deepsense.aideepsense.ai logo
  • Careers
    • Job offers
    • Summer internship
  • Clients’ stories
  • Services
    • AI software
    • Team augmentation
    • AI advisory
    • Train your team
  • Industries
    • Retail
    • Manufacturing
    • Financial & Insurance
    • IT operations
    • TMT & Other
    • Medical & Beauty
  • Knowledge base
    • Blog
    • R&D hub
  • About us
    • Our story
    • Management
    • Advisory board
    • Press center
  • Contact
  • Menu Menu
Five trends for business to surf the big data wave

Five trends for business to surf the big data wave

May 2, 2018/in Big data & Spark /by Konrad Budek

When data becomes really big, sometimes it is faster to upload it into a truck and send it via highway, than to transfer it online. That’s how the 100 petabytes of satellite images of Earth DigitalGlobe collected over 17 years are being moved.

Data being transported in Amazon’s “Snowmobile” truck says a lot about just how big data has grown. And just how much is that? Well, Global IP traffic data has skyrocketed from 96,054 petabytes a month in 2016 to 150,910 petabytes in 2018 and is estimated to hit 278,108 in 2021.
According to an IDC analysis, the world created 16,3 zettabytes of data a year in 2017. By 2025, the amount will be tenfold higher. That’s why businesses cannot afford to overlook critical trends in data management and big data analytics. So how should you go about riding this wave?

Related:  Playing Atari with deep reinforcement learning - deepsense.ai’s approach

1. Growing demand for data science and analytics talents

According to a recent Glassdoor report, data scientist is “the best job in America in 2018”. At the beginning of the year, there were 4,524 job openings with a median base salary of $110,000. Candidates follow the market closely, and it should come as no surprise that new ways to become a data scientist are emerging. As Linkedin’s 2017 U.S. Emerging Jobs Report states, there are 9.8 times more Machine Learning Engineers working today than in 2012.
But there is one challenge – being a data scientist takes more than just knowing how to code in Python. The job requires both specific tech skills and a “data-oriented” mindset. Although new ways of becoming data scientist are emerging, there is a growing gap between the demand for data scientists and the actual supply of this rare species – and that doesn’t appear likely to change anytime soon.
Any company seeking to boost up the business processes with AI and machine learning should bear in mind how challenging hiring a data scientist can be. Building a team internally, Enlisting the support of an experienced mentor to build a team internally, from the ground up, may be more cost-effective and much faster than acquiring specialists.

2. Augmented analysis on the rise

According to Gartner, augmented analytics is “an approach that automates insights using machine learning and natural language generation” that “marks the next wave of disruption in the data and analytics market”. With augmented analytics, companies can use new technologies to efficiently harvest the insights from data, both obvious and less obvious ones.
According to Forbes Insights, 69% of leading-edge companies believe that augmented intelligence will improve customer loyalty and 50% of all companies surveyed think that these technologies will improve customer experience. What’s more, 60% of companies believe that augmented analytics will be crucial in helping them obtain new customers. Clearly, this is not a technology to overlook over underestimate in future investments. Given the volume of data being produced today and the amount of possible correlations it gives rise to, the days of its being inspected manually are numbered.

Related:  Five hottest big data trends 2018 for the techies

3. Edge computing speeds up data transfer

Just as the number of connected devices is growing, so too is the need for computing power required to analyze data. There will be no fewer than 30 billion data-producing devices in 2020. With the decentralization of data comes a plethora of challenges, including delays in data transfer and huge pressure exerted on central infrastructure.
To optimize the amount of data to be transferred via the Internet, companies perform more and more computing near the edge of the network, close to the source of the data. Consider autonomous vehicles, each of which, according to GE, generates 40 terabytes of data for every eight hours of driving. It would be neither practical nor cheap – and for sure not safe – to send all that data to an external processing facility.

