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(a) Synthesizing Images with Pixel-level Annotations for Semantic Segmentation
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Figure 1 – DiffuMask synthesizes realistic images and mask annotations by exploiting the attention maps of the diffusion model.
Without human effort and localization (i.e., box and mask) annotation, DiffuMask is capable of producing high-quality semantic masks.

Abstract

Collecting and annotating images with pixel-wise labels
is time-consuming and laborious. In contrast, synthetic
data can be freely available using a generative model (e.g.,
DALL-E, Stable Diffusion). In this paper, we show that
it is possible to automatically obtain accurate semantic
masks of synthetic images generated by the Off-the-shelf
Stable Diffusion model, which uses only text-image pairs
during training. Our approach, called DiffuMask, exploits
the potential of the cross-attention map between text and
image, which is natural and seamless to extend the text-
driven image synthesis to semantic mask generation. Dif-
fuMask uses text-guided cross-attention information to lo-
calize class/word-specific regions, which are combined with
practical techniques to create a novel high-resolution and
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class-discriminative pixel-wise mask. The methods help to
reduce data collection and annotation costs obviously. Ex-
periments demonstrate that the existing segmentation meth-
ods trained on synthetic data of DiffuMask can achieve a
competitive performance over the counterpart of real data
(VOC 2012, Cityscapes). For some classes (e.g., bird), Dif-
fuMask presents promising performance, close to the state-
of-the-art result of real data (within 3% mIoU gap). More-
over, in the open-vocabulary segmentation (zero-shot) set-
ting, DiffuMask achieves a new SOTA result on Unseen

class of VOC 2012. The project website can be found at
DiffuMask.

1. Introduction
Semantic segmentation is a fundamental task in vision,

and existing data-hungry semantic segmentation models
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usually require a large amount of data with pixel-level an-
notations to achieve significant progress. Unfortunately,
pixel-wise mask annotation is a labor-intensive and expen-
sive process. For example, labeling a single semantic ur-
ban image in Cityscapes [14] can take up to 60 minutes,
underscoring the level of difficulty involved in this task Ad-
ditionally, in some cases, it may be challenging or even im-
possible to collect images due to existing privacy and copy-
right. To reduce the cost of annotation, weakly-supervised
learning has become a popular approach in recent years.
This approach involves training strong segmentation mod-
els using weak or cheap labels, such as image-level la-
bels [2, 33, 60, 62, 51, 52], points [3], scribbles [37, 64],
and bounding boxes [34]. Although these methods are free
of pixel-level annotations, still suffer from several disadvan-
tages, including low-performance accuracy, complex train-
ing strategy, indispensable extra annotation cost (e.g., edge),
and image collection cost.

With the great development of computer graphics (e.g.,
generative model), an alternative way is to utilize synthetic
data, which is largely available from the virtual world, and
the pixel-level ground truth can be freely and automati-
cally generated. DatasetGAN [66] firstly exploits the fea-
ture space of a trained GAN and trains a shallow decoder
to produce pixel-level labeling. BigDatasetGAN [35] ex-
tends DatasetGAN to handle the large class diversity of Im-
ageNet. However, both methods suffer from certain draw-
backs, the need for a small number of pixel-level labeled
examples to generalize to the rest of the latent space and
suboptimal performance due to imprecise generative masks.

Recently, large-scale language-image generation (LLIG)
models, such as DALL-E [48], and Stable Diffusion [49],
have shown phenomenal generative semantic and composi-
tional power, as shown in Fig. 1. Given one language de-
scription, the text-conditioned image generation model can
create corresponding semantic things and stuff, where vi-
sual and textual embedding are fused using spatial cross-
attention. We dive deep into the cross-attention layers and
explore how they affect the generative semantic object and
structure of the image. We find that cross-attention maps
are the core, which binds visual pixels and text tokens of
the prompt text. Also, the cross-attention maps contain rich
class (text token) discriminative spatial localization infor-
mation, which critically affects the generated image.

Can the attention map be used as mask annotation?
Consider semantic segmentation [19, 14] - a ‘good’ pixel-
level semantic mask annotation should satisfy two condi-
tions: (a) class-discriminative (i.e., localize and distinguish
the categories in the image); (b) high-resolution, precise
mask (i.e., capture fine-grained detail). Fig. 2b presents a
visualization of cross attention map between text token and
vision. 8 × 8, 16 × 16, 32 × 32, and 64 × 64, as four dif-
ferent resolutions, are extracted from different layers of the

“horse”Synthetic Image “a” “on” “the” “grass”
(a) Cross attention maps of different text tokens.

16×168×8 32×32 64×64 Average Map

(b) Cross attention maps of different resolutions.

Attention Map 𝛾: 0.25 𝛾: 0.3 𝛾: 0.35 𝛾: 0.4 𝛾: 0.45

(c) Binarization Mask with different thresholds γ in Equ. (3).

Figure 2 – Cross-attention maps of a text-conditioned diffu-
sion model (i.e., Stable Diffusion [49]). Prompt language: ‘a
horse on the grass’.

U-Net of Stable Diffusion [49]. 8×8 feature map is the low-
est resolution, including obvious class-discriminative loca-
tion. 32 × 32 and 64 × 64 feature maps include high-
resolution and highlight fine-grained details. The average
map shows the possibility for us to use for semantic seg-
mentation, where it is class-discriminative and fine-grained.
To further validate the potential of the attention map of the
generative task, we convert the probability map to a binary
map with fixed thresholds γ, and refine them with Dense
CRF [31], as shown in Fig. 2c. With the 0.35 threshold,
the mask presents a wonderful precision on fine-grained de-
tails (e.g., foot, ear of the ‘horse’).

