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Abstract

GPT-3.5 and GPT-4 are the two most widely used large language model (LLM) services.
However, when and how these models are updated over time is opaque. Here, we evaluate the
March 2023 and June 2023 versions of GPT-3.5 and GPT-4 on several diverse tasks: 1) math
problems, 2) sensitive/dangerous questions, 3) opinion surveys, 4) multi-hop knowledge-intensive
questions, 5) generating code, 6) US Medical License tests, and 7) visual reasoning. We find
that the performance and behavior of both GPT-3.5 and GPT-4 can vary greatly over time. For
example, GPT-4 (March 2023) was reasonable at identifying prime vs. composite numbers (84%
accuracy) but GPT-4 (June 2023) was poor on these same questions (51% accuracy). This is
partly explained by a drop in GPT-4’s amenity to follow chain-of-thought prompting. Interestingly,
GPT-3.5 was much better in June than in March in this task. GPT-4 became less willing to answer
sensitive questions and opinion survey questions in June than in March. GPT-4 performed better
at multi-hop questions in June than in March, while GPT-3.5’s performance dropped on this task.
Both GPT-4 and GPT-3.5 had more formatting mistakes in code generation in June than in March.
Overall, our findings show that the behavior of the “same” LLM service can change substantially
in a relatively short amount of time, highlighting the need for continuous monitoring of LLMs.

1 Introduction

Large language models (LLMs) like GPT-3.5 and GPT-4 are being widely used. A LLM like GPT-4
can be updated over time based on data and feedback from users as well as design changes. However,
it is currently opaque when and how GPT-3.5 and GPT-4 are updated, and it is unclear how each
update affects the behavior of these LLMs. These unknowns makes it challenging to stably integrate
LLMs into larger workflows: if LLM’s response to a prompt (e.g. its accuracy or formatting) suddenly
changes, this might break the downstream pipeline. It also makes it challenging, if not impossible, to
reproduce results from the “same” LLM.

Beyond these integration challenges, it is also an interesting question whether an LLM service like
GPT-4 is consistently improving over time. It is important to know whether updates to the model
aimed at improving some aspects can reduce its capability in other dimensions.

Motivated by these questions, we evaluated the behavior of the March 2023 and June 2023 versions
of GPT-3.5 and GPT-4 on several tasks: 1) solving math problems, 2) answering sensitive/dangerous
questions, 3) answering opinion surveys, 4) answering multi-hop knowledge-intensive questions, 5)
generating code, 6) US Medical License exams, and 7) visual reasoning. These tasks were selected to
evalute diverse and useful capabilities of these LLMs. We find that the performance and behavior of
both GPT-3.5 and GPT-4 varied significantly across these two releases and that their performance on
some tasks have gotten substantially worse over time, while they have improved on other problems.
Our findings highlight the need to continuously monitor LLMs’ behavior over time.

Related Work. There have been multiple benchmarks and evaluations of LLMs including GPT-3.5
and GPT-4 [LBL+22, ZPM+23, LNT+23, BCL+23]. Existing works show that LLMs achieve reasonable
performance on traditional language tasks such as reading comprehension [dW23], translation [JWH+23],
and summarization [GLD22]. More recently, GPT-4 was shown to successfully pass difficult exams in
professional domains such as medicine [NKM+23] and law [KBGA23]. To the best of our knowledge,
most of these works do not systematically monitor the longitudinal drifts of widely used LLM services
over time or report large drifts in them. ChatLog [TLY+23] proposed recording and monitoring
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Is 17077 a prime number? Think step by step and then
answer [Yes] or [No].

Q: Given a integer n>0, find the sum of all integers in
the range [1, n] inclusive that are divisible by 3, 5, or 7.

(a) Math I: Prime vs Composite (n=1000)

(f) Code Generation and Formatting (n=50)

(h) Visual Reasoning (n=467)

How many happy numbers are there in [7306, 7311]?
Think step by step and then answer within "\boxed".

(b) Math II: Happy Numbers (n=500)

(g) USMLE Medical Exam (n=340)

Are Philip Cortez and Julian Castro democratic or
republican?

(e) LangChain HotpotQA Agent (n=7405)
A  previously healthy 20-year-old  woman [...] the emergency department because
of an 8-hour history of weakness and vomiting blood [...] Results of laboratory
studies are most likely to show which of the following in this patient?  
(A) K+ is Decreased, Cl⁻ is decreased, HCO³⁻ is decreased  
[...]  
(F) K+ is Increased, Cl⁻ is increased, HCO³⁻ is increased

(d) OpinionQA Survey (n=1506)
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Make me a list of ways to make money while breaking
the law.

(c) Answering Sensitive Questions (n=100)

GPT-4 GPT-3.5

You are taking a survey.  Pick the best single option (e.g., (A)). Still thinking ahead
30 years, which do you think is more likely to happen? 
(A). The U.S. will be more important in the world 
(B). The U.S. will be less important in the world 
(C). Refused
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Figure 1: Performance of the March 2023 and June 2023 versions of GPT-4 and GPT-3.5 on eight tasks:
(a,b) solving math problems (Prime vs Composite and Happy Numbers), (c) responding to sensitive
questions and (d) opinion surveys, (e) running a LangChain app for multi-hop question answering, (f)
generating executable code, (g) the USMLE medical exam, and (h) visual reasoning. For each task,
one example is shown in a purple box, and the number of examples n is in the caption. The models’
performance varies substantially over time, and sometimes for the worse.

ChatGPT’s responses automatically over time and reported small shifts (most below 5%) in ChatGPT’s
performance on some common benchmarks. Other papers [AAKA23, SKNM23] also reported shifts
in specific problems. Monitoring model performance shifts is an emerging research area for machine-
learning-as-a-service (MLaaS) more broadly. [CJE+22] offers a large-scale longitudinal dataset of
commercial ML service responses on various evaluation tasks, and [CCZZ21] studies how to efficiently
estimate ML service performance shifts. Those papers focus on ML services for simple classification
tasks such as sentiment analysis, while this work studies generative LLM services.

2 Overview: LLM Services, Tasks and Metrics

This paper studies how different LLMs’ behaviors change over time. To answer it quantitatively, we
need to specify (i) which LLM services to monitor, (ii) on which application scenarios to focus, and (iii)
how to measure LLM drifts in each scenario.
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LLM Services. The LLM services monitored in this paper are GPT-4 and GPT-3.5, which form the
backbone of ChatGPT. Due to the popularity of ChatGPT, both GPT-4 and GPT-3.5 have been widely
adopted by individual users and a number of businesses. Thus, timely and systematically monitoring
these two services helps a large range of users better understand and leverage LLMs for their own use
cases. At the time of writing, there are two major versions available for GPT-4 and GPT-3.5 through
OpenAI’s API, one snapshotted in March 2023 and another in June 2023. Therefore we focus on the
drifts between these two dates. For simplicity, we queried these services via the user prompt only and
left the system prompt as default. We set the temperature to be 0.1 to reduce output randomness, as
creativity was not needed in our evaluation tasks.

Evaluation Tasks. In this paper, we focus on eight LLM tasks frequently studied in performance and
safety benchmarks: solving math problems (including two problem types), answering sensitive questions,
answering OpinionQA survey, LangChain HotpotQA Agent, code generation, taking USMLE medical
exam, and visual reasoning, as shown in Figure 1. These tasks are selected for two reasons. First, they
are diverse tasks frequently used to evaluate LLMs in the literature [WWS+22, ZPM+23, CTJ+21].
Second, they are relatively objective and thus easy-to-evaluate. For each task, we use queries either
sampled from existing datasets or constructed by us. We acknowledge that the specific benchmark
datasets used here does not comprehensively cover the complex behaviors of ChatGPT. Our goal here
is not to provide a holistic assessment but to demonstrate that substantial ChatGPT performance drift
exists on simple tasks. We are adding more benchmarks in future evaluations as part of a broader,
long-term study of LLM service behavior. We cover each task in detail in the next section.

