deepsense.aideepsense.ai logo
  • Careers
    • Job offers
    • Summer internship
  • Clients’ stories
  • Services
    • AI software
    • Team augmentation
    • AI advisory
    • Train your team
  • Industries
    • Retail
    • Manufacturing
    • Financial & Insurance
    • IT operations
    • TMT & Other
    • Medical & Beauty
  • Knowledge base
    • Blog
    • R&D hub
  • About us
    • Our story
    • Management
    • Advisory board
    • Press center
  • Contact
  • Menu Menu
A comprehensive guide to demand forecasting

A comprehensive guide to demand forecasting

May 28, 2019/in Data science, Machine learning, Popular posts /by Konrad Budek and Piotr Tarasiewicz

Everything you need to know about demand forecasting – from the purpose and techniques to the goals and pitfalls to avoid.

Essential since the dawn of commerce and business, demand forecasting enters a new era of big-data rocket fuel.

What is demand forecasting?

The term couldn’t be clearer: demand forecasting forecasts demand. The process of predicting the future involves processing historical data to estimate the demand for a product. An accurate forecast can bring significant improvements to supply chain management, profit margins, cash flow and risk assessment.

What is the purpose of demand forecasting?

Demand forecasting is done to optimize processes, reduce costs and avoid losses caused by freezing up cash in stock or being unable to process orders due to being out of stock. In an ideal world, the company would be able to satisfy demand without overstocking.

Demand forecasting techniques

Demand forecasting is an essential component of every form of commerce, be it retail, wholesale, online, offline or multichannel. It has been present since the very dawn of civilization when intuition and experience were used to forecast demand.

Sybilla – deepsense.ai’s demand forecasting tool

More recent techniques combine intuition with historical data. Modern merchants can dig into their data in a search for trends and patterns. At the pinnacle of these techniques, are demand forecasting machine learning models, including gradient boosting and neural networks, which are currently the most popular ones and outperform classic statistics-based methods.

The basis of more recent demand forecasting techniques is historical data from transactions. These are data that sellers collect and store for fiscal and legal reasons. Because they are also searchable, these data are the easiest to use.

Sybilla – deepsense.ai’s demand forecasting tool

How to choose the right demand forecasting method – indicators

As always, selecting the right technique depends on various factors, including:

  • The scale of operations – the larger the scale, the more challenging processing the data becomes.
  • The organization’s readiness – even the large companies can operate (efficiency aside) on fragmented and messy databases, so the technological and organizational readiness to apply more sophisticated demand forecasting techniques is another challenge.
  • The product – it is easier to forecast demand for an existing product than for a newly introduced one. When considering the latter, it is crucial to forming a set of assumptions to work on. Owning as much information about the product as possible is the first step, as it allows the company to spot the similarities between particular goods and search for correlations in the buying patterns. Spotting an accessory that is frequently bought along with the main product is one example.

How demand forecasting can help a business

Demand forecasting and following sales forecasting is crucial to shaping a company’s logistics policy and preparing it for the immediate future. Among the main advantages of demand forecasting are:

  • Loss reduction – any demand that was not fulfilled should be considered a loss. Moreover, the company freezes its cash in stock, thus reducing liquidity.
  • Supply chain optimization – behind every shop there is an elaborate logistics chain that generates costs and needs to be managed. The bigger the organization, the more sophisticated and complicated its inventory management must be. When demand is forecast precisely, managing and estimating costs is easier.
  • Increased customer satisfaction – there is no bigger disappointment for consumers than going to the store to buy something only to return empty-handed. For a business, the worst-case scenario is for said consumers to swing over to the competition to make their purchase there. Companies reduce the risk of running out of stock–and losing customers–by making more accurate predictions.
  • Smarter workforce management – hiring temporary staff to support a demand peak is a smart way for a business to ensure it is delivering a proper level of service.
  • Better marketing and sales management – depending on the upcoming demand for particular goods, sales and marketing teams can shift their efforts to support cross- and upselling of complementary products,
  • Supporting expert knowledge – models can be designed to build predictions for every single product, regardless of how many there are. In small businesses, humans handle all predictions, but when the scale of the business and the number of goods rises, this becomes impossible. Machine learning models extend are proficient at big data processing.