Based on the above observation, we present DiffuMask,
an automatic procedure to generate a massive high-quality
image with a pixel-level semantic mask. Unlike Dataset-
GAN [66] and BigDatasetGAN [35], DiffuMask does not
require any pixel-level annotations. This approach takes
full advantage of powerful zero-shot text-to-image genera-
tive models such as Stable Diffusion [49], which are trained
on web-scale image-text pairs. DiffuMask mainly includes
two advantages for two challenges: 1) Precise Mask. An
adaptive threshold of binarization is proposed to convert
the probability map (attention map) to a binary map, as
the mask annotation. Besides, noise learning [44, 56] is
used to filter noisy labels. 2) Domain Gap: retrieval-based
prompt (various and verisimilar prompt guidance) and data
augmentations (e.g., Splicing [7]), as two effective solu-
tions, are designed to reduce the domain gap via enhancing
the diversity of data. With the above advantages, DiffuMask
can generate infinite images with pixel-level annotation for
any class without human effort. These synthetic data can
then be used for training any semantic segmentation archi-
tecture (e.g., mask2former [11]), replacing real data.

To summarize, our contributions are three-folds:



• We show a novel insight that it is possible to automat-
ically obtain the synthetic image and mask annotation
from a text-supervised pre-trained diffusion model.

• We present DiffuMask, an automatic procedure to gen-
erate massive image and pixel-level semantic annota-
tion without human effort and any manual mask an-
notation, which exploits the potential of the cross-
attention map between text and image.

• Experiments demonstrate that segmentation methods
trained on DiffuMask perform competitively on real
data, e.g., VOC 2012. For some classes, e.g., dog, the
performance is close to that of training with real data
(within 3% gap). Moreover, in the open-vocabulary
segmentation (zero-shot) setting, DiffuMask achieves
a new SOTA result on Unseen class of VOC 2012.

2. Related Work
Reducing Annotation Cost. Various ways can be ex-

plored to reduce the segmentation data cost, including in-
teractive human-in-the-loop annotation [1, 39], nearest-
neighbor mask transfer [25], or weak/cheap mask an-
notation supervision in different levels, such as image-
level labels [2, 33, 60, 62, 51, 52], points [3], scrib-
bles [37, 64], and bounding boxes [34, 9, 32]. Among
the above-related works, image-level label supervised learn-
ing [51, 52] presents the lowest cost, and its performance
is unacceptable. Bounding boxes [9, 32] annotation usu-
ally shows a competitive performance than pixel-wise su-
pervised methods, but its annotation cost is the most expen-
sive. By comparison, synthetic data presents many advan-
tages, including lower data cost without image collection,
and infinite availability for enhancing the diversity of data.

Image Generation. Image generation is a basic and
challenging task in computer vision. There are several
mainstream methods for the task, including Generative Ad-
versarial Networks (GAN) [23], Variational autoencoders
(VAE) [30], flow-based models [18], and Diffusion Prob-
abilistic Models (DM) [55, 49]. Recently, the diffusion
model has drawn lots of attention due to its wonder-
ful performance. GLIDE [43] used pre-trained language
model (CLIP [47]) and the cascaded diffusion structure for
text-to-image generation. Similarly, DALL-E 2 [48] of
OpenAI Imagen [53] obtain the corresponding text embed-
ding with CLIP and adopted a similar hieratical structure
to generate images. To increase accessibility and reduce
significant resource consumption, Stable Diffusion [49] of
Stability AI introduced a novel direction in which the model
diffuses on VAE latent spaces instead of pixel spaces.

Synthetic Dataset Generation. Prior works [28, 16] for
dataset synthesis mainly utilize 3D scene graphs to render
images and their labels. 2D methods, i.e., Generative Ad-
versarial Networks (GAN) [23] mainly is used to solve do-
main adaptation task [13, 13], which leverages image-to-

image translation to reduce the domain gap. Recently, in-
spired by the success of generative model (e.g., DALL-E
2, Stable Diffusion), some works further try to explore the
potential of synthetic data to replace real data as the train-
ing data in many downstream tasks, including image clas-
sification [27, 6], object detection [61, 42, 21, 20], image
segmentation [35, 66, 36], 3D Rendering [65, 46]. Dataset-
GAN [66] utilized a few labeled real images to train a seg-
mentation mask decoder, leading to an infinite synthetic
image and mask generator. Based on DatasetGAN, Big-
DatasetGAN [46] scale the class diversity to ImageNet size,
which generates 1k classes with manually annotated 5 im-
ages per class. With Stable diffusion and Mask R-CNN pre-
trained on COCO dataset, Li et al. [36] design and train
a grounding module to generate images and segmentation
masks. Different from the above methods, we go one step
further and synthesize accurate semantic labels by exploit-
ing the potential of cross attention map between text and
image. One significant advantage of the DiffuMask is that
it does not require any manual localization annotations (i.e.,
box and mask) and only rely on text supervision.

3. Methodology
In this paper, we explore simultaneously generating im-

ages and the semantic mask described in the text prompt
with the existing pre-trained diffusion model. Using the
synthetic data to train the existing segmentation methods,
and apply them to the real images.

The core is to exploit the potential of the cross-attention
map in the generative model and domain gap between syn-
thetic and real data, providing corresponding new insights,
solutions, and analysis. We introduce the preliminary of
cross attention in Sec. 3.1, Mask generation and refinement
with cross-attention map in text-conditioned diffusion mod-
els in Sec. 3.2, data diversity enhancement with prompt en-
gineering in Sec. 3.4, data augmentation in Sec. 3.5.