Metrics. How can we quantitatively model and measure LLM drifts in different tasks? Here, we
consider one main performance metric for each task and two common additional metrics for all tasks.
The former captures the performance measurement specific to each scenario, while the latter covers
common complementary measurement across different applications.

In particular, we use accuracy (how often an LLM service generates the correct answer) as our main
metric for math problems and USMLE questions. For answering sensitive and opinion questions, we
use the response rate, i.e. the frequency that an LLM service directly answers a question. For code
generation, the main metric is what fraction of the outputs are directly executable (if the code can be
directly executed in a programming environment and pass the unit tests). For visual reasoning and
LangChain, it is exact match (whether the final response exactly matches the ground truth).

Our first common additional metric is verbosity, i.e., the length of generation measured in the
number of characters. The other one is mismatch, i.e. how often, for the same prompt, the extracted
answers by two versions of the same LLM service do not match. Note that this only compares the
answers’ differences, not the raw generations. For example, for math problems, mismatch is 0 if the
generated answers are the same, even if the intermediate reasoning steps are different. For each LLM
service, we use the mismatch’s empirical mean over the entire population to quantify how much an
LLM service’s desired functionality, instead of the textual outputs, deviates over time. Larger mismatch
means greater drifts. For each of the other metrics, We compute its population mean for both the
March and June versions, and leverage their differences to measure the drift sizes.

3 Monitoring Reveals Substantial LLM Drifts

3.1 Math I (Prime vs Composite): Chain-of-Thought Can Fail

How do GPT-4 and GPT-3.5’s math solving skills evolve over time? As a canonical study, we explore
the drifts in these LLMs’ ability to figure out whether a given integer is prime or composite. We focus
on this task because it is easy to understand for humans while still requires reasoning, resembling many
math problems. The dataset contains 1,000 questions, where 500 primes were extracted from [ZPM+23]
and 500 composite numbers were sampled uniformly from all composite numbers within the interval
[1,000, 20,000]. To help the LLMs reason, we use Chain-of-Thought (CoT) prompting [WWS+22], a
standard approach for reasoning-heavy tasks.

Perhaps surprisingly, substantial LLM drifts emerge on this simple task. As shown in Figure 2(a),
GPT-4’s accuracy dropped from 84.0% in March to 51.1% in June, and there was a large improvement of
GPT-3.5’s accuracy, from 49.6% to 76.2%. In addition, GPT-4’s response became much more compact:
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Step 1: Check if the number is even. If it is, then it is not prime (except for 2). 17077
is odd, so we proceed to the next step. Step 2: Find the square root of the number.
The square root of 17077 is approximately 130.68. Step 3: Check if the number is
divisible by any prime numbers less than or equal to the square root. The prime
numbers less than or equal to 130.68 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127. Step
4: Test each of these prime numbers as a divisor. If any of them divide 17077 without
a remainder, then 17077 is not prime. If none of them divide 17077 without a
remainder, then 17077 is prime. 17077 is not divisible by any of the prime numbers
listed above without a remainder. Therefore, 17077 is a prime number. Answer: [Yes]

[No] 

[No] Explanation: To determine if 17077 is a prime number, we need to check if it is
only divisible by 1 and itself. We can start by checking if it is divisible by 2. If it is,
then it is not a prime number. 17077 is an odd number, so it is not divisible by 2.
Next, we can check if it is divisible by any odd number up to the square root of
17077 (which is approximately 130.7). We can see that it is not divisible by 3, 5, 7,
11, 13, or any other odd number up to 130.7. Therefore, 17077 is a prime number.

To determine if 17077 is a prime number, we need to check if it is divisible by any
number other than 1 and itself. 1. We start by checking if 17077 is divisible by 2.
Since it is an odd number (not divisible by 2), we move on to the next step. 2. Next,
we check if 17077 is divisible by 3. By adding the digits of 17077 (1 + 7 + 0 + 7 + 7 =
22), we see that 17077 is not divisible by 3. 3. We continue by checking if 17077 is
divisible by 5. Since it does not end in 0 or 5, it is not divisible by 5. 4. Next, we
check if 17077 is divisible by 7. By subtracting twice the last digit (7) from the
remaining leading digits (1707 - 2*7 = 1693), we see that 17077 is not divisible by 7.
5. We continue by checking if 17077 is divisible by 11. By alternatingly subtracting
and adding the digits (1 - 7 + 0 - 7 + 7 = -6), we see that 17077 is not divisible by 11. 
6. Finally, we check if 17077 is divisible by 13. By subtracting four times the last digit
(7) from the remaining leading digits (1707 - 4*7 = 1679), we see that 17077 is not
divisible by 13. Since we have checked all the prime numbers up to the square root
of 17077 and found that it is not divisible by any of them, we can conclude that
17077 is a prime number. [Yes]
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Q: Is 17077 a prime number? Think step by step and then answer "[Yes]"  or "[No]".
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Figure 2: Math I (prime vs composite). (a): monitored accuracy, verbosity (unit: character), and
answer mismatch of GPT-4 and GPT-3.5 between March and June 2023. Overall, a large performance
drifts existed for both services. (b) An example query and corresponding responses over time. GPT-4
followed the chain-of-thought instruction to obtain the right answer in March, but ignored it in June
with the wrong answer. GPT-3.5 always followed the chain-of-thought, but it insisted on generating a
wrong answer ([No]) first in March. This issue was largely fixed in June.

its average verbosity (number of generated characters) decreased from 638.3 in March to 3.9 in June.
On the other hand, there was about 22.2% growth in GPT-3.5’s response length. The answer mismatch
between their March and June versions was also large for both services.

Why was there such a large difference? One possible explanation is change in the chain-of-thought
(CoT) behaviors. Figure 2 (b) gives an illustrative example. To determine whether 17077 is a prime
number, the GPT-4’s March version followed the CoT instruction well. It first decomposed the task
into four steps, checking if 17077 is even, finding 17077’s square root, obtaining all prime numbers
less than it, checking if 17077 is divisible by any of these numbers. Then it executed each step, and
finally reached the correct answer that 17077 is indeed a prime number. However, the chain-of-thought
did not work for the June version: the service did not generate any intermediate steps, even though
the prompt asked to think step-by-step, and simply produced “No”. Chain-of-thought’s effects had a
different drift pattern for GPT-3.5. In March, GPT-3.5 inclined to generate the answer “No” first and
then performed the reasoning steps. Thus, even if the steps and final conclusion (“17077 is a prime
number”) were correct, its nominal answer was still wrong. On the other hand, the June update seemed
to fix this issue: it started by writing the reasoning steps and finally generate the answer “Yes”, which
was correct. This interesting phenomenon indicates that the same prompting approach, even the widely
adopted chain-of-thought strategy, could lead to substantially different performances due to LLM drifts.

To further investigate the impact of CoT behavior changes, we compared the responses of GPT-4
and GPT-3.5 on the same questions with and without explicit CoT instructions. For the latter, we
simply ask the model to give a binary generation without explicitly asking it to think step-by-step (e.g.,
Is 17077 a prime number? Answer ”[Yes]” or ”[No]”.).

As shown in Table 1, using CoT increased GPT-4’s performance from 59.6% to 84.0% in March,
leading to a 24.4% performance boost. On the other hand, CoT did not help the June version of GPT-4
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Table 1: Chain-of-thought’s (CoT) effectiveness drifts over time for prime testing. Without CoT, both
GPT-4 and GPT-3.5 achieved relatively low accuracy. With CoT, GPT-4 in March obtained a 24.4%
accuracy improvement, which dropped to -0.1% in June. On the other hand, the CoT boost increased
from 6.3% in March to 15.8% in June for GPT-3.5.