How to start demand forecasting – a short guide

Building a demand forecasting tool or solution requires, first and foremost, data to be gathered.

While the data will eventually need to be organized, simply procuring it is a good first step. It is easier to structure and organize data and make them actionable than to collect enough data fast. The situation is much easier when the company employs an ERP or CRM system, or some other form of automation, in their daily work. Such systems can significantly ease the data gathering process and automate the structuring.

Sybilla – deepsense.ai’s demand forecasting tool

The next step is building testing scenarios that allow the company to test various approaches and their impact on business efficiency. The first solution is usually a simple one, and is a good benchmark for solutions to come. Every next iteration should be tested to see if it is performing better than the previous one.

Historical data is usually everything one needs to launch a demand forecasting project, and obviously, there are significantly less data on the future. But sometimes it is available, for example:

  • Short-term weather forecasts – the information about upcoming shifts in weather can be crucial in many businesses, including HoReCa and retail. It is quite intuitive to cross-sell sunglasses or ice cream on sunny days.
  • The calendar – Black Friday is a day like no other. The same goes for the upcoming holiday season or other events that are tied to a given date.

Sources of data that originate from outside the company make predictions even more accurate and provide better support for making business decisions.

Common pitfalls to avoid when building a demand forecasting solution

There are numerous pitfalls to avoid when building a demand forecasting solution. The most common of them include:

  • The data should be connected with the marketing and ads history – a successful promotion results in a significant change in data, so having information about why it was a success makes predictions more accurate. If machine learning was used to make the predictions, the model could have misattributed the changes and made false predictions based on wrong assumptions.
  • New products with no history – when new products are introduced, demand must still be estimated, but without the help of historical data. The good news here is that great strides have been made in this area, and techniques such as product DNA can help a company uncover similar products its past/current portfolio. Having data on similar products can boost the accuracy of prediction for new products.
  • The inability to predict the weather – weather drives demand in numerous contexts and product areas and can sometimes be even more important than the price of a product itself! (yes, classical economists would be very upset). The good news is that even if you are unable to predict the weather, you can still use it in your model to explain historical variations in demand.
  • Lacking information about changes – In an effort to support both short- and long-term goals, companies constantly change their offering and websites. When the information about changes is not annotated in the data, the model encounters sudden dwindles and shifts in demand with apparently no reason. In the reality, it is usually a minor issue like changing the inventory or removing a section from website.
  • Inconsistent portfolio information – predictions can be done only if the data set is consistent. If any of the goods in a portfolio have undergone a name or ID change, it must be noted in order not to confuse the system or miss out on a valuable insight.
  • Overfitting the model – a vicious problem in data science. A model is so good at working on the training dataset that it becomes inflexible and produces worse predictions when new data is delivered. Avoiding overfitting is down to the data scientists.
  • Inflexible logistics chain – the more flexible the logistics process is, the better and more accurate the predictions will be. Even the best demand forecasting model is useless when the company’s logistics is a fixed process that allows no space for changes.

Sybilla – deepsense.ai’s demand forecasting tool

Summary

Demand and sales forecasting is a crucial part of any business. Traditionally it has been done by experts, based on know-how honed through experience. With the power of machine learning it is now possible to combine the astonishing scale of big data with the precision and cunning of a machine-learning model. While the business community must remain aware of the multiple pitfalls it will face when employing machine learning to predict demand, there is no doubt that it will endow demand forecasting with awesome power and flexibility.

Share this entry
  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on LinkedIn
  • Share on Reddit
  • Share by Mail
https://deepsense.ai/wp-content/uploads/2019/05/A-comprehensive-guide-to-demand-forecasting.jpg 337 1140 Konrad Budek https://deepsense.ai/wp-content/uploads/2019/04/DS_logo_color.svg Konrad Budek2019-05-28 11:24:422021-01-05 16:45:37A comprehensive guide to demand forecasting

Start your search here

NEWSLETTER SUBSCRIPTION

    You can modify your privacy settings and unsubscribe from our lists at any time (see our privacy policy).