3.1. Cross-Attention of Text-Image

Text-guided generative models (e.g., Imagen [53], Stable
Diffusion [49]) use a text prompt P to guide the content-
related image I generation from a random gaussian image
noise z, where visual and textual embedding are fused us-
ing the spatial cross-attention. Specifically, Stable Diffu-
sion [49] consists of a text encoder, a variational autoen-
coder (VAE), and a U-shaped network [50]. The interaction
between the text and vision occurs in the U-Net for the la-
tent vectors at each time step, where cross-attention layers
are used to fuse the embeddings of the visual and textual
features and produce spatial attention maps for each textual
toke. Formally, for step t, the visual features of the noisy
image ϕ(zt) ∈ RH×W×C are flatted and linearly projected
into a Query vector Q = `Q(ϕ(zt)). The text prompt P
is projected into the textual embedding τθ(P) ∈ RN×d (N



refers to the sequence length of text tokens and d is the la-
tent projection dimension) with the text encoder τθ, then is
mapped into a Key matrix K = `K(τθ(P)) and a Value

matrix V = `V (τθ(P)), via learned projections `Q, `K , `V .
The cross attention maps can be calculated by:

A = Softmax
(
QKT

√
d

)
, (1)

where A ∈ RH×W×N (re-shape). For j-th text token, e.g.,
horse on Fig. 2a, the corresponding weight Aj ∈ RH×W on
the visual map ϕ(zt) can be obtained. Finally, the output of
cross-attention can be obtained with ϕ̂ (zt) = AV , which is
then used to update the spatial features ϕ(zt).

3.2. Mask Generation and Refinement

Based on Equ. 1, we can obtain the corresponding cross
attention map A

s,t
j . s denotes the attention map from s-th

layer of U-Net, and corresponding to four different resolu-
tions, i.e., 8 × 8, 16 × 16, 32 × 32, and 64 × 64, as shown
in Fig. 2b. t denotes t-th diffusion step (time). Then the av-
erage cross-attention map can be calculated by aggregating
the multi-layer and multi-time attention maps as follows:

Âj =
1

S · T
∑

s∈S,t∈T

A
s,t
j

max(As,tj )
, (2)

where S and T refer to the total steps and the number of
layers (i.e., four for U-Net). Normalization is necessary due
the value of the attention map from the output of Softmax
is not a probability between 0 and 1.

3.2.1 Standard Binarization

Given an average attention map (a probability map) M ∈
RH×W for j-th text token produced by the cross attention
in Equ. (1), it is essential to convert it to a binary map, where
pixels with 1 as the foreground region (e.g., ‘horse’). Usu-
ally, as shown in Fig. 2c, the simplest solution for the bi-
narization process is using a fixed threshold value γ, and
refining with DenseCRF [31] (local relationship defined by
color and distance of pixels) as follows:

B = DenseCRF(
[
γ; Âj

]
argmax

) . (3)

The above method is not practical and effective, while the
optimal threshold of each image and each category are
not exactly the same. To explore the relationship between
threshold and binary mask quality, we set a simple anal-
ysis experiment. Stable Diffusion [49] is used to gener-
ate 1k images and corresponding attention maps for each
class. The prediction of Mask2former [11] pre-trained on
Pascal-VOC 2012 as the ground truth is adopted to calcu-
late the quality of mask quality (mIoU), as shown in Fig. 3.

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54

Horse Bird Bottle Dog Cat Selection with AffinityNet

Threshold 𝜸

Io
U

Figure 3 – Relationship between mask quality (IoU) and
threshold for various categories. 1000 generative im-
ages are used for each class from Stable Diffusion [49].
Mask2former [11] pre-trained on Pascal-VOC 2012 [19] is used
to generate the corresponding ground truth. The optimal thresh-
old of different classes usually is different.

The optimal threshold of different classes usually are dif-
ferent, e.g., around 0.48 for ‘Bottle’ class, different from
that (i.e., around 0.39) of ‘Dog’ class. To achieve the best
quality of the mask, the adaptive threshold is a feasible so-
lution for the various binarization for each image and class.

3.2.2 Adaptive Threshold for Binarization

It is challenging to determine the optimal threshold for bina-
rizing the probability maps because of the variation in shape
and region for each object class. The image generation re-
lies on text-supervision, which does not provide a precise
definition of the shape and region of object classes. For ex-
ample, the masks with 0.45γ and that with 0.35γ in Fig. 2c,
the model can not judge which one is better, while no lo-
cation information as supervision and reference is provided
by human effort.

Looking deeper at the challenge, pixels with a middle
confidence score cause uncertainty, while that with a high
and low score usually represent the true foreground and the
background. To address the challenge, semantic affinity
learning (i.e., AffinityNet [2]) is used to give an estimation
for those pixels with a middle confidence score. Thus we
can obtain the definition for global prototype, i.e., which
semantic masks with different threshold γ is suitable to rep-
resent the whole prototype. AffinityNet aims to predict se-
mantic affinity between a pair of adjacent coordinates. Dur-
ing the training phase, those pixels in the middle score range
are considered as neutral. If one of the adjacent coordi-
nates is neutral, the network simply ignores the pair dur-
ing training. Without neutral pixels, the affinity label of
two coordinates is set to 1 (positive pair) if their classes are
the same, and 0 (negative pair) otherwise. During the in-
ference phase, a coarse affinity map B̂ ∈ RH×W can be
predicted by AffinityNet for each class of each image. B̂
is used to search for a suitable threshold γ̂ during a search



Diversity and Reality for Prompt
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1. “ Photo of vintage car on the
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2. “ Photo of a car parked on the 
street in the town of Trieste, 
Italy”
3. “ Photo of a red lamborghini
aventador sportscar car parked in
the street town”
…
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random 
sampling

CaptionImage

Denoisng U-Net

Image and Mask Generation and Refinement

𝓏&

Q
K
V

Q
K
V

Q
K
V

Q
K
V

Q
K
V

Q
K
V

Cross Attention Map

Synthetic Image
Dense CRF

with Different Thresholds {𝛾!}!"#$

Noise Learning (Prune)

Final Image and Mask

Model, 𝜽

Count
(Cross Validation)

Noisy Data, 𝑋
(𝐼;𝐵!𝜸) ∈ (ℝ#×%,𝕄#×%)

Noisy Predicted
𝑴(𝐵!&; 𝐼, 𝜽)

×𝑛

Rank, Prune

Clean Data

IoU Matching⊗

...