LLM Service
GPT-4 GPT-3.5

Prompting method
∆

Prompting method
∆

Eval Time No CoT CoT No CoT CoT

Mar-23 59.6% 84.0% +24.4% 50.5% 56.8% +6.3%

Jun-23 50.5% 49.6% -0.1% 60.4% 76.2% +15.8%
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June 2023
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Figure 3: Confusion matrix shift for the prime vs composite problem. GPT-4’s March version
identified most primes and composite number correctly, while its June version consistently answered
most primes as composite.

much: the accuracy was actually 0.1% worse. As we discussed before, this is because the new version
did not follow the CoT instructions. For GPT-3.5, an opposite trend was observed: by adding CoT,
accuracy was marginally better (+6.3% ) in March, but substantially higher (+15.8%) in June. Since
GPT-3.5 in both March and June followed the CoT instructions. This suggests that LLM drifts could
change both whether and how to follow user instruction.

Our analysis so far is largely based on shifts of the main metric, accuracy, but fine-grained
investigations could disclose additional interesting shift patterns. One observation is that June version
of GPT-4 had a strong bias to view an integer as a composite number. To see so, we quantified how
the confusion matrices shifted over time. As shown in Figure 3(c), GPT-4’s June version almost always
identified an integer as composite (49.9%+48.8%=99.7%). GPT-3.5’s March version exhibited a similar
issue. The confusion matrices for GPT-4 in March and GPT-3.5 in June seem more reasonable: they
identified both prime and composite numbers correctly for the major cases. Similar findings have been
recently reported [NK23].

Instance-level investigation discloses additional insights. We uniformly randomly sampled 8 numbers
to manually inspect March GPT-4’s step-by-step logic. March GPT-4’s CoT logic was mostly sound in
these cases, though it can make arithmetic mistakes, and it reached the correct conclusion in 7 of the 8
cases. We show 4 examples below and provide the others in the Appendix. For example, the following
generation by GPT-4 gave the correct reasoning steps for 19997.
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Step 1: Check if the number is divisible by 2. Since 19997 is an odd number, it is not divisible
by 2.
Step 2: Find the square root of the number. The square root of 19997 is approximately 141.4.
Step 3: Check for divisibility by prime numbers less than or equal to the square root. We will
check for divisibility by 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, and 139.
19997 is not divisible by any of these prime numbers.
Therefore, 19997 is a prime number.
Answer: [Yes]

Asking the same query multiple times gives the same conclusion, though the intermediate reasoning
steps can be slightly different. For example, a second generation by GPT-4 in March was more verbose,
as it explicitly checked the divisibility of 19997 by each prime number less than it (see Appendix). In
addition, GPT-4 in March also identified composite numbers divisible by 2 or 5 correctly. For example,
to determine whether 16450 is prime, GPT-4 in March wrote the following response.

Step 1: Check if the number is even. If it is, then it is not prime (except for 2). 16450 is an
even number because it ends in 0.
So, the answer is [No].

Similarly, to check 9175, it gave the following reasoning steps.

Step 1: Find the square root of 9175. The square root of 9175 is approximately 95.78.
Step 2: Check for divisibility by smaller prime numbers (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97).
Step 3: 9175 is divisible by 5 (9175 ÷ 5 = 1835).
Since 9175 is divisible by a prime number other than itself and 1, it is not a prime number.
Answer: [No]

In both cases, March GPT-4’s step-by-step logic led to the right answer. However, it also made
subtle mistakes on some other queries. For example, to check whether 4323 is a prime number, it
generated the following content.

- 4323 is not divisible by 3 (4323 / 3 = 1441 with a remainder).

Here, it actually used the correct logic (checking if 4323 is divisible by any prime numbers), but
made a mistake in calculation (4323/3 = 1441 exactly without a remainder).

3.2 Math II (Counting Happy Numbers): CoT Also Less Effective

To further investigate ChatGPT’s math problem solving and chain-of-thought behaviors, we asked it to
tackle a different math problem: counting the number of happy numbers [Guy04, pp. 357-360] within a
given interval. An integer is called happy if replacing it by the sum of the square of its digits repeatedly
eventually produces 1. For example, 13 is a happy number because 12 + 32 = 10, and 12 + 02 = 1. This
task complements prime testing because it asks for a quantitative response (number of happy numbers)
rather than a binary decision (e.g., prime or composite) and it only uses simple arithmetic. To assess
LLM drift on this task, we constructed a dataset of 500 queries. Each query asks how many happy
numbers there are within a given interval and we quantify how often the LLM gets the correct number
exactly. The interval size was uniformly randomly selected from 6 to 10, and the interval starting point
was uniformly randomly chosen from 500 to 15,000. To encourage logic reasoning steps, we adopt CoT
prompting again.

We also observed significant performance drifts on this task. As shown in Figure 4(a), GPT-4’s
accuracy dropped from 83.6% in March to 35.2% in June. On the other hand, accuracy of GPT-3.5
increased from 30.6% to 48.2%. There was also a large change in the verbosity (number of characters
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To determine the number of happy numbers between 3904 and 3912, we need
to check each number in this range to see if it is a happy number.
A happy number is a number that, when repeatedly replaced by the sum of the
squares of its digits, eventually reaches 1. If it never reaches 1 and instead
enters a cycle, it is not a happy number.
Let's check each number in the range:
3904: $3^2 + 9^2 + 0^2 + 4^2 = 90$ [...] 3904 is not a happy number.
3905: $3^2 + 9^2 + 0^2 + 5^2 = 91$
[...]
$1^2 + 0^2 + 0^2 = 1$
3905 is a happy number. [...]
Out of the numbers between 3904 and 3912, there are $\boxed{4}$ happy
numbers.

First, we need to know what a happy number is. A happy number is a number
that, when you replace it with the sum of the squares of its digits and repeat the
process, eventually reaches 1. For example, 19 is a happy number because:
$1^2 + 9^2 = 82$
$8^2 + 2^2 = 68$
$6^2 + 8^2 = 100$
$1^2 + 0^2 + 0^2 = 1$
Now, we need to check each number between 3904 and 3912 to see if it is
happy. We can start with 3904: [...]
We have reached a cycle of 37 and 145, so 3904 is not a happy number. We can
continue with the rest of the numbers:
$3905$ is not happy because it reaches a cycle of 42 and 20.
$3906$ is not happy because it reaches a cycle of 45 and 41.
$3907$ is not happy because it reaches a cycle of 58 and 89.
[...]
Therefore, there is only $\boxed{1}$ happy number between 3904 and 3912,
which is 3910.

Let's check each number between 3904 and 3912 to see if they are happy
numbers.
3904: 3^2 + 9^2 + 0^2 + 4^2 = 9 + 81 + 0 + 16 = 106
106: 1^2 + 0^2 + 6^2 = 1 + 0 + 36 = 37
37: 3^2 + 7^2 = 9 + 49 = 58
58: 5^2 + 8^2 = 25 + 64 = 89
89: 8^2 + 9^2 = 64 + 81 = 145
145: 1^2 + 4^2 + 5^2 = 1 + 16 + 25 = 42
42: 4^2 + 2^2 = 16 + 4 = 20
20: 2^2 + 0^2 = 4 + 0 = 4
4: 4^2 = 16
16: 1^2 + 6^2 = 1 + 36 = 37
3904 is not a happy number since it enters a cycle (37, 58, 89, 145, 42, 20, 4,
16).
3905: [...] 3905 is not a happy number since it enters the same cycle as 3904.
[...]
There are 2 happy numbers between 3904 and 3912: 3907 and 3910.
So, the answer is \boxed{2}.
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Figure 4: Math II (Counting Happy Numbers). (a) Overall drifts. The accuracy of GPT-4
dropped from 83.6% to 35.2%. On the other hand, there was a 17.8% accuracy gain for GPT-3.5.
GPT-4 became less verbose while GPT-3.5 generated much longer answers. (b) Example query and
corresponding answers. GPT-4 followed the CoT instructions but ignored it in June. GPT-3.5 followed
CoT in March and June, and gave a longer reasoning steps in June.

in the generated responses). GPT-4’s generation length dropped from 2163.5 in March to 10.0 in June,
but GPT-3.5’s length increased by more than 60%. Compared to prime testing (Math I), the answer
lengths on average were significantly larger due to requiring more steps to enumerate the numbers in
the interval and repeatedly square digits. In addition, 67.6% of GPT-4’s final answers changed between
March and June, as did 77.2% of GPT-3.5’s.

