gaussian noise with the same cardinality as xt.

xt ←
(
1− v

)
◦ xt + v ◦

(√
α̃tx

ref
0 +

√
1− α̃tη

)
(10)

The source image to inpaint is given by xref
0 , and the multi-

plication ◦ represents the elementwise product of tensors.
Before splicing, xt is taken from Equation 2 and represents
standard reverse diffusion applied to the entire image. Fig-
ure 5 illustrates how inpainting facilitates independent trans-
formations per object. Equipped with our flexible data aug-
mentation strategy that respects objects, stacks with other
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Figure 6. Few-shot classification performance. We evaluate DA-Fusion on three classification datasets and unilaterally outperform classic
data augmentation and the current state-of-the-art method. We report validation accuracy as a function of the number of images in the
observed training set in the top row, and the area under the curve (AUC) in the bottom row.

augmentations, and applies to all images regardless of class
and content, we proceed with evaluation.

5. Results
In this section, we study the performance and flexibility
of our method in a few-shot setting. We begin with an
analysis on two standard image recognition datasets and
a contributed weed recognition dataset. We then perform
ablations that isolate components of our method, including
stacking, masking, and hyperparameters therein. We ob-
serve significant gains in few-shot classification across all
three domains, starting with novel visual concepts.

5.1. Evaluating Few-Shot Learning

While leafy spurge is confirmed to lie outside the vocabulary
of the pretrained diffusion model, this is not true for Pascal
(Everingham et al., 2009) and COCO (Lin et al., 2014),
which have common objects like boats and airplanes. To
properly evaluate few-shot classification performance with
these datasets, we emphasize the need to delete knowledge
of these objects from the weights of the generative model.
This remains an active area of research (Meng et al., 2022b),
so we hold concept deletion out-of-scope for this paper.
Instead, we require that all generative models use a class
agnostic prompt that does not contain the class name. This
is important because generative models pre-trained at scale
may have seen thousands of examples of common objects,
and using a class name with an embedding trained on this
large pool will not result in a proper few-shot setting. This
evaluation protocol treats all classes as novel visual concepts

that lie outside the vocabulary of the generative model, and
we follow Section 4.1 for adapting the model to each class.

Experimental Details In this experiment, we test few-
shot classification with three data augmentation strategies.
The first, referred to as ”Baseline” in the remainder of this
paper, employs no synthetic images. This baseline imple-
ments a standard data augmentation strategy that uses ran-
dom horizontal flips for COCO and Pascal, with additional
random vertical flips for Spurge, with flip probabilities 0.5.
The Real Guidance baseline is based on He et al. (2022),
and uses SDEdit on real images with t0 = 0.5. Hyper-
parameters shared between Real Guidance and our method
have equal values to ensure fairness. Real Guidance is given
the class agnostic prompt ”a photo” whereas our method is
prompted with ”a photo of a ClassX” where ClassX repre-
sents a new token fine-tuned according to Section 4.1.

Each real image is augmented M times, and a ResNet50
classifier pre-trained on ImageNet is fine-tuned on a mixture
of real and synthetic images sampled as discussed in Sec-
tion 4.2. We fine-tune the final linear layer of the classifier
for 10, 000 steps with a batch size of 32 and the Adam op-
timizer with learning rate 0.0001. We calculate validation
metrics every 200 steps and report the epoch with highest
accuracy. Solid lines in plots represent the mean, and error
bars denote the 68% confidence interval over 8 independent
random trials. An overall score is calculated that aggregates
performance on all datasets after normalizing performance
using ydi ← (ydi − ydmin)/(ydmax − ydmin), where d represents
the dataset, ydmax is the maximum performance for any trial
of any method on that dataset, and ydmin is defined similarly.
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Figure 7. Ablation for stacking parameters. We evaluate DA-Fusion on three classification datasets and vary the number of augmentations
in A, from the setting used in the main experiments (k = 4), to only one (k = 1). We report the improvement in area under the curve
(AUC) for few-shot classification accuracy, and observe a consistent improvement due to stacking in all domains.