AffinityNet

Affinity Map $𝑩

Massive Data with Noisy Label

Text Encoder 𝑁×d

Figure 4 – Pipeline for DiffuMask with a given prompt: ‘Photo of a [sub-class] car in the street’. DiffuMask mainly
includes three steps: 1) Prompt engineering is used to enhance the diversity and reality of prompt language (Sec. 3.4). 2) Image and
mask generation and refinement with adaptive threshold from AffinityNet (Sec. 3.2). 3) Noise learning is designed to further improve
the quality of data via filtering the noisy label (Sec. 3.3).
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(a) Distribution of ‘Horse’.
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(b) Distribution of ‘Bird’.

Figure 5 – Effect of Noise Learning (NL). 30k generative im-
ages are used for each class. NL prunes 70% images on the
basis of the rank of IoU. Mask2former [11] pre-trained on VOC
2012 [19] is used to generate the ground truth. NL brings obvi-
ous improvement in mask quality by pruning data.

space Ω = {γi}Li=1 as follows:

γ̂ = arg max
γ∈Ω

∑
Lmatch(B̂, Bγ), (4)

where Lmatch(B̂, Bγ) is a pair-wise matching cost of IoU
between affinity map B̂ and a binary map from attention
map with threshold γ. As a result, an adaptive threshold
γ̂ can be obtained for each image of each class. The red
points in Fig. 3 represent the corresponding threshold from
matching with the affinity map. They are usually close to
the optimal threshold.

3.3. Noise Learning

Although refined mask Bγ̂ presents a competitive result,
there are still existing noisy labels with low precision. Fig. 5
provides the probability density distribution of IoU for the

‘Horse’ and ‘Bird’ classes. The masks with IoU under
80% account for a non-negligible proportion and may cause
a significant performance drop. Inspired by noise learn-
ing [44, 56, 10] for the classification task, we design a sim-
ple, yet effective noise learning (NL) strategy to prune the
noise labels for the segmentation task.

NL improves the data quality by identifying and filter-
ing noisy labels. The main procedure (see Fig. 4) com-
prises two steps: (1) Count: estimating the distribution of
label noise QBγ̂ ,B∗ to characterize pixel-level label noise,
B∗ refers to the prediction of model. (2) Rank, and
Prune: filter out noisy examples and train with errors re-
moved data. Formally, given massive generative images
and annotations {(I, Bγ̂)}, a segmentation model θ (e.g.,
Mask2former [11], Mask-RCNN [26]) is used to predict
out-of-sample probabilities of segmentation result θ : I →
Mc(Bγ̂ ; I,θ) by cross-validation. Then we can estimate
the joint distribution of noisy labels Bγ̂ and true labels,
QcBγ̂ ,B∗ = ΦIoU(Bγ̂ , B

∗), where c denotes c-th class. With
QcBγ̂ ,B∗ , some interpretable and explainable ranking meth-
ods, such as loss reweighting [22, 41] can be used for CL to
find label errors using. In this paper, we adopt a simple and
effective modularized rank and prune method, i.e., Prune by
Class, which decouples the model and data cleaning proce-
dure. For each class, select and prune α% examples with the
lowest self-confidence QcBγ̂ ,B∗ as the noisy data, and train
model θ with the remaining clean data. While α% is set
to 50%, the probability density distribution of IoU from the
remaining clean data is presented in Fig. 5 (yellow). CL can
bring an obvious gain for the mask precision, which further
taps the potential of attention map as mask annotation.



Golden Bulbul Crane Macaw Duck Ostrich

Magpie Swan Pigeon Egret Eagle
Prompt for diversity: Photo of a [sub-class ] bird

Prompt: Photo of a bird

Waterfowl

Hyliota

Figure 6 – Prompt for diversity in sub-class for the bird class.
100 sub-classes for bird class in total for our experiment. The
same prompt strategy is used for other classes, e.g., cat, car.

3.4. Prompt Engineering

Previous works [42, 59] have shown the effectiveness of
prompt engineering on diversity enhancement of generative
data. These studies utilize a variety of prompt modifiers to
influence the generated images, e.g., GPT3 used by Imag-
inaryNet [42]. Unlike generation-based or modification-
based prompts, we design two practical, reality-based
prompt strategies.

Prompt with Sub-Classes. Simple text prompts, such
as ‘Photo of a bird’, often results in monotony for gen-
erative images, as depicted in Fig. 6 (upper), they fail to
capture the diverse range of objects and scenes found in
the real world. To address this challenge, we incorporate
‘sub-classes’ for each category to improve diversity. To
achieve this, we selectK sub-classes for each category from
Wiki1 and integrate this information into the prompt tem-
plates. Fig. 6 (down) presents an example for ‘bird’ cate-
gory. Given K sub-classes, i.e., Golden Bullul, Crane, this
allows us to obtain K corresponding text prompts ‘Photo
of a [sub-class] bird’, denoted by {P̂1, P̂2, ..., P̂K}.

Retrieval-based Prompt. The prompt P̂ still is a hand-
crafted sentence template, we expect to develop it into a
real language prompt in the human community. One fea-
sible solution for that is through prompt retrieval [5, 47].
As shown in Fig. 4, given a prompt P̂, i.e., ‘Photo of

a [sub-class] car in the street’, Clipretrieval [5]
pre-trained on Laion5B [54] is used to retrieve top N real
images and captions, where the captions as the final prompt
sets. Using this approach, we can collect a total of K ×N
text prompts, denoted by

∑K×N
i=1 P̂i, for our synthetic data.

