deepsense.aideepsense.ai logo
  • Careers
    • Job offers
    • Summer internship
  • Clients’ stories
  • Services
    • AI software
    • Team augmentation
    • AI discovery workshops
    • GPT and other LLMs discovery workshops
    • Generative models
    • Train your team
  • Industries
    • Retail
    • Manufacturing
    • Financial & Insurance
    • IT operations
    • TMT & Other
    • Medical & Beauty
  • Knowledge base
    • deeptalks
    • Blog
    • R&D hub
  • About us
    • Our story
    • Management
    • Advisory board
    • Press center
  • Contact
  • Menu Menu
Spot the flaw - visual quality control in manufacturing

Spot the flaw – visual quality control in manufacturing

April 19, 2018/in Data science, Deep learning, Machine learning /by Konrad Budek

Quality assurance in manufacturing is demanding and expensive, yes, but also absolutely crucial. After all, selling flawed goods results in returns and disappointed customers. Harnessing the power of image recognition and deep learning may significantly reduce the cost of visual quality control while also boosting overall process efficiency.

According to “Forbes”, automating quality testing with machine learning can increase defect detection rates by up to 90%. Machines never tire, nor lose focus or need a break. And every product on a production line is inspected with the same focus and meticulousness.
Yield losses, the products that need to be reworked due to defects, may be one of the biggest cost-drivers in the production process. In semiconductor production, testing cost and yield losses can constitute up to 30% of total production costs.

Related:  Playing Atari with deep reinforcement learning - deepsense.ai’s approach

Time and money for quality

Traditional quality control is time-consuming. It is manually performed by specialists testing the products for flaws. Yet the process is crucial for business, as product quality is the pillar a brand will stand on. It is also expensive. Electronics industry giant Flex claims that for every 1 dollar it spends creating a product, it lays out 100 more on resolving quality issues.
Since the inception of image recognition software, manufacturers have been able to incorporate IP cameras into the quality control process. Most of the implementations are based on complex systems of triggers. But with the conditions predefined by programmers, the cameras were able to spot only a limited number of flaws. While the technology may not yet have been worthy of the title game changer, the image recognition revolution was one step further.
Spot the flaw - Visual quality control in manufacturing - Fish processing on the assembly line

Deep learning about perfection

Artificial intelligence may enhance the company’s ability to spot flawed products. Instead of embedding complex and lengthy lists of possible flaws into an algorithm, the algorithm learns the product’s features. With the vision of the perfect product, the software can easily spot imperfect ones.

Related:  Five hottest big data trends 2018 for the techies

Visual quality control in Fujitsu

A great example of how AI combined with vision systems can improve product quality is on display at Fujitsu’s Oyama factory. The Image Recognition System the company uses not only helps it ensure the production of parts of an optimal quality, but also supervises the assembly process. This dual role has markedly boosted the company’s efficiency.
As the company stated, the solution lacked the flexibility today’s fast-moving world demands. But powering up an AI-driven solution allowed it to quickly adapt its software to new products without the need for time-consuming recalibration. With the AI solutions, Fujitsu reduced its development time by 80% while keeping part recognition rates at 97%+.
As their solution proved successful, Fujitsu deployed it at all of its production sites.
Visual quality control is also factoring in the agricultural product packing arena. One company has recently introduced a high-performance fruit sorting machine that uses computer vision and machine learning to classify skin defects. The operator can teach the sorting platform to distinguish between different types of blemishes and sort the fruit into sophisticated pack grades. The solution combines hardware, software and operational optimization to reduce the complexity of the sorting process.

Related:  What is the best method of efficiently training machine learning for teams?

Summary

As automation becomes more widespread and manufacturing more complex, factories will need to employ AI. Self-learning machines ultimately allow the companies forward-thinking enough to use them to reduce operational costs while maintaining the highest quality possible.
However, an out-of-box solution is not always the best option. Limited flexibility and lower accuracy are the most significant obstacles most companies face. Sometimes building an in-house team of machine learning experts is the best way to provide both the competence and ability to tailor the right solutions for one’s business. As building the internal team to design visual quality control is more than challenging, finding the reliable partner to gain knowledge may be the best option.

Share this entry
  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on LinkedIn
  • Share on Reddit
  • Share by Mail
https://deepsense.ai/wp-content/uploads/2019/02/Spot-the-flaw-Visual-quality-control-in-manufacturing.jpg 337 1140 Konrad Budek https://deepsense.ai/wp-content/uploads/2019/04/DS_logo_color.svg Konrad Budek2018-04-19 14:14:462021-12-01 18:22:03Spot the flaw – visual quality control in manufacturing

Start your search here

Build your AI solution
with us!

Contact us!

NEWSLETTER SUBSCRIPTION

    You can modify your privacy settings and unsubscribe from our lists at any time (see our privacy policy).

    This site is protected by reCAPTCHA and the Google privacy policy and terms of service apply.

    CATEGORIES

    • Generative models
    • Elasticsearch
    • Computer vision
    • Artificial Intelligence
    • AIOps
    • Big data & Spark
    • Data science
    • Deep learning
    • Machine learning
    • Neptune
    • Reinforcement learning
    • Seahorse
    • Job offer
    • Popular posts
    • AI Monthly Digest
    • Press release

    POPULAR POSTS

    • Diffusion models in practice. Part 1 - The tools of the tradeDiffusion models in practice. Part 1: The tools of the tradeMarch 29, 2023
    • Solution guide - The diverse landscape of large language models. From the original Transformer to GPT-4 and beyondGuide: The diverse landscape of large language models. From the original Transformer to GPT-4 and beyondMarch 22, 2023
    • ChatGPT – what is the buzz all about?ChatGPT – what is the buzz all about?March 10, 2023

    Would you like
    to learn more?

    Contact us!
    • deepsense.ai logo white
    • Services
    • AI software
    • Team augmentation
    • AI discovery workshops
    • GPT and other LLMs discovery workshops
    • Generative models
    • Train your team
    • Knowledge base
    • deeptalks
    • Blog
    • R&D hub
    • deepsense.ai
    • Careers
    • Summer internship
    • Our story
    • Management
    • Advisory board
    • Press center
    • Support
    • Terms of service
    • Privacy policy
    • Code of ethics
    • Contact us
    • Join our community
    • facebook logo linkedin logo twitter logo
    • © deepsense.ai 2014-
    Scroll to top

    This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

    OKLearn more

    Cookie and Privacy Settings



    How we use cookies

    We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

    Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

    Essential Website Cookies

    These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

    Because these cookies are strictly necessary to deliver the website, refuseing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

    We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

    We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

    Other external services

    We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

    Google Webfont Settings:

    Google Map Settings:

    Google reCaptcha Settings:

    Vimeo and Youtube video embeds:

    Privacy Policy

    You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

    Accept settingsHide notification only