deepsense.aideepsense.ai logo
  • Careers
    • Job offers
    • Summer internship
  • Clients’ stories
  • Services
    • AI software
    • Team augmentation
    • AI discovery workshops
    • GPT and other LLMs discovery workshops
    • Generative models
    • Train your team
  • Industries
    • Retail
    • Manufacturing
    • Financial & Insurance
    • IT operations
    • TMT & Other
    • Medical & Beauty
  • Knowledge base
    • deeptalks
    • Blog
    • R&D hub
  • About us
    • Our story
    • Management
    • Advisory board
    • Press center
  • Contact
  • Menu Menu

AI movie restoration – Scarlett O’Hara HD

July 18, 2019/in Machine learning /by Konrad Budek

With convolutional neural networks and state-of-the-art image recognition techniques it is possible to make old movie classics shine again. Neural networks polish the image, reduce the noise and apply colors to the aged images. 

The first movies were created in the late nineteenth century with celluloid photographic film used in conjunction with motion picture cameras.

Skip ahead to 2018, when the global movie industry was worth $41.7 billion globally. Serving entertainment, cultural and social purposes, films are a hugely important heritage to protect. And that’s not always easy. Especially considering the fact that modern movies are produced and screened digitally, with the technology of celluloid tape fading into obsolescence.

Challenges in film preservation

The challenge and importance of preserving the cultural heritage of old movies has been underscored by numerous organizations including the European Commision, which noted that a lack of proper devices to play aging technology on could make it impossible to watch old films.

In deepsense.ai’s experience with restoring film, the first challenge is to remove distortions. Classics are usually recorded in low resolution while the original tapes are obviously aged and filled with noise and cracks. Also, the transition process from celluloid tape to digital format usually damages the material and results in the loss of quality.

By using AI-driven solutions, specifically supervised learning techniques, deepsense.ai’s team removed the cracks and black spots from the digitized version of a film. The model we produced uses deep neural networks trained on a movie with cracks and flaws added manually for training purposes. Having some films in original and broken form, the system learned to remove the flaws. An example of generated noise put on the classic Polish movie “Rejs” and the neural network’s output is displayed below.

The example clearly shows that our neural network can process and restore even a thoroughly damaged source material and make it shine again. The networks start to produce low-quality predictions when the images are so darkened and blurred that the human eye can barely recognize people in the film.

How to convert really old movies into HD

A similar training technique was applied to deliver a neural network used to improve the quality of an old movie. The goal was to deliver missing details and “pump up” the resolution from antiquated to HD quality.

The key challenge lay in reproducing the details, which was nearly impossible. Due to technological development, it is difficult for people to watch lower quality video than what they are used to.

The model was trained by downscaling an HD movie and then conducting a supervised training to deliver the missing details.

Move your mouse cursor over the image to see the difference.

Lewy alt
Prawy alt

The model performs well thanks to the wide availability of training data. The team could downscale the resolution of any movie, provide the model with the original version and let the neural network learn how to forge and inject the missing detail into the film.

A key misconception about delivering HD versions of old movies is that the neural network will discover the missing details from the original. In fact, there is no way to reclaim lost details because there were none on the originally registered material. The neural network produces them on the go on with the same techniques Thispersondoesnotexist and similar Generative Adversarial Networks use.

So, the source material is enriched with details that only resemble reality, but are in fact not real ones. This can be a challenge (or a problem) if the material is to be used for forensic purposes or detailed research. But when it comes to delivering the movies for entertainment or cultural ends, the technique is more than enough.

Coloring old movies

Another challenge comes with producing color versions of movie classics, technically reviving them for newer audiences. The process was long handled by artists applying color to every frame. The first film colored this way was the British silent movie “The Miracle” (1912).

Because there are countless color movies to draw on, providing a rich training set, a deep neural network can vastly reduce the time required to revive black and white classics. Yet the process is not fully automatic. In fact, putting color on the black and white movie is a titanic undertaking. Consider Disney’s “Tron,” which was shot in black and white and then colored by 200 inkers and painters from Taiwan-based Cuckoo’s Nest Studio.

When choosing colors, a neural network tends to play it safe. An example of how this can be problematic would be when the network misinterprets water as a field of grass. It would do that because it is likely more common for fields than for lakes to appear as a backdrop in a film. 