During inference, we randomly sample a prompt from this
set to generate each image.

1https://en.wikipedia.org/wiki/Main Page

(a) Splicing (2×2) (b) Gaussian Blur (c) Occlusion (d) Perspective Transform

Figure 7 – Data Augmentation. Four data augmentations are
used to reduce the domain gap.

3.5. Data Augmentation

To further reduce the domain gap between the generated
images and the real-world images in terms of size, blur, and
occlusion, data augmentations Φ(·) (e.g., Splicing [7]), as
the effective strategies are used, as shown in Fig. 7. Splic-
ing. Synthetic image usually present normal size for the
foreground (object), i.e., objects typically occupy the ma-
jority of image. However, real-world images often contain
objects of varying resolutions, including small objects in
datasets such as Cityscapes [15]. To address this issue, we
use Splicing augmentation. Fig. 7 (a) presents one example
for the image splicing (2× 2). In the experiment, six scales
of image splicing are used, i.e., 1 × 2, 2 × 1, 2 × 2, 3 × 3,
5 × 5, and 8 × 8, and the images are sampled from train
set randomly. Gaussian Blur. Synthetic images typically
exhibit a uniform level of blur, whereas real images exhibit
varying degrees of blur due to motion, focus, and artifact
issues. Gaussian Blur [40] is used to increase the diversity
of blur, where the length of Gaussian Kernel is randomly
sampled from a range of 6 to 22. Occlusion. Similar to
CutMix [63], to make the model focus on discriminative
parts of objects, patches of another image are cut and pasted
among training images where the corresponding labels are
also mixed proportionally to the area of the patches. Per-
spective Transform. Similar to the above augmentations,
perspective transform is used to improve the diversity of the
generated images by simulating different viewpoints.

4. Experiments
4.1. Experimental Setups

Datasets and Task. Datasets. Following the previ-
ous works [11, 36] for semantic segmentation, Pascal-VOC
2012 [19] (20 classes), ADE20k [67] and Cityscapes [15]
are used to evaluate the quality our synthetic data. Tasks. To
evaluate DiffuMask, we adopt three tasks in our experiment,
i.e., semantic segmentation, open-vocabulary segmentation,
and domain generalization.

Implementation Details The pre-trained Stable Diffu-
sion [49], the text encoder of CLIP [47], AffinityNet [2]
are adopted as the base components. We do not finetune
the Stable Diffusion and only train AffinityNet for each
category. The corresponding parameter optimization and
setting (e.g., initialization, data augmentation, batch size,



Semantic Segmentation (IoU) for Selected Classes/%
Train Set Number Backbone aeroplane bird boat bus car cat chair cow dog horse person sheep sofa mIoU
Train with Pure Real Data

VOC
R: 11.5k (all) R50 87.5 94.4 70.6 95.5 87.7 92.2 44.0 85.4 89.1 82.1 89.2 80.6 53.6 77.3
R: 11.5k (all) Swin-B 97.0 93.7 71.5 91.7 89.6 96.5 57.5 95.9 96.8 94.4 92.5 95.1 65.6 84.3

R: 5.0k Swin-B 95.5 87.7 77.1 96.1 91.2 95.2 47.3 90.3 92.8 94.6 90.9 93.7 61.4 83.4
Train with Pure Synthetic Data

DiffuMask S: 60.0k R50 80.7 86.7 56.9 81.2 74.2 79.3 14.7 63.4 65.1 64.6 71.0 64.7 27.8 57.4
S: 60.0k Swin-B 90.8 92.9 67.4 88.3 82.9 92.5 27.2 92.2 86.0 89.0 76.5 92.2 49.8 70.6

Finetune on Real Data

VOC, DiffuMask S: 60.0k + R: 5.0k R50 85.4 92.8 74.1 92.9 83.7 91.7 38.4 86.5 86.2 82.5 87.5 81.2 39.8 77.6
S: 60.0k + R: 5.0k Swin-B 95.6 94.4 72.3 96.9 92.9 96.6 51.5 96.7 95.5 96.1 91.5 96.4 70.2 84.9

Table 1 – Result of Semantic Segmentation on the VOC 2012 val. mIoU is for 20 classes. ‘S’ and ‘R’ refer to ‘Synthetic’ and ‘Real’.

Category/%
Train Set Number Backbone Human Vehicle mIoU
Train with Pure Real Data

Cityscapes
3.0k (all) R50 83.4 94.5 89.0
3.0k (all) Swin-B 85.5 96.0 90.8

1.5k Swin-B 84.6 95.3 90.0
Train with Pure Synthetic Data

DiffuMask 100.0k R50 70.7 85.3 78.0
100.0k Swin-B 72.1 87.0 79.6

Finetune with Real Data

Cityscapes, DiffuMask 100.0k + 1.5k R50 84.6 95.5 90.1
100.0k + 1.5k Swin-B 86.4 96.4 91.4

Table 2 – The mIoU (%) of Semantic Segmentation on
Cityscapes val. ‘Human’ includes two sub-classes person

and rider. ‘Vehicle’ includes four sub-classes, i.e., car, bus,
truck and train. Mask2former [11] with ResNet50 is used.

learning rate) all are similar to that of the original paper.
Synthetic data for training. For each category on Pascal-
VOC 2012 [19], we generate 10k images and set α of noise
learning to 0.7 to filter 7k images. As a result, we collect
60k synthetic data for 20 classes as the final training set,
and the spatial resolution is 512×512. For Cityscapes [14],
we only evaluate 2 important classes, i.e., ‘Human’ and
‘Vehicle’, including six sub-classes, person, rider, car,
bus, truck, train, and generate 30k images for each sub-
category, where 10k images are selected as the final train-
ing data by noise learning. Considering the relationship
between rider and motorbike/bicycle, we set the two
classes to be ignored, while evaluating the ‘Human’ class
on Tab. 2 and Tab. 5. In our experiment, only a single
object for an image is considered. Multi-categories gen-
eration [36] usually causes the unstable quality of the im-
ages, limited by the generation ability of Stable Diffusion.
Mask2Former [11] is used as the baseline to evaluate the
dataset, and all settings are similar to the official code and
paper. 8 Tesla V100 GPUs are used for all experiments.