Interpreting The Results Figure 6 shows results. We ob-
serve a consistent improvement in validation accuracy by
as much as +10 percentage points on the Pascal and COCO
datasets when compared to the standard data augmentation
baseline. DA-Fusion exceeds performance of Real Guid-
ance (He et al., 2022) in all domains while utilizing the
same hyperparameters, without any prior information about
class names given. In this setting, Real Guidance performs
comparably to the baseline, which suggests that gains in
Real Guidance may stem from information provided by the
class name. This experiment shows DA-Fusion improves
few-shot learning and generalizes to out-of-vocabulary con-
cepts. In the following sections, we ablate these results
to understand how important each part of the method is to
these gains in performance.

5.2. How Important Is Stacking?

Our goal in this section is to understand what fraction of
gains are due to the stacking methodology of Section 4.3.
We employ the same experimental settings as in Section 5.1,
and run an additional version of our method without stack-
ing (k = 1) and with t0 = 0.5, following the settings
previously used with Real Guidance. In Figure 7 we report
the improvement in area under the curve (AUC) versus stan-
dard data augmentation for our method. These results show
that both versions of our method outperform the baseline,
and stacking improves our method in all domains, leading
to an overall improvement of 51%.

5.3. Robustness To Object Masks

Our previous results show DA-Fusion is an effective data
augmentation strategy when applied to whole images. How-
ever, real images often contain several objects with different
visual invariances. For example, in a photo of a cat sitting
on a table, we may aim to change only the breed of the cat
or the brand of the table, which are defined independently.
Augmentations based on generative models can achieve this
behavior using inpainting (Saharia et al., 2022a; Lugmayr

et al., 2022), and stable performance when various masks
are given is a desireable trait for any such method. In this
section we test the robustness of DA-Fusion when various
masks are used to constrain where image changes occur.

Experimental Details We test robustness with two mask
types: foreground object masks, and background masks.
In the foreground type, a mask around the focal object in
each image is used for inpainting with our pre-trained dif-
fusion model. The mask is dilated by 16 pixels before use
for inpainting to ensure the focal object is fully contained
within. Background type masks are generated by inverting
the foreground masks for each image. We test three ver-
sions of our method that augment the whole image, only
the foreground, or just the background. Performance repre-
sents the gain in few-shot classification accuracy over Real
Guidance when training a classifier on samples from our
masked augmentation. To ensure fairness, we omit stacking
in this experiment and share all hyper-parameters with Real
Guidance, including the mask used for inpainting, and the
strength value t0 = 0.5 from Section 5.1. As before, solid
lines in plots represent the mean, and error bars denote the
68% confidence interval over 8 independent random trials.

Interpreting The Results Figure 8 shows that our
method consistently outperforms prior work given masks for
objects and backgrounds. Plots are shifted so that Real Guid-
ance performance corresponds to a gained accuracy of 0,
and positive gains represent an improvement over the cor-
responding masked Real Guidance baseline. Interestingly,
performance gains are lower for masked augmentations than
for whole images, suggesting there is room for improving
DA-Fusion in the masked case. Additionally, the common
ordering in the plots suggests that DA-Fusion is more effec-
tive at modifying backgrounds than objects. These results
suggest our method has greater flexibility than prior work
and produces effective synthetic images when directed with
masks.
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Figure 8. Ablation for masking. We evaluate our method when applied to foregrounds and backgrounds separately. We report the
improvement in few-shot classification accuracy on a validation set for our method compared to a Real Guidance baseline using object
segmentation masks from the Pascal and COCO datasets. Results show a consistent improvement over the baseline when masks are used.
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Figure 9. Ablation for mixing ratio. We run our method with three
different mixing ratios α ∈ {0.3, 0.5, 0.7} and report the improve-
ment in few-shot classification accuracy over a Real Guidance
baseline using the same α. The plot shows our method is robust to
this hyper-parameter and outperforms prior work for every α.

5.4. Robustness To The Mixing Ratio

We next conduct an ablation to understand the sensitivity
of our method to the mixing parameter α that controls the
sampling ratio of real and synthetic images. We chose this
hyper-parameter as α = 0.5 throughout this paper for sim-
plicity as this value is at the center of the range for this hyper-
parameter (α ∈ [0, 1]). Insensitivity to the particular value
of α is a desireable trait for any data augmentation method
using generative models, as it simplifies hyper-parameter
tuning. We test sensitivity to α by comparing runs of DA-
Fusion with different alpha values. We report the gained
accuracy over Real Guidance with the same α in Figure 9.
These results show stability as α varies, and that α = 0.7
performs marginally better than α = 0.5, which suggests
our method improves synthetic images quality because sam-
pling them more often improves accuracy.