    This site is protected by reCAPTCHA and the Google privacy policy and terms of service apply.

    THE NEWEST AI MONTHLY DIGEST

    • AI Monthly Digest 20 - TL;DRAI Monthly Digest 20 – TL;DRMay 12, 2020

    CATEGORIES

    • Elasticsearch
    • Computer vision
    • Artificial Intelligence
    • AIOps
    • Big data & Spark
    • Data science
    • Deep learning
    • Machine learning
    • Neptune
    • Reinforcement learning
    • Seahorse
    • Job offer
    • Popular posts
    • AI Monthly Digest
    • Press release

    POPULAR POSTS

    • AI trends for 2021AI trends for 2021January 7, 2021
    • A comprehensive guide to demand forecastingA comprehensive guide to demand forecastingMay 28, 2019
    • What is reinforcement learning? The complete guideWhat is reinforcement learning? deepsense.ai’s complete guideJuly 5, 2018

    Would you like
    to learn more?

    Contact us!
    • deepsense.ai logo white
    • Services
    • Customized AI software
    • Team augmentation
    • AI advisory
    • Knowledge base
    • Blog
    • R&D hub
    • deepsense.ai
    • Careers
    • Summer internship
    • Our story
    • Management
    • Advisory board
    • Press center
    • Support
    • Terms of service
    • Privacy policy
    • Code of ethics
    • Contact us
    • Join our community
    • facebook logo linkedin logo twitter logo
    • © deepsense.ai 2014-
    Scroll to top

    This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

    OKLearn more

    Cookie and Privacy Settings



    How we use cookies

    We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

    Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

    Essential Website Cookies

    These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

    Because these cookies are strictly necessary to deliver the website, refuseing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

    We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

    We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

    Other external services

    We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

    Google Webfont Settings:

    Google Map Settings:

    Google reCaptcha Settings:

    Vimeo and Youtube video embeds:

    Privacy Policy

    You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

    Accept settingsHide notification only
    Cookies To make this site work properly, we sometimes place small data files called cookies on your device. Most big websites do this too.
    Accept
    Change Settings
    Cookie Box Settings
    Cookie Box Settings

    Privacy settings

    Decide which cookies you want to allow. You can change these settings at any time. However, this can result in some functions no longer being available. For information on deleting the cookies, please consult your browser’s help function. Learn more about the cookies we use.

    With the slider, you can enable or disable different types of cookies:

    • Block all
    • Essentials
    • Functionality
    • Analytics
    • Advertising

    This website will:

    This website won't:

    • Essential: Remember your cookie permission setting
    • Essential: Allow session cookies
    • Essential: Gather information you input into a contact forms, newsletter and other forms across all pages
    • Essential: Keep track of what you input in a shopping cart
    • Essential: Authenticate that you are logged into your user account
    • Essential: Remember language version you selected
    • Functionality: Remember social media settings
    • Functionality: Remember selected region and country
    • Analytics: Keep track of your visited pages and interaction taken
    • Analytics: Keep track about your location and region based on your IP number
    • Analytics: Keep track of the time spent on each page
    • Analytics: Increase the data quality of the statistics functions
    • Advertising: Tailor information and advertising to your interests based on e.g. the content you have visited before. (Currently we do not use targeting or targeting cookies.
    • Advertising: Gather personally identifiable information such as name and location
    • Remember your login details
    • Essential: Remember your cookie permission setting
    • Essential: Allow session cookies
    • Essential: Gather information you input into a contact forms, newsletter and other forms across all pages
    • Essential: Keep track of what you input in a shopping cart
    • Essential: Authenticate that you are logged into your user account
    • Essential: Remember language version you selected
    • Functionality: Remember social media settings
    • Functionality: Remember selected region and country
    • Analytics: Keep track of your visited pages and interaction taken
    • Analytics: Keep track about your location and region based on your IP number
    • Analytics: Keep track of the time spent on each page
    • Analytics: Increase the data quality of the statistics functions
    • Advertising: Tailor information and advertising to your interests based on e.g. the content you have visited before. (Currently we do not use targeting or targeting cookies.
    • Advertising: Gather personally identifiable information such as name and location
    Save & Close