4.2. Protocol-I: Semantic Segmentation

VOC 2012. Tab. 1 presents the results of semantic seg-
mentation on the VOC 2012. The existing segmentation
methods trained on synthetic data (DiffuMask) can achieve

Train Set/% mIoU/%
Methods Type Categories Seen Unseen Harmonic
Manual Mask Supervision
ZS3 [8] real 15 78.0 21.2 33.3
CaGNet [24] real 15 78.6 30.3 43.7
Joint [4] real 15 77.7 32.5 45.9
STRICT [45] real 15 82.7 35.6 49.8
SIGN [12] real 15 83.5 41.3 55.3
ZegFormer [17] real 15 86.4 63.6 73.3
Pseudo Mask Supervision from Model pre-trained on COCO [38]
Li et al. [36] (ResNet101) synthetic 15+5 62.8 50.0 55.7
Text(Prompt) Supervision
DiffuMask (ResNet50) synthetic 15+5 60.8 50.4 55.1
DiffuMask (ResNet101) synthetic 15+5 62.1 50.5 55.7
DiffuMask (Swin-B) synthetic 15+5 71.4 65.0 68.1

Table 3 – Performance for Zero-Shot Semantic Segmenta-
tion Task on PASCAL VOC. ‘Seen’, ‘Unseen’, and ‘Har-
monic’ denote mIoU of seen, unseen categories, and their har-
monic mean. Priors are trained with real data and masks.

a competitive performance, i.e., 70.6% v.s. 84.3% for mIoU
with Swin-B backbone. A point worth emphasizing is that
our synthetic data does not need any manual localization
and mask annotation, while real data need humans to per-
form a pixel-wise mask annotation. For some categories,
i.e., bird, cat, cow, horse, sheep, DiffuMask presents a
powerful performance, which is quite close to that of train-
ing on real (within 5% gap). Besides, finetune on few real
data, the results can be improved further, and exceed that of
training on full real data, e.g., 84.9% mIoU finetune on 5.0k
real data v.s 83.4% mIoU training on full real data (11.5k).

Cityscapes. Tab. 2 presents the results on Cityscapes.
Urban street scenes of Cityscapes are more challenging, in-
cluding a mass of small objects and complex backgrounds.
We only evaluate two classes, i.e., Vehicle and Human,
which are the two most important categories in the driving
scene. Compared with training on real images, DiffuMask
presents a competitive result, i.e., 79.6% vs. 90.8% mIoU.

4.3. Protocol-II: Open-vocabulary Segmentation

As shown in Fig. 1, it is natural and seamless to extend
the text-driven synthetic data (our DiffuMask) to the open-
vocabulary (zero-shot) task. As shown in Tab. 3, compared



Annotation γ Bird Dog mIoU
Affinity map - 84.4 78.8 81.6

Attention 0.4 88.1 82.4 85.3
Attention 0.5 90.3 67.4 78.9
Attention 0.6 50.5 38.3 44.4

DiffuMask AT 92.9 86.0 89.5

(a) DiffuMask v.s. Attention Map.

Retri. Sub-C Bird Dog mIoU
78.2 75.6 76.9

X 79.2 76.2 77.7
X 10 91.3 83.9 87.6
X 50 92.5 85.4 89.0
X 100 92.9 86.0 89.5

(b) Prompt Engineering.

α Bird Dog mIoU
0.3 87.2 79.2 83.2
0.4 89.5 79.9 84.7
0.5 91.9 84.4 88.2
0.6 92.6 85.2 89.1
0.7 92.9 86.0 89.5

(c) Noise Learning.

Method Bird Dog mIoU
− 87.0 81.5 84.3
Φ1 90.2 83.7 87.0
Φ1, Φ2 90.9 84.8 87.9
Φ1, Φ2, Φ3 91.2 85.1 88.2
Φ1, Φ2, Φ3, Φ4 92.9 86.0 89.5

(d) Data Augmentation.
Table 4 – DiffuMask ablations. We perform ablations on VOC 2012 val. γ and ‘AT’ denotes the ‘Threshold’ and ‘Adaptive Threshold’,
respectively. α refers to the proportion of data pruning. Φ1, Φ2, Φ3 and Φ4 refer to ‘Splicing’, ‘Gaussian Blur’, ‘Occlusion’, and
‘Perspective Transform’, respectively. ‘Retri.’ and ‘Sub-C’ denotes ‘retrieval-based’ and ‘Sub-Class’, respectively. Mask2former with
Swin-B is adopted as the baseline.

mIoU/%
Train Set Test Set Car Person Motorbike mIoU

Cityscapes [14] VOC 2012 [19] val 26.4 32.9 28.3 29.2
ADE20K [67] VOC 2012 [19] val 73.2 66.6 64.1 68.0

DiffuMask VOC 2012 [19] val 74.2 71.0 63.2 69.5
VOC 2012 [19] Cityscapes [14] val 85.6 53.2 11.9 50.2

ADE20K [67] Cityscapes [14] val 83.3 63.4 33.7 60.1
DiffuMask Cityscapes [14] val 84.0 70.7 23.6 59.4

Table 5 – Performance for Domain Generalization between
different datasets. Mask2former [11] with ResNet50 is used as
the baseline. Person and Rider classes of Cityscapes [14] are
consider as the same class, i.e., Person in the experiment.

with priors training on real images with manually annotated
mask, DiffuMask can achieve a SOTA result on Unseen

classes. It is worth mentioning that DiffuMask is pure syn-
thetic/fake data and supervised by text, while priors all must
need the real image and corresponding manual mask anno-
tation. Li et al., as one contemporaneous work, use the seg-
mentation model pre-trained on COCO [38] to predict the
pseudo label of the synthetic image, which is high-cost.