6. Discussion
We proposed a flexible method for semantic data augmen-
tation based on diffusion models, DA-Fusion. Our method
adapts a pretrained diffusion model to generate high quality

augmentations for all images regardless of their class and
content. Our method improves few-shot classification ac-
curacy in all domains tested, and by up to +10 percentage
points on the Pascal and COCO datasets. Similarly, our
method produces gains on a contributed weed-recognition
dataset that lies outside the vocabulary of the diffusion
model. To understand these gains, we performed ablations
that test the flexibility and robustness of our method. We first
observe that few-shot performance is boosted when using
multiple augmentations in parallel. Next, we test flexibil-
ity by selectively applying DA-Fusion to either foreground
objects or backgrounds. We observe higher accuracy than
prior work in the masked setting, suggesting our method
remains effective when controlled with masks.

There are several directions to further improve the flexibility
and performance of our method as future work. First, our
method does not explicitly control how an image is aug-
mented by the diffusion model. Extending the method with
a mechanism to better control how objects in an image are
modified, e.g. changing the breed of a cat, could improve
the results. We explored this notion in Section 5.3 when
masks are present; though, recent work in prompt-based
image editing (Hertz et al., 2022) suggests diffusion models
can make localized edits without such masks. Second, data
augmentation is becoming increasingly important in the
decision-making setting (Yarats et al., 2022). Maintaining
temporal consistency is an important challenge faced when
using our method in this setting. Solving this challenge
could improve the few-shot generalization of policies in
complex visual environments. Finally, improvements to our
diffusion model backbone that enhance image photo-realism
when adapting the model to novel visual concepts are likely
to improve sample quality and task performance.
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A. Hyperparameters
Our method inherits the hyperparameters of text-to-image
diffusion models and SDEdit (Meng et al., 2022a). In ad-
dition, we introduce several other hyperparameters in this
work that control the diversity of the synthetic images. Spe-
cific values for these hyperparameters are given in Table 1.

B. Leafy Spurge Dataset Acquisition and
Pre-processing

In June 2022 botanists visited areas in western Montana,
United States known to harbor leafy spurge and verified
the presence or absence of the target plant at 39 sites. We
selected sites that represented a range of elevation and solar
input values as influenced by terrain. These environmental
axes strongly drive variation in the structure and compo-
sition of vegetation (Amatulli et al., 2018; Doherty et al.,
2021). Thus, stratifying by these aspects of the environment
allowed us to test the performance of classifiers when pre-
sented with a diversity of plants which could be confused
with our target.

During surveys, each site was divided into a 3 x 3 grid of
plots that were 10m on side (Fig. 10), and then botanists
confirmed the presence or absence of leafy spurge within
each grid cell. After surveying we flew a DJI Phantom 4
Pro at 50m above the center of each site and gathered still
RGB images. All images were gathered on the same day in
the afternoon with sunny lighting conditions.

We then cropped the the raw images to match the bounds
of plots using visual markers installed during surveys as
guides (Fig. 11). Resulting crops varied in size because of
the complexity of terrain. E.G., ridges were closer to the
drone sensor than valleys. Thus, image side lengths ranged
from 533 to 1059 pixels. The mean side length was 717 and
the mean spatial resolution, or ground sampling distance, of
pixels was 1.4 cm.

In our initial hyperparameter search we found that the clas-
sification accuracy of plot-scale images was less than that of
a classifier trained on smaller crops of the plots. Therefore,
we generated four 250x250 pixel crops sharing a corner
at plot centers for further experimentation (Fig. 12). Be-
cause spurge plants were patchily distributed within a plot,
a botanist reviewed each crop in the present class and re-
moved cases in which cropping resulted in samples where
target plants were not visually apparent.

C. Benchmarking the Leafy Spurge Dataset
We benchmark classifier performance here on the full leafy
spurge dataset, comparing a baseline approach incorporating
legacy augmentations with our novel DA-fusion method.
For 15 trials we generated random validation sets with 20

Figure 10. A drone image of surveyed areas containing leafy
spurge. At each site botanists verified spurge presence or absence
in a grid of nine spatially distinct plots. Note that cell five is rich
in leafy spurge.