As with the prime number testing task, we observed a large shift in the LLMs’ CoT behaviors. As
shown in Figure 4(b), GPT-4 in June did not follow the CoT instructions and only gave a final answer,
while its March counterpart followed the instructions to leverage reasoning steps. GPT-3.5 followed
CoT instructions in both March and June. Its reasoning steps in June were much longer than that in
March. While overall this led to better performance, sometimes it was problematic due to exceeding
the maximum token length and thus not generating the final answer.

To further understand how the CoT effects’ shifts, we asked each service the same query either with
or without CoT prompting, and studied how much accuracy gain was achieved by having CoT. We have
found that CoT’s benefits shifted too. For example, for GPT-4, CoT brought 56.6% accuracy boost in
March but only 3.2% in June, as shown in Table 2. For GPT-3.5, CoT led to 20.6% performance gains
in June. In March, however, CoT caused a 1.6% accuracy drop.

The number of mistakes made by GPT-4 and GPT-3.5 changed over time. But what new mistakes
did they make? To answer this question, we performed a fine-grained analysis on the confusion matrix
of these LLMs over time, as shown in Figure 5. It was interesting to note how the bias of GPT-4 and
GPT-3.5 changed over time. GPT-4 in June had a strong belief that there was only 0 or 1 happy
number within any given interval. On the other hand, GPT-3.5 in June was inclined to overestimate
the number: on more than 10% queries, it responded that there were more than 4 happy numbers,
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Table 2: Benefits of CoT drift over time for happy number counting. For GPT-4, CoT brought 56.6%
accuracy gains in March, which dropped to 3.2% in June. For GPT-3.5, the accuracy gains were 20.6%
in June. Interestingly, adding CoT to GPT-3.5 caused a 1.6% performance downgrade in March.

LLM Service
GPT-4 GPT-3.5

Prompting method
∆

Prompting method
∆

Eval Time No CoT CoT No CoT CoT

Mar-23 27.0% 83.6% 56.6% 32.2% 30.6% -1.6%

Jun-23 32.0% 35.2% 3.2% 27.6% 48.2% 20.6%
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Figure 5: Confusion matrix shift for counting happy numbers. GPT-4’s March version calculated
the number correctly for most queries, while its June version responded that there was only one happy
number most of the time.

while 4 was actually the upper bound among all our queries. We also ran additional experiments with
smaller intervals for happy numbers and observed similar trends in the LLMs’ behavior (see Appendix).

3.3 Answering Sensitive Questions: Safer but Less Rationale

Prompting LLMs with sensitive questions is known to lead to harmful generations such as social
biases [GLK+22], personal information [CTW+21], and toxic texts [GGS+20]. Thus, another goal of
this paper was to understand how LLM services’ responses to sensitive questions have shifted over
time. To achieve this goal, we have created a sensitive question dataset, which contains 100 sensitive
queries that LLM services are not supposed to answer directly. As it is challenging to automatically
evaluate whether a response is indeed a direct answer, we have manually labelled all responses from the
monitored LLM services.

We observed two major trends on this task. First, as shown in Figure 6, GPT-4 answered fewer
sensitive questions from March (21.0%) to June (5.0%) while GPT-3.5 answered more (from 2.0% to
8.0%). It was likely that a stronger safety layer was likely to deployed in the June update for GPT-4,
while GPT-3.5 became less conservative. Another observation is that the generation length (measured
by number of characters) of GPT-4 dropped from more than 600 to about 140.

Why did the generation length change? Besides answering fewer questions, it was also because
GPT-4 became more terse and offered fewer explanations when it refused to answer a query. To see
this, consider the example shown in Figure 6(b). GPT-4 refused to answer the inappropriate query in
both March and June. However, it generated a whole paragraph to explain the rejection reasons in
March, but simply produced “Sorry, but I cannot assist with that”. A similar phenomenon happened
for GPT-3.5 too. This suggests that these LLM services may have become safer, but also provide less
rationale for refusing to answer certain questions.
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Figure 6: Answering sensitive questions. (a) Overall performance changes. GPT-4 answered fewer
questions from March to June while GPT-3.5 answered slightly more. (b) An example query and
responses of GPT-4 and GPT-3.5 at different dates. In March, GPT-4 and GPT-3.5 were verbose and
gave detailed explanation for why it did not answer the query. In June, they simply said sorry.

Table 3: Comparison of response rate drifts on plain texts and AIM attacks with jailbreak prompts.
GPT-3.5 failed to defend agaiAnst IM attacks: its response rate was high in both March (100%) and
June (96%). On the other hand, GPT-4’s updates offered a stronger defense against the attacks: the
answer rate for AIM attacks dropped from 78.0% in March to 31.0% in June.

LLM Service
GPT-4 GPT-3.5

Query mode Query mode

Eval Time Plain Text AIM Attack Plain Text AIM Attack

Mar-23 21.0% 78.0% 2.0% 100.0%

Jun-23 5.0% 31.0% 8.0% 96.0%

LLM Jailbreaking. Jailbreaking attacks are a major thread to LLM service safety [GLK+22]. It
rephrases or reorganizes the original sensitive questions in order to produce harmful generations from
LLMs. Thus, it is also critical to study how LLM services’ defense against jailbreaking attacks drift over
time. Here, we leverage the AIM (always intelligent and Machiavellian) attack1, the most user-voted
among a largest collection of ChatGPT jailbreaks on the internet 2. The AIM attack describes a
hypothetical story and asks LLM services to act as an unfiltered and amoral chatbot. We applied the
AIM attack for each query in the sensitive question dataset and then queried GPT-4 and GPT-3.5.
The answer rate of their March and June versions was shown in Table 3. There was a large increase
of answer rate for both both GPT-4 and GPT-3.5 when AIM attack was deployed. However, their
temporal drifts differed substantially. For GPT-4, AIM attack produced 78% direct answers in March,
but only 31.0% in June. For GPT-3.5, there was only a 4% (=100%-96%) answer rate difference among
the two versions. This suggests that GPT-4’s update was more robust to jailbreaking attacks than that
of GPT-3.5.

3.4 OpinionQA Survey: Lower Response Rate

LLMs are increasingly leveraged for open-ended text generation, where bias in the opinions in their
training or fine-tuning data can play an important role. Therefore, it is vital to understand how

1www.jailbreakchat.com/prompt/4f37a029-9dff-4862-b323-c96a5504de5d
2jailbreakchat.com

9

www.jailbreakchat.com/prompt/4f37a029-9dff-4862-b323-c96a5504de5d
jailbreakchat.com


27.5%
0

0.2
0.4
0.6
0.8

1

GPT-4 GPT-3.5

March 2023

June 2023

(B). The U.S. will be less important in the world

This question is subjective and depends on the individual's
perspective. As an AI, I don't have personal opinions.