4.4. Protocol-III: Domain Generalization

Tab. 5 presents the results for cross-dataset validation,
which can evaluate the generalization of data. Compared
with real data, DiffuMask show powerful effectiveness on
domain generalization, e.g., 69.5% with DiffuMask v.s
68.0 with ADE20K [67] on VOC 2012 val. The domain
gap [58] between real datasets sometimes is bigger than
that among synthetic and real data. For Motorbike class,
model training with Cityscapes only achieves 28.9% mIoU,
but that of DiffuMask is 63.2% mIoU. We argue that the
main reason is domain shift in foreground and background
domains, i.e., Cityscapes contains images of city roads, with
the majority of Motorbike objects being small in size. But
VOC 2012 is an open-set scenario, where Motorbike ob-
jects vary greatly in size and include close-up shots.

4.5. Ablation Study

Compared with Attention Map. Tab. 4a presents the
comparison with the attention map and the impact of bina-

rization threshold γ. It is clear that the optimal threshold
for different categories is different, even various for differ-
ent images of the same category. Sometimes it is sensitive
for some categories, such as Dog. The mIoU of 0.4 γ is
better than that of 0.6 γ around 40% mIoU, which can not
be neglectful. By contrast, our adaptive threshold is robust.
Fig. 3 also shows it is close to the optimal threshold.

Prompt Engineering. Tab. 4b provides the related abla-
tion study for prompt strategies. Retrieval-based and sub-
classes prompt all can bring an obvious gain. For dog,
10 sub-classes prompt brings a 7.7% mIoU improvement,
which is quite significant. It is reasonable, the fine-grained
prompts can directly enhance the diversity of generative im-
ages, as shown in Fig. 6.

Noise Learning. Tab. 4c presents the impact of prune
threshold α. 10k synthetic images for each class are used in
this experiment. The gain is considerable while α changes
from 0.3 to 0.5. In other experiments, we set the α to 0.7
for each category.

Data Augmentation. The ablation study for the four
augmentations is shown in Tab. 4d. Compared with the
other three augmentations, the gain of image splicing is the
biggest. One main reason is that the synthetic images are
all 512× 512 resolution and the size of the object usually is
normal, image splicing can enhance the diversity of scale.

5. Conclusion

A new insight is presented in this paper, demonstrat-
ing that the accurate semantic mask of generative images
can be automatically obtained through the use of a text-
driven diffusion model. To achieve this goal, we present
DiffuMask, an automatic procedure to generate image and
pixel-level semantic annotation. The existing segmenta-
tion methods training on synthetic data of DiffuMask can
achieve a competitive performance over the counterpart of
real data. Besides, DiffuMask shows the powerful per-
formance for open-vocabulary segmentation, which can
achieve a promising result on Unseen category. We hope
DiffuMask can bring new insights and inspiration for bridg-
ing generative data and real-world data in the community.



Category/%
Train Set Number Backbone bus car person mIoU
Train with Pure Real Data

ADE20K
R: 20.2k R50 87.9 82.5 79.4 83.3
R: 20.2k Swin-B 93.6 86.1 84.0 87.9

Train with Pure Synthetic Data

DiffuMask S: 6.0k R50 43.4 67.3 60.2 57.0
S: 6.0k Swin-B 72.8 73.4 62.6 69.6

Table 6 – The mIoU (%) of Semantic Segmentation on the
ADE20K val.

Annotation Bird Dog Person Sofa mIoU
Real Image, Manual Label 93.7 96.8 92.5 65.6 87.2
Synthetic Image, Pseudo Label 95.2 86.2 89.9 59.5 82.7
Synthetic Image, DiffuMask 92.9 86.0 76.5 49.8 76.3

Table 7 – Impact of Mask Precision and Domain Gap on
VOC 2012 val. Mask2former [11] with Swin-B is used as
the baseline. ‘Pseudo’ denotes pseudo mask annotation from
Mask2former [11] pre-trained on VOC 2012.

Attention Map A Bird Dog mIoU
8× 8 40.5 46.0 43.3
16× 16 58.8 69.9 64.4
32× 32 86.2 82.3 84.3
64× 64 45.2 41.1 43.2
16× 16,32× 32,32× 32 89.9 84.2 87.1
Average 92.9 86.0 89.5

Table 8 – Impact of different attention maps from different
layers. Mask2former [11] with Swin-B is used as the baseline.

A. More Details

Evaluation Metrics. Mean intersection-over-union
(mIoU) [19, 11], as the common metric of semantic seg-
mentation, is used to evaluate the performance. For open-
vocabulary segmentation, following the prior [17, 12], the
mIoU averaged on seen classes, unseen classes, and their
harmonic mean are used.

Mask Smoothness. The mask Bγ̂ generated by the
Dense CRF often contains jagged edges and numerous
small regions that do not correspond to distinct objects in
the image. To address these issues, we trained a segmenta-
tion model θ (i.e. Mask2Former), using the mask Bγ̂ gen-
erated by the Dense CRF as input. We then used this model
to predict the pseudo labels for the training set of synthetic
data, resulting in a final semantic mask annotation

Cross Validation for Noise Learning. In the experi-
ment, we performed the three-fold cross-validation for each
class. The five-fold cross-validation (CV) is a process in
which all data is randomly split into k folds, in our case k
= 3, and then the model is trained on the k− 1 folds, while
one fold is left to test the quality.