By manually applying colored pixels to single frames, an artist can suggest what colors the AI model should choose.

There is no way to determine the real color of a scarf or a shirt an actor or actress was wearing when a film rendered in black and white was shot. After all these years, does it even matter? In any case, neural networks employ the LAB color standard, leveraging lightness (L) to predict the two remaining channels (A and B respectively).

Transcription and face recognition

Last but not least, transcribing dialogue makes analysis and research much easier – be it for linguistic or cultural studies purposes. With facial recognition software, the solution can attribute all of the lines delivered to the proper characters.

The speech-to-text function processes the sound and transcribes the dialogue while the other network checks which of the people in the video moves his or her lips. When combined with image recognition, the model can both synchronize the subtitles and provide the name of a character or actor speaking.

While the content being produced needs to be supervised, it still vastly reduces the time required for transcription. In the traditional way, the transcription only takes at least the time of a recording and then needs to be validated. The machine transcribes an hour-long movie in a few seconds.

Summary

Using machine learning-based techniques to restore movies takes less time and effort than other methods. It also makes efforts to preserve the cultural heritage more successful and ensures films remain relevant. Machine learning in business gets huge recognition but ML-based techniques remain a novel way to serve the needs of culture and art.. deepsense.ai’s work has proven that AI in the art can serve multiple purposes, including promotion and education. Maybe using it in art and culture will be one of 2020’s AI trends.

Reviving and digitalizing classics improves the access to and availability of cultural goods and ensures that those works remain available, so future generations will, thanks to AI, enjoy Academy-awarded movies of the past as much as, if not more than, we do now.

Share this entry
  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on LinkedIn
  • Share on Reddit
  • Share by Mail
https://deepsense.ai/wp-content/uploads/2019/07/AI-movie-restoration.jpg 337 1140 Konrad Budek https://deepsense.ai/wp-content/uploads/2019/04/DS_logo_color.svg Konrad Budek2019-07-18 14:35:042021-10-19 13:17:39AI movie restoration – Scarlett O’Hara HD

Start your search here

Build your AI solution
with us!

Contact us!

NEWSLETTER SUBSCRIPTION

    You can modify your privacy settings and unsubscribe from our lists at any time (see our privacy policy).

    This site is protected by reCAPTCHA and the Google privacy policy and terms of service apply.

    CATEGORIES

    • Generative models
    • Elasticsearch
    • Computer vision
    • Artificial Intelligence
    • AIOps
    • Big data & Spark
    • Data science
    • Deep learning
    • Machine learning
    • Neptune
    • Reinforcement learning
    • Seahorse
    • Job offer
    • Popular posts
    • AI Monthly Digest
    • Press release

    POPULAR POSTS

    • Diffusion models in practice. Part 1 - The tools of the tradeDiffusion models in practice. Part 1: The tools of the tradeMarch 29, 2023
    • Solution guide - The diverse landscape of large language models. From the original Transformer to GPT-4 and beyondGuide: The diverse landscape of large language models. From the original Transformer to GPT-4 and beyondMarch 22, 2023
    • ChatGPT – what is the buzz all about?ChatGPT – what is the buzz all about?March 10, 2023

    Would you like
    to learn more?

    Contact us!
    • deepsense.ai logo white
    • Services
    • AI software
    • Team augmentation
    • AI discovery workshops
    • GPT and other LLMs discovery workshops
    • Generative models
    • Train your team
    • Knowledge base
    • deeptalks
    • Blog
    • R&D hub
    • deepsense.ai
    • Careers
    • Summer internship
    • Our story
    • Management
    • Advisory board
    • Press center
    • Support
    • Terms of service
    • Privacy policy
    • Code of ethics
    • Contact us
    • Join our community
    • facebook logo linkedin logo twitter logo
    • © deepsense.ai 2014-
    Scroll to top

    This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

    OKLearn more

    Cookie and Privacy Settings



    How we use cookies

    We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

    Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

    Essential Website Cookies

    These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

    Because these cookies are strictly necessary to deliver the website, refuseing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

    We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

    We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

    Other external services

    We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

    Google Webfont Settings:

    Google Map Settings:

    Google reCaptcha Settings:

    Vimeo and Youtube video embeds:

    Privacy Policy

    You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

    Accept settingsHide notification only