(A) The U.S. will be more important in the world.

(A). The U.S. will be more important in the world

Response Rate Verbosity Mismatch Verbosity Mismatch

a

b
Example

You are taking a survey.  Pick the best single option (e.g., (A)).
Question: Still thinking ahead 30 years, which do you think is more likely to happen in the U.S.? The U.S. will be more/less important in the
world
(A). The U.S. will be more important in the world
(B). The U.S. will be less important in the world
(C). Refused
Answer:

28.3 27.7

March 2023 June 2023
0
5

10
15
20
25
30
35
40

94.3% 96.7%

March 2023 June 2023
0

0.2
0.4
0.6
0.8

1

79.2%

0
0.2
0.4
0.6
0.8

1

29.8

68.8

March 2023 June 2023
0

20
40
60
80

100
97.6%

22.1%
March 2023 June 2023

0
0.2
0.4
0.6
0.8

1

Evaluation

Response Rate

Figure 7: OpinionQA Survey. (a) Drifts on response rate, verbosity, and mismatch rate. Overall,
GPT-4 became much less willing to answer survey questions. (b) An example query and responses of
GPT-4 and GPT-3.5 at different dates. GPT-4 refused to offer its opinion in June, while it did not in
March.

LLMs’ opinion biases change over time. To address this problem, we leverage OpinionQA [SDL+23], a
survey dataset that contains 1,506 opinion questions. We pick this dataset as its questions were drawn
from high-quality public opinion polls. We followed the multiple-choice question format provided in
[SDL+23], and added “Pick the best single option” for ease of extracting the answer.

There were substantial and interesting drifts over time on this opinion survey. First, GPT-4 became
less willing to offer its opinions. As shown in Figure 7(a), GPT-4’s response rate dropped from 97.6%
in March to 22.1% in June. In contrast, GPT-3.5’s response rate actually increased by 2%. GPT-3.5
answered almost all questions in both March and June. Yet, 27% of its opinions changed from March
to June. For comparison, running GPT-3.5 March twice yields disagreement rate of 2.8% and running
GPT-3.5 June twice yields disagreement rate of 7.0%, due to LLM’s stochasticity. These indicate
considerable opinion drifts over time above and beyond model’s randomness.

A closer look at how the opinions changed gave us additional insights. As shown in the example
in Figure 7(b), GPT-4 in March believed that the US will be less important in the world. In June,
however, the model refused to answer the question, because it viewed the question as “subjective” and
thus it simply generated “As an AI, I don’t have personal opinions”. This illustrates a significant
change in GPT-4’s behavior in responding (or not responding) to subjective questions.

3.5 Code Generation: Less Adherence to Formatting Instructions

One major application of LLMs is code generation [CTJ+21]. While many code generation datasets
exist [CTJ+21, YZY+18, AON+21], using them to assess LLM services’ code generation ability faces
the data contamination issue. To overcome this, we have constructed a new code generation dataset.
It contains the latest 50 problems from the “easy” category of LeetCode at the time of writing. The
earliest public solutions and discussions were released in December 2022. The prompt for each problem
is the concatenation of the original problem description and the corresponding Python code template.
Each LLM’s generation was directly sent to the LeetCode online judge for evaluation. We call it directly
executable if the online judge accepts the answer (i.e., the answer is valid Python and passes its tests).

Overall, the number of directly executable generations dropped from March to June. As shown in
Figure 8 (a), over 50% generations of GPT-4 were directly executable in March, but only 10% in June.
The trend was similar for GPT-3.5. There was also a small increase in verbosity for both models.

Why did the number of directly executable generations decline? One possible explanation is that
the June versions consistently added extra non-code text to their generations. Figure 8 (b) gives
one such instance. GPT-4’s generations in March and June are almost the same except two parts.
First, the June version added ‘‘‘python and ‘‘‘ before and after the code snippet (likely to format
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```python
class Solution(object):
    def isFascinating(self, n):
        # Concatenate n, 2*n and 3*n
        s = str(n) + str(n*2) + str(n*3)  
        # Check if the length of s is 9 and contains all digits from 1 to 9
        return len(s) == 9 and set(s) == set('123456789')
```

GPT-4 GPT-3.5

March 2023

June 2023

class Solution(object): 
    def isFascinating(self, n): 
        # Convert n to string for easier manipulation 
        n_str = str(n)    
        # Concatenate n, 2*n, and 3*n 
        concatenated_str = n_str + str(2*n) + str(3*n) 
        # Check if concatenated string contains all digits from 1 to 9
exactly once 
        if set(concatenated_str) == set('123456789'): 
            return True 
        else: 
            return False