Backbone Bird Dog Sheep Horse Person mIoU
RseNet 50 86.7 65.1 64.7 64.6 71.0 70.3
RseNet 101 86.7 66.8 65.3 63.4 70.2 70.5
Swin-B 92.9 86.0 92.2 89.0 76.5 87.3
Swin-L 92.8 86.4 92.3 88.3 77.3 87.4

Table 9 – Impact of Backbone on VOC 2012 val.
Mask2former [11] is used as the baseline.

“horse”Synthetic Image “a” “on” “the” “grass”

Image Gradient Attention Mask Visualization

Figure 8 – Gradient from Text Tokens for Stable Diffusion.
Prompt language: ‘a horse on the grass’.
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Figure 9 – Impact of Backbone. Stronger backbone is robust
for classification, False Negative, and mask precision.

B. More Ablation Study

What causes the performance gap between synthetic
and real data. Domain gap and mask precision are the
main reasons for the performance gap between synthetic
and real data. Tab. 7 is set To further explore the problem.
Li et al. [36] shows that the pseudo mask of the synthetic
image from Mask2former [11] pre-trained on VOC 2012
is quite accurate, and can as the ground truth. Thus, we
also use the pseudo label from the pre-trained Mask2former
to train the model, where we argue that the pseudo label
is accurate. As shown in Tab. 7, mask precision cause
6.4% mIoU gap, and the domain gap of images causes 4.5%
mIoU gap. Notably, for the bird class, the use of synthetic
data with a pseudo label resulted in better results than the
corresponding real images. This observation suggests that
there may be no domain gap for the bird class in the VOC



2012 dataset.
Backbone Tab. 9 presents the ablation study for the

backbone. For some classes, e.g. sheep, the stronger
backbone can bring obvious gains, i.e. Swin-B achieves
27.5% mIoU improvement than that of ResNet 50. And
the mIoU of all classes with Swin-B achieves 19.2% mIoU
improvements. It is an interesting and novel insight that a
stronger backbone can reduce the domain gap between syn-
thetic and real data. To give a further analysis for that, we
present some results comparison of visualizations, as shown
in Fig. 9. Swin-B brings an obvious improvement in clas-
sification, False Negatives, and mask precision. Compared
with the gain between different backbones, different ver-
sions (size) of the same backbone seems can not obtain an
effective gain, e.g. ResNet101 only obtain 0.5% mIoU im-
provements than that of ResNet50.

Attention Maps of different resolutions. Table 8 shows
the results of an ablation study conducted on cross attention
maps with varying resolutions from different layers. The
performance of both high resolution (64× 64) and low res-
olution (8 × 8) maps was found to be unsatisfactory. This
can be attributed to the lack of detail in low-resolution maps
and the presence of noise in high-resolution maps. On the
other hand, integrating (by averaging) all attention maps
produced the best performance.

C. Experiment on ADE20K

ADE20K, as one more challenging dataset, is also used
to evaluate the DiffuMask. Tab. 6 presents the results of
three categories (bus, car, person) on ADE20K. With
fewer synthetic images (6k), we achieve a competitive per-
formance than that of a mass of real images (20.2k). Com-
pared with the other two categories, Class car achieves the
best performance, with 73.4% mIoU.

D. Visual explanation with gradients.

The gradient is another way to provide an excellent vi-
sual explanation of the generative model, Fig. 8 presents
the corresponding gradient visualization from different text
tokens. Given a text prompt P, i.e., ‘a horse on the

grass’ and a random Gaussian image noise z, the text-
guided generative model is in principle capable of model-
ing conditional distributions of the form I := p(z|τθ(P)),
where τθ(P) ∈ RN×d and τθ refers to the text encoder [47].
For the k-th word tk (e.g., ‘horse’ from Fig. 8) from P,
we can compute the corresponding gradient as following:
αk = ∂I

∂tk
where αk is the gradient weight from the k-th

word tk. The corresponding gradient weight can be com-
puted by adding a small variate (that is, Numbers close to
zero) to the tk. For convenience, we add a small variate
4β ∈ Rd (4β = µ111d, where 111d and µ refer to the unit
matrix and weight) to the text feature map τθ(tk) and obtain

the corresponding gradient visualization, as shown in Fig. 8.
The gradient visualization is highly class-discriminative
(i.e. the ‘horse’ explanation exclusively highlights the
‘horse’ regions).

E. Limitation.
DiffuMask mainly includes two limitations: 1) The in-

ference speed of the text-to-image diffusion model is rel-
atively slow. With 8 Tesla V100 GPUs, generating 10k
images usually need to spend around 8 hours. Therefore,
scaling up the synthetic dataset to a million level is diffi-
cult for some institutions. And it is the main reason why
we do not provide more experiments for other datasets with
rich categories, e.g. ADE20K or COCO. Similarly, we can
not scale up the synthetic data to the million level due to
the limitation of time and computational cost. But we ar-
gue the cost can be reduced by adopting advanced faster
Sampling for Diffusion Models [57, 29]. 2) There are still
existing obvious result gaps for some classes, e.g. person
on VOC 2012. The main reason is the obvious domain gap
for these classes. The synthetic image usually presents a
simple foreground and background, while the real image
is more examples with multi-views, multi-scales, blur, and
occlusion. Even so, our DiffuMask, as the first work to syn-
thesize image and mask annotation using an image-text pre-
trained diffusion model, provide a promising performance
and many new insights. We verify the feasibility of train-
ing with text-driven synthetic data and applications in the
real world, where worth mentioning the diffusion model is
trained with only language-image pairs.
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