Figure 11. Markers installed at the corners of plots were used to
crop plots from source images.
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Hyperparameter Name Value

Synthetic Probability α 0.5
Stacked Augmentations k 4
Activation Probabilities pi 1/k
Synthetic Images Per Real M 10
Synthetic Images Per Real M (spurge) 50
Textual Inversion Token Initialization ”the”
Textual Inversion Batch Size 4
Textual Inversion Learning Rate 0.0005
Textual Inversion Training Steps 1000
Class Agnostic Prompt ”a photo”
Textual Inversion Prompt ”a photo of a ClassX”
Real Guidance Strength t0 0.5
Stable Diffusion Checkpoint CompVis/stable-diffusion-v1-4
Stable Diffusion Guidance Scale 7.5
Stable Diffusion Resolution 512
Stable Diffusion Denoising Steps 1000
Classifier Architecture ResNet50
Classifier Learning Rate 0.0001
Classifier Batch Size 32
Classifier Training Steps 10000
Classifier Early Stopping Interval 200

Table 1. Hyperparameters and their values.

Figure 12. At each plot image center we cropped four 250x250
pixel sub-plots. We did this to amplify our data and improve
classifier performance. The crops of plots with spurge present
labels were inspected by a botanist to filter out examples where
cropping excluded the target plant or the plants were not apparent.

percent of the data, and fine-tuned a pretrained ResNet50 on
the remaining 80 percent using the training hyperparameters
reported in section 5 for 500 epochs. From these trials
we compute cross-validated mean accuracy and 68 percent
confidence intervals.

In the case of baseline experiments, we augment data by flip-
ping vertically and horizontally, as well as randomly rotating
by as much as 45 degrees with a probability of 0.5. For DA-
Fusion augmentations we take two approaches(Fig. 13) The
first we refer to as DA-Fusion Pooled, and we apply the
methods of Textual Inversion (Gal et al., 2022), but include
all instances of a class in a single session of fine-tuning, gen-
erating one token per class. In the second approach we refer
to as DA-Fusion Specific, we fine-tune and generate unique
tokens for each image in the training set. In the specific case,
we generated 90, 180, and 270 rotations as well as horizon-
tal and vertical flips and contribute these along with original
image for Stable Diffusion fine-tuning to achieve the target
number of images suggested to maximize performance(Gal
et al., 2022). In both DA-Fusion approaches we generated
ten synthetic images per real image for model training. We
maintain α = 0.5, evenly mixing real and synthetic data
during training. We also maximize synthetic diversity by
randomly selecting 0.25, 0.5, 0.75, and 1.0 t0 values.

Both approaches to DA-Fusion offer slight performance
enhancements over baseline augmentation methods for the
full leafy spurge dataset. We observe a 1.0% gain when



Effective Data Augmentation With Diffusion Models

Figure 13. Here we show examples of synthetic images generated from the leafy spurge dataset with DA-Fusion methods. The top row
shows output where images are pooled to fine-tune a single token per class. The bottom row shows examples where tokens are generated
specifically for each image. Source images, inference hyperparameters, and seed are otherwise identical in each column.

Figure 14. Cross-validated accuracy of leafy spurge classifiers
when trained with baseline augmentations versus DA-Fusion meth-
ods on the full dataset. In addition to the benefits of DA-Fusion in
few-shot contexts, we also find our method improves performance
on larger datasets. Generating image-specific tokens (green line
and bar) offers the most gains over baseline, though at the cost of
greater compute.

applying DA-Fusion Pooled and a 1.2% gain when applying
DA-Fusion Specific(Fig. 14). It is important to note that,
as implemented currently, compute time for DA-Fusion
Specific is linearly related to data amount, but DA-Fusion
Pooled compute is the same regardless of data size.

While pooling was not the most beneficial in this experiment,
we support investigating it further. This is because fine-
tuning a leafy spurge token in a pooled approach might help
to orient our target in the embedding space where plants
with similar diagnostic properties, such as flower shape
and color from the same genus, may be well represented.
However, the leafy-spurge negative cases do not correspond
to a single semantic concept, but a plurality, such as green
fields, brown fields, and wooded areas. It is unclear if fine-
tuning a single token for negative cases by a pooled method
would remove diversity from synthetic samples of spurge-
free background landscapes, relative to an image-specific
approach. For this reason, we suspect a hybrid approach of
pooled token for the positive case and specific tokens for
the negative cases could offer further gains, and support the
application of detecting weed invasions into new areas.