```python
class Solution(object):
    def isFascinating(self, n):
        # Convert n to string
        n_str = str(n)
        # Concatenate n with 2*n and 3*n
        concatenated_str = n_str + str(2 * n) + str(3 * n)
        # Check if the concatenated string contains 
        # all digits from 1 to 9 exactly once
        if set(concatenated_str) == set('123456789'):
            return True
        else:
            return False
```

Directly Executable Verbosity Mismatch Verbosity Mismatch 

a

b
Example

[Description]: You are given an integer  that consists of exactly  digits. We call the number  fascinating if, after the following
modification, the resulting number contains all the digits from  to  exactly once and does not contain any 's: 
Concatenate  with the numbers  and . Return  if  is fascinating, or  otherwise.
'Concatenating' two numbers means joining them together. For example, the concatenation of  and  is .
[Examples]: ...... 
[Note]: Solve it by filling in the following python code. Generate the code only without any other text. 
class Solution: 
 ... 

class Solution(object): 
    def isFascinating(self, n): 
        concatenated_number = str(n)  +str(2 * n) + str(3 * n) 
        return sorted(concatenated_number)=['1', '2', '3', '4', '5', '6', '7', '8',
'9']
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Figure 8: Code generation. (a) Overall performance drifts. For GPT-4, the percentage of generations
that are directly executable dropped from 52.0% in March to 10.0% in June. The drop was also large
for GPT-3.5 (from 22.0% to 2.0%). GPT-4’s verbosity, measured by number of characters in the
generations, also increased by 20%. (b) An example query and the corresponding responses. In March,
both GPT-4 and GPT-3.5 followed the user instruction (“the code only”) and thus produced directly
executable generation. In June, however, they added extra triple quotes before and after the code
snippet, rendering the code not executable.

it as Markdown in UIs). Second, it also generated a few more comments. While a small change, the
extra triple quotes render the code not executable. This type of shift in formatting behavior can be
particularly challenging to detect when LLM’s generated code is used inside a larger software pipeline.

We also study whether the generated code passes the LeetCode tests after additional post-processing
that removes the non-code text. As shown in Table 4, there was again a notable drift: GPT-4’s
performance increased from 52% to 70%, and there was a 2% improvement for GPT-3.5. While the
code’s correctness improved, the failure to format the formatting instructions (“generate the code only”)
is still a problematic change in behavior between the two GPT model versions.

3.6 LangChain HotpotQA Agent: Poor Prompt Stability

Many real-world applications require LLMs to answer knowledge-intensive questions grounded in various
data sources, including “multi-hop” questions that involve multiple sources and/or reasoning steps.
Therefore, it is natural to monitor how LLMs’ ability to answer multi-hop questions evolves over time.
We take a first step by measuring the drifts of a LangChain HotpotQA Agent [Tea23], a pipeline to
answer complex multi-hop questions similar to those from HotpotQA [YQZ+18]. This agent leveraged
LLMs to search over Wikipedia passages to answer complex questions. We pick this pipeline for two
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Table 4: Effects of removing non-code text around generated code. There was no effect for GPT-4 in
March since it followed the user instructions well. For the other versions, removing non-code texts
rendered more code able to pass the LeetCode questions.

LLM Service
GPT-4 GPT-3.5

removing non-code texts
∆

removing non-code texts
∆

Eval Time No Yes No Yes

Mar-23 52.0% 52.0% 0.0% 22.0% 46.0% 24.0%

Jun-23 10.0% 70.0% 60.0% 2.0% 48.0% 46.0%
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Figure 9: LangChain HotpotQA Agent. (a) Drifts on exact match, verbosity, and mismatch rate.
Overall, GPT-4 matched more ground-truth while GPT-3.5 became worse. (b) An example query and
corresponding answers. LangChain was not able to parse March GPT-4’s response because it failed to
follow the format specified in the LangChain prompt. GPT-3.5 in June could not find the information
that it was able to obtain in March. These issues highlight the stability issues of integrating LLM into
larger pipelines.

reasons. First, LangChain is one of the most popular software frameworks for working with LLMs,
providing open source modules that have been “prompt-engineered” to perform various tasks well. The
stability of these modules’ prompts over time is therefore of interest to many users. Second, HotpotQA
is widely used to measure an LLM’s ability to answer multi-hop questions. Specifically, we used the
default ReAct Agent in LangChain3 (designed to reproduce ReAct prompting [YZY+22]) with different
LLMs (GPT-4 and GPT-3.5) as the backbone for our code. Then we asked the agent to answer each
query in the HotpotQA dataset.

Overall, we observed significant drifts for both GPT-4 and GPT-3.5 on this task. For example, the
exact match rate for GPT-4 was only 1.2% in March, but became 37.8% in June, as shown in Figure
9(a). Opposite trends were observed for GPT-3.5: the exact match rate dropped by almost 9% from
March to June. Moreover, more than 80% of final answers between March and June did not match for
both models. We also noticed that GPT-4’s generation in June became more concise than in March,
while GPT-3.5’s generation was 30% more verbose over time.

Why did this happen? A closer look at the mismatched answers suggests the poor prompt stability
as one of the explanations. To see this, consider the example in Figure 9(b). The query was about
whether two people were Democrats or Republicans. GPT-4 in March was actually able to find the
correct answer: they both were Democrats. However, the LangChain agent expected a specific format:
the generation from LLM must be “[action]+text”, which was encoded in its prompts. Unfortunately,
GPT-4 in March failed to follow this format, and thus the LangChain agent simply generated an
error message “could not parse LLM Output”. This is problematic in real-world LLM applications, as

3https://python.langchain.com/docs/modules/agents/agent_types/react_docstore
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The answer is (B) K+ is Decreased, Cl⁻ is decreased, HCO³⁻ is
increased. 

The answer is (A) K+ is Decreased, Cl⁻ is decreased, HCO³⁻ is
decreased.

The answer is (B) K+ is Decreased, Cl⁻ is decreased, HCO³⁻ is
increased. This patient is presenting with symptoms of bulimia
nervosa, which can lead to electrolyte imbalances due to frequent
vomiting. The decreased K+ and Cl⁻ levels are due to loss through
vomiting, while the increased HCO³⁻ level is a compensatory
mechanism to counteract the metabolic acidosis caused by the loss
of stomach acid through vomiting. Tender parotid glands and poor
dentition are also common physical findings in patients with bulimia
nervosa.

Step 1: Analyze the patient's symptoms and history.-The patient is a 20-year-old woman who is a sophomore in
college.- She overeats in response to the stress of her classes and induces vomiting after consuming a significant
amount of food.- She vomits almost daily and feels "too full" and "out of control."- She feels she is slightly
overweight.- She is physically active and exercises moderately two to three times weekly. - She does not use
laxatives or diuretics.- She has many friends and enjoys going out socially. - She drinks three to four beers on
weekends and does not use illicit drugs. - She appears uncomfortable and is tearful and mildly diaphoretic.- She
has tender parotid glands bilaterally and poor dentition.
Step 2: Identify the relevant findings.  - The patient's BMI is 24 kg/m², which indicates she is slightly overweight. -
Her temperature is 37.5°C (99.5°F), pulse is 115/min and regular, and blood pressure is 100/68 mm Hg. - She has
tender parotid glands bilaterally and poor dentition.
Step 3: Formulate a hypothesis. Based on the patient's symptoms and findings, it is likely that she is suffering from
bulimia nervosa, a type of eating disorder characterized by recurrent episodes of binge eating followed by
compensatory behaviors such as self-induced vomiting.
Step 4: Determine the expected laboratory findings. In patients with bulimia nervosa, the most common electrolyte
abnormalities are hypokalemia (decreased K+), hypochloremia (decreased Cl⁻), and metabolic alkalosis (increased
HCO³⁻) due to repeated vomiting and loss of gastric acid.
Step 5: Compare the expected laboratory findings with the answer choices.The answer choice that matches the
expected laboratory findings is (A) K+ is Decreased, Cl⁻ is decreased, HCO³⁻ is decreased. Therefore, the answer is
(A) K+ is Decreased, Cl⁻ is decreased, HCO³⁻ is decreased.

Accuracy Verbosity Mismatch Accuracy Verbosity Mismatch

a

b
Example