4. Convergence, or merging the past, present and future world in one dashboard

Merging data from various sources is nothing new – companies have been using weather forecasts or combining historical data with sales predictions for a long time. New technologies, however, are bringing data merging into the mainstream, and there’s a growing number of use cases to exemplify just why this is happening.
One inspiring example comes from Stella Artois, the producer of apple and pear cider. Analysis of its historical data showed the company that its sales grow when the temperature rises above a certain degree.
So it decided to run an outdoor campaign on digital billboards on a cost-per-minute basis, triggered only by specific conditions – proper temperature, sunny weather and no clouds. The company reported a YOY sales increase north of 65% increase during the period when its weather-responsive campaign ran, efficiently harnessing the power of its data.
We can thank Herradura Tequila, a premium liquor brand, for another fascinating example. The company partnered with Foursquare to gain information about potential customers with their check-ins. What’s more, Herradura’s producer was able to obtain information about other places customers liked to visit.
With the information it gathered, the company was able to send targeted ads to the people representing a similar profile. Combining the historical data with the profile and geolocation resulted in a 23% incremental rise in visits to places selling Herradura among people who had been exposed to the ads, when compared to the control group.

Related:  Spot the flaw - visual quality control in manufacturing

5. New data types – Excel is not enough (nor even close)

With voice-activated personal assistants or image recognition technology going mainstream, companies will gain access to new, unstructured types of data.
By dint of the sheer amount and nature of such data, those flowing from diverse and unstructured sources need to be processed with machine learning algorithms. Manual processing would just be too time-consuming and ineffective.
deepsense.ai’s cooperation with global researcher Nielsen provides a fine example of such algorithms at work. With the power of deep learning, deepsense.ai built an app that swiftly recognizes the ingredient fields on various FMCG products and then uploads the information into a structured, centralized database. With an accuracy of 90%, the solution gives researchers a new tool to deliver faster analysis of the retail market.
The possibilities are countless – be they visual quality control based on IP cameras or logo detection and brand visibility analytics tools – you name it. As the automating quality testing with machine learning may increase defect detection rates up to 90%, the possible savings are impressive.
Big data is quite a common term in modern business. But harvesting the power of the information becomes more problematic as the amount collected continues to grow.

Share this entry
  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on LinkedIn
  • Share on Reddit
  • Share by Mail
https://deepsense.ai/wp-content/uploads/2019/02/five-trends-for-business-to-surf-the-big-data-wave.png 337 1140 Konrad Budek https://deepsense.ai/wp-content/uploads/2019/04/DS_logo_color.svg Konrad Budek2018-05-02 13:35:292022-11-27 21:55:10Five trends for business to surf the big data wave

Start your search here

NEWSLETTER SUBSCRIPTION

    You can modify your privacy settings and unsubscribe from our lists at any time (see our privacy policy).

    This site is protected by reCAPTCHA and the Google privacy policy and terms of service apply.

    THE NEWEST AI MONTHLY DIGEST

    • AI Monthly Digest 20 - TL;DRAI Monthly Digest 20 – TL;DRMay 12, 2020

    CATEGORIES

    • Elasticsearch
    • Computer vision
    • Artificial Intelligence
    • AIOps
    • Big data & Spark
    • Data science
    • Deep learning
    • Machine learning
    • Neptune
    • Reinforcement learning
    • Seahorse
    • Job offer
    • Popular posts
    • AI Monthly Digest
    • Press release

    POPULAR POSTS

    • AI trends for 2021AI trends for 2021January 7, 2021
    • A comprehensive guide to demand forecastingA comprehensive guide to demand forecastingMay 28, 2019
    • What is reinforcement learning? The complete guideWhat is reinforcement learning? deepsense.ai’s complete guideJuly 5, 2018

    Would you like
    to learn more?

    Contact us!
    • deepsense.ai logo white
    • Services
    • Customized AI software
    • Team augmentation
    • AI advisory
    • Knowledge base
    • Blog
    • R&D hub
    • deepsense.ai
    • Careers
    • Summer internship
    • Our story
    • Management
    • Advisory board
    • Press center
    • Support
    • Terms of service
    • Privacy policy
    • Code of ethics
    • Contact us
    • Join our community
    • facebook logo linkedin logo twitter logo
    • © deepsense.ai 2014-
    Scroll to top

    This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

    OKLearn more

    Cookie and Privacy Settings



    How we use cookies

    We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

    Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

    Essential Website Cookies

    These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

    Because these cookies are strictly necessary to deliver the website, refuseing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

    We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

    We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

    Other external services

    We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

    Google Webfont Settings:

    Google Map Settings:

    Google reCaptcha Settings:

    Vimeo and Youtube video embeds:

    Privacy Policy

    You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

    Accept settingsHide notification only