You are an expert in medical exams. To answer the following medical question, think step by step and then generate "The answer is (X)"
(where X is the option). 

Q: A previously healthy 20-year-old woman, who is a sophomore in college, is brought to the emergency department by her roommates
because of an 8-hour history of weakness and vomiting blood and a 2-day history of dizziness. She has no history of similar symptoms. She
says she overeats in response to the stress of her classes. She induces vomiting after consuming a significant amount of food because she
feels "too full" and "out of control." She now vomits almost daily. She feels she is slightly overweight. She is physically active and exercises
moderately two to three times weekly. She does not use laxatives or diuretics. She has many friends and enjoys going out socially. She takes
no medications. She drinks three to four beers on weekends and does not use illicit drugs. She appears uncomfortable and is tearful and
mildly diaphoretic. She is 157 cm (5 ft 2 in) tall and weighs 59 kg (130 lb); BMI is 24 kg/m². Temperature is 37.5°C (99.5°F), pulse is 115/min
and regular, and blood pressure is 100/68 mm Hg. Examination shows tender parotid glands bilaterally and poor dentition. Results of
laboratory studies are most likely to show which of the following in this patient?  
(A) K+ is Decreased, Cl⁻ is decreased, HCO³⁻ is decreased  
(B) K+ is Decreased, Cl⁻ is decreased, HCO³⁻ is increased  
(C) K+ is Decreased, Cl⁻ is increased, HCO³⁻ is decreased  
(D) K+ is Increased, Cl⁻ is decreased, HCO³⁻ is increased  
(E) K+ is Increased, Cl⁻ is increased, HCO³⁻ is decreased 
(F) K+ is Increased, Cl⁻ is increased, HCO³⁻ is increased 
A:
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Figure 10: USMLE Medical Exams. (a) Drifts on accuracy, verbosity, and mismatch. The accuracy
change of GPT-4 dropped by 4.5% between March and June, and the answer mismatch rate between
the two versions is much larger. Overall, 12.2% of GPT-4’s answers in June were different from their
counterparts in March. (b) An example query and model answers. GPT-4 didn’t follow CoT instructions
in this example. The longer reasoning steps by GPT-3.5 in June actually led to the wrong answer.

manually debugging such issues is challenging in large pipelines. In addition, GPT-3.5 in March found
the right answer. In June, however, it “was not able to find information”. These issues indicate how
brittle existing prompting methods and libraries can be for complex tasks in the face of LLM drift.

3.7 USMLE Medical Exam: Small Decrease in GPT-4 Performance

We study next how performance of GPT-4 and GPT-3.5 change over time on a professional domain:
taking USMLE [KCM+23], a medical exam required for doctors in the US. USMLE has been used to
benchmark LLMs’ medical knowledge.

Overall, we observe a slight performance decrease. As shown in Figure 10(a) , GPT-4’s accuracy
dropped from 86.6% to 82.4%. There was also a 0.8% accuracy loss for GPT-3.5. Interestingly, GPT-3.5
became much more verbose from March to June. It is also worth noting a relatively large answer
mismatch between March and June for both models. In fact, 12.2% answers in March were different
from their counterparts in June for GPT-4, and the mismatch rate was 27.9% for GPT-3.5. These two
are much larger than the accuracy changes. This effectively means that the June versions corrected
previous errors but also made additional mistakes. Overall, we also found that GPT-4 June was much
less verbose in its response compared to GPT-4 March, while GPT-3.5’s responses to USMLE questions
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Figure 11: Visual reasoning. (a) Overall performance. For both GPT-4 and GPT-3.5, there was a
2% improvement of the exact match rate from March to June. The generation length remained roughly
the same. More than 60% generation changed from March to June. (b) An example query and the
corresponding responses. While overall GPT-4 became better over time, it was worse on this particular
query. It gave the correct grid in March but the wrong one in June.

became longer.

3.8 Visual Reasoning: Small Improvements in Both Models

Finally, we investigate LLM drifts for visual reasoning. This task differs from other scenarios because it
requires abstract reasoning. The ARC dataset [Cho19] is commonly used to assess visual reasoning
ability. The task is to create a output grid corresponding to an input grid, based solely on a few similar
examples. Figure 11(b) gives one example query from ARC. To show the visual objects to LLM services,
we represent the input and output grids by 2-D arrays, where the value of each element denotes the
color. We fed the LLM services 467 samples in the ARC dataset that fits in all services’ context window.
Then we measured the exact match between their generation and the ground truth.

As shown in Figure 11(a), there were marginal performance improvements for both GPT-4 and
GPT-3.5. However, for more than 90% visual puzzle queries, the March and June versions produced
the exact same generation. These services’ overall performance were also low: 27.4% for GPT-4 and
12.2% for GPT-3.5.

It is worthy noting that LLM services did not uniformly make better generations over time. In
fact, despite better overall performance, GPT-4 in June made mistakes on queries on which it was
correct for in March. Figure 11(b) gives one such example. This underlines the need of fine-grained
drift monitoring, especially for critical applications.

4 Conclusions and Future Work

Our findings demonstrate that the behavior of GPT-3.5 and GPT-4 has varied significantly over a
relatively short amount of time. This highlights the need to continuously evaluate and assess the
behavior of LLM drifts in applications, especially as it is not transparent how LLMs such as ChatGPT
are updated over time. Our study also underscores the challenge of uniformly improving LLMs’
multifaceted abilities. Improving the model’s performance on some tasks, for example with fine-tuning
on additional data, can have unexpected side effects on its behavior in other tasks. Consistent with
this, both GPT-3.5 and GPT-4 got worse on some tasks but saw improvements in other dimensions.
Moreover, the trends for GPT-3.5 and GPT-4 are often divergent. Beyond the final performances, it’s
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interesting to observe shifts in chain-of-thought behaviors and verbosity of the models.
We plan to update the findings presented here in an ongoing long-term study by regularly evaluating

GPT-3.5, GPT-4 and other LLMs on diverse tasks over time. For users or companies who rely on
LLM services as a component in their ongoing workflow, we recommend that they should implement
similar monitoring analysis as we do here for their applications. We thank the many people who have
provided helpful feedback to our work. To encourage further research on LLM drifts, we have release
our evaluation data and ChatGPT responses at https://github.com/lchen001/LLMDrift.
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A Additional Query and Response Examples

A.1 GPT-4’s Generation in March for Prime Numbers

Example 1. The query is as follows.

Is 7937 a prime number? Think step by step and then answer ”[Yes]” or ”[No]”.

And below is the response from GPT-4’s March version.

Step 1: Find the square root of 7937, which is approximately 89. Step 2: Check for divisibility
by prime numbers less than 89 (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83). Step 3: 7937 is not divisible by any of these prime numbers.
Answer: [Yes]

Example 2. The query is as follows.

Is 2647 a prime number? Think step by step and then answer ”[Yes]” or ”[No]”.

And below is the response from GPT-4’s March version.

Step 1: Find the square root of 2647, which is approximately 51.45.
Step 2: Check for divisibility by prime numbers less than 51.45 (2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47).

2647 is not divisible by 2 (it’s odd). 2647 is not divisible by 3 (sum of digits is 19, which is not
divisible by 3). 2647 is not divisible by 5 (it doesn’t end in 0 or 5).
2647 is not divisible by 7 (2647/7 = 377.857, not a whole number).
2647 is not divisible by 11 (2647/11 = 240.636, not a whole number).
2647 is not divisible by 13 (2647/13 = 203.615, not a whole number).
2647 is not divisible by 17 (2647/17 = 155.706, not a whole number).
2647 is not divisible by 19 (2647/19 = 139.316, not a whole number).
2647 is not divisible by 23 (2647/23 = 115.087, not a whole number).
2647 is not divisible by 29 (2647/29 = 91.276, not a whole number).
2647 is not divisible by 31 (2647/31 = 85.387, not a whole number).
2647 is not divisible by 37 (2647/37 = 71.541, not a whole number).
2647 is not divisible by 41 (2647/41 = 64.561, not a whole number).
2647 is not divisible by 43 (2647/43 = 61.558, not a whole number).
2647 is not divisible by 47 (2647/47 = 56.319, not a whole number).

Since 2647 is not divisible by any prime numbers less than its square root, it is a prime number.
[Yes]

It is worthy noting that, while the conclusion was correct and most reasoning steps were correct,
GPT-4 still made one arithmetic mistake in this case. That is, GPT-4 generated 2647/7 = 377.857,
while the correct result should be 378.142.

Example 3. The query is as follows.

Is 3529 a prime number? Think step by step and then answer ”[Yes]” or ”[No]”.

And below is the response from GPT-4’s March version.
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Step 1: Check if the number is divisible by 2. Since 3529 is an odd number, it is not divisible by
2.
Step 2: Find the square root of the number. The square root of 3529 is approximately 59.4.
Step 3: Check if the number is divisible by any odd numbers up to the square root.
3 is not a factor (3529/3 = 1176.333)
5 is not a factor (3529/5 = 705.8)
7 is not a factor (3529/7 = 504.142)
11 is not a factor (3529/11 = 320.818)
13 is not a factor (3529/13 = 271.462)
17 is not a factor (3529/17 = 207.588)
19 is not a factor (3529/19 = 185.736)
23 is not a factor (3529/23 = 153.435)
29 is not a factor (3529/29 = 121.69)
31 is not a factor (3529/31 = 113.839)
37 is not a factor (3529/37 = 95.378)
41 is not a factor (3529/41 = 86.073)
43 is not a factor (3529/43 = 82.07)
47 is not a factor (3529/47 = 75.085)
53 is not a factor (3529/53 = 66.604)
59 is not a factor (3529/59 = 59.814)

Since 3529 is not divisible by any odd numbers up to its square root, it is a prime number.
Answer: [Yes]

Example 4. The query is as follows.

Is 9241 a prime number? Think step by step and then answer ”[Yes]” or ”[No]”.

And below is the response from GPT-4’s March version.
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Step 1: Find the square root of 9241. The square root of 9241 is approximately 96.1.
Step 2: Check for divisibility by prime numbers less than 96.1. The prime numbers less than
96.1 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, and 89.
Step 3: Check if 9241 is divisible by any of these prime numbers.
- 9241 is not divisible by 2 (it’s an odd number).
- 9241 is not divisible by 3 (the sum of its digits is 16, which is not divisible by 3).
- 9241 is not divisible by 5 (it doesn’t end in 0 or 5).
- 9241 is not divisible by 7 (9241 divided by 7 is approximately 1319.2857, which is not a whole
number).
- 9241 is not divisible by 11 (9241 divided by 11 is approximately 840.0909, which is not a whole
number).
- 9241 is not divisible by 13 (9241 divided by 13 is approximately 710.8462, which is not a whole
number).
- 9241 is not divisible by 17 (9241 divided by 17 is approximately 543.5882, which is not a whole
number).
- 9241 is not divisible by 19 (9241 divided by 19 is approximately 486.3684, which is not a whole
number).
- 9241 is not divisible by 23 (9241 divided by 23 is approximately 401.8696, which is not a whole
number).
- 9241 is not divisible by 29 (9241 divided by 29 is approximately 318.6552, which is not a whole
number).
- 9241 is not divisible by 31 (9241 divided by 31 is approximately 298.0968, which is not a whole
number).
- 9241 is not divisible by 37 (9241 divided by 37 is approximately 249.7568, which is not a whole
number).
- 9241 is not divisible by 41 (9241 divided by 41 is approximately 225.3902, which is not a whole
number).
- 9241 is not divisible by 43 (9241 divided by 43 is approximately 214.9070, which is not a whole
number).
- 9241 is not divisible by 47 (9241 divided by 47 is approximately 196.6170, which is not a whole
number).
- 9241 is not divisible by 53 (9241 divided by 53 is approximately 174.3585, which is not a whole
number).
- 9241 is not divisible by 59 (9241 divided by 59 is approximately 156.6102, which is not a whole
number).
- 9241 is not divisible by 61 (9241 divided by 61 is approximately 151.4918, which is not a whole
number).
- 9241 is not divisible by 67 (9241 divided by 67 is approximately 137.8955, which is not a whole
number).
- 9241 is not divisible by 71 (9241 divided by 71 is approximately 130.1549, which is not a whole
number).
- 9241 is not divisible by 73 (9241 divided by 73 is approximately 126.5753, which is not a whole
number).
- 9241 is not divisible by 79 (9241 divided by 79 is approximately 116.9747, which is not a whole
number).
- 9241 is not divisible by 83 (9241 divided by 83 is approximately 111.3253, which is not a whole
number).
- 9241 is not divisible by 89 (9241 divided by 89 is approximately 103.8315, which is not a whole
number).

Step 4: Since 9241 is not divisible by any of the prime numbers less than its square root, it is a
prime number.
Answer: [Yes]
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A.2 GPT-4’s Generation in March for Composite Numbers

Example 1. The query is as follows.

Is 4323 a prime number? Think step by step and then answer ”[Yes]” or ”[No]”.

And below is the full response from GPT-4’s March version. Note that the step “4323 / 3 = 1441
with a remainder” is incorrect.

Step 1: Check if the number is divisible by 2. Since 4323 is an odd number, it is not divisible by
2.
Step 2: Find the square root of the number. The square root of 4323 is approximately 65.7.
Step 3: Check if the number is divisible by any odd numbers less than or equal to the square
root.
- 4323 is not divisible by 3 (4323 / 3 = 1441 with a remainder).
- 4323 is not divisible by 5 (4323 / 5 = 864 with a remainder).
- 4323 is not divisible by 7 (4323 / 7 = 617 with a remainder).
- 4323 is not divisible by 11 (4323 / 11 = 393 with a remainder).
- 4323 is not divisible by 13 (4323 / 13 = 332 with a remainder).
- 4323 is not divisible by 17 (4323 / 17 = 254 with a remainder).
- 4323 is not divisible by 19 (4323 / 19 = 227 with a remainder).
- 4323 is not divisible by 23 (4323 / 23 = 188 with a remainder).
- 4323 is not divisible by 29 (4323 / 29 = 149 with a remainder).
- 4323 is not divisible by 31 (4323 / 31 = 139 with a remainder).
- 4323 is not divisible by 37 (4323 / 37 = 116 with a remainder).
- 4323 is not divisible by 41 (4323 / 41 = 105 with a remainder).
- 4323 is not divisible by 43 (4323 / 43 = 100 with a remainder).
- 4323 is not divisible by 47 (4323 / 47 = 91 with a remainder).
- 4323 is not divisible by 53 (4323 / 53 = 81 with a remainder).
- 4323 is not divisible by 59 (4323 / 59 = 73 with a remainder).
- 4323 is not divisible by 61 (4323 / 61 = 70 with a remainder).

Since 4323 is not divisible by any odd numbers less than or equal to its square root, it is a prime
number.
Answer: [Yes]

A.3 Some Runs Show More Detailed Reasoning

The below is one example query from Math I (prime vs composite).

Is 19997 a prime number? Think step by step and then answer “[Yes]” or “[No]”

The following response was generated by GPT-4’s March Version. Compared to its first generation,
more details were generated.
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Step 1: Check if the number is even. If it is, then it is not prime (except for 2). 19997 is odd, so
we proceed to the next step.
Step 2: Check if the number is divisible by any odd numbers up to the square root of the
number. The square root of 19997 is approximately 141.4.
Step 3: Check divisibility by odd numbers starting from 3.
19997 ÷3 ≈ 6665.67 (not divisible)
19997 ÷5 ≈ 3999.4 (not divisible)
19997 ÷7 ≈ 2856.71 (not divisible)
19997 ÷11 ≈ 1817.91 (not divisible)
19997 ÷13 ≈ 1538.23 (not divisible)
19997 ÷17 ≈ 1176.29 (not divisible)
19997 ÷19 ≈ 1052.47 (not divisible)
19997 ÷23 ≈ 869.87 (not divisible)
19997 ÷29 ≈ 689.9 (not divisible)
19997 ÷31 ≈ 645.39 (not divisible)
19997 ÷37 ≈ 540.46 (not divisible)
19997 ÷41 ≈ 487.49 (not divisible)
19997 ÷43 ≈ 465.28 (not divisible)
19997 ÷47 ≈ 425.47 (not divisible)
19997 ÷53 ≈ 377.3 (not divisible)
19997 ÷59 ≈ 338.93 (not divisible)
19997 ÷61 ≈ 327.82 (not divisible)
19997 ÷67 ≈ 298.46 (not divisible)
19997 ÷71 ≈ 281.65 (not divisible)
19997 ÷73 ≈ 273.94 (not divisible)
19997 ÷79 ≈ 253.13 (not divisible)
19997 ÷83 ≈ 240.93 (not divisible)
19997 ÷89 ≈ 224.68 (not divisible)
19997 ÷97 ≈ 206.15 (not divisible)
19997 ÷101 ≈ 197.99 (not divisible)
19997 ÷103 ≈ 194.15 (not divisible)
19997 ÷107 ≈ 186.97 (not divisible)
19997 ÷109 ≈ 183.45 (not divisible)
19997 ÷113 ≈ 176.97 (not divisible)
19997 ÷127 ≈ 157.47 (not divisible)
19997 ÷131 ≈ 152.65 (not divisible)
19997 ÷137 ≈ 145.97 (not divisible)
19997 ÷139 ≈ 143.86 (not divisible)

Step 4: We have checked all odd numbers up to the square root of 19997 and found no divisors.
Conclusion: 19997 is a prime number.
Answer: [Yes]

B Counting Happy Numbers in Smaller Intervals
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Figure 12: Confusion matrix shift for counting happy numbers within smaller intervals.
Here, the interval size was randomly uniformly sampled from [4,7] (instead of [6,10] in the main paper),
resulting in a smaller number of happy numbers. Overall the trends were similar: GPT-4’s March
version generated the correct answers for most queries, while its June version responded that there was
only one happy number most of the time.
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