deepsense.aideepsense.ai logo
  • Careers
    • Job offers
    • Summer internship
  • Clients’ stories
  • Services
    • AI software
    • Team augmentation
    • AI discovery workshops
    • GPT and other LLMs discovery workshops
    • Generative models
    • Train your team
  • Industries
    • Retail
    • Manufacturing
    • Financial & Insurance
    • IT operations
    • TMT & Other
    • Medical & Beauty
  • Knowledge base
    • deeptalks
    • Blog
    • R&D hub
  • About us
    • Our story
    • Management
    • Advisory board
    • Press center
  • Contact
  • Menu Menu
How machine learning improves business efficiency - five practical examples

How machine learning improves business efficiency – five practical examples

August 30, 2018/in Machine learning /by Konrad Budek

Deloitte estimates that in 2021 enterprise spending on artificial intelligence and machine learning projects will reach 57 billion dollars, four times more than in 2017. These technologies are now in every day use, and not only among innovation leaders.

Thanks to digitalization of business processes, organizations command ever greater amounts of data, which, with the help of machine learning, can be used to automate work. At the same time, spending on the following five areas can be limited:

  1. maintenance, thanks to reduced energy consumption
  2. payroll costs, thanks to task automation
  3. raw material and quality assurance costs, thanks to the automation and tightening of quality control
  4. equipment and machinery costs, thanks to the automation of control systems for operations and maintenance
  5. operating costs including marketing and sales

More and more of the business community is catching on to the savings they can harness with artificial intelligence. The evidence for this is clear from the steps individual enterprises are taking, as well as the development of numerous machine learning business examples and the entire ecosystem of companies offering products based on these technologies and support in implementing them.

1. Reducing the costs associated with maintaining and using the energy

[bctt tweet=”As a system’s complexity grows, so too does the challenge of supervising it.” via=”no”]
Consider, for example, the cooling of large server rooms. In terms of energy consumption and CO2 generation, the ICT sector (communication technologies, including telecommunications and IT services) produces two percent of global emissions, which is on a par with the airlines. To reduce its electricity expenses, Google decided to entrust energy management in one of its server rooms to AI, which “learned” the structure of the center and reduced cooling costs by 40 percent.
No new equipment was needed – it was enough to develop new software that leveraged AI. Ultimately, the system is going to be used in all Google server rooms. The British national energy supplier National Grid has also expressed interested in the solution.

Related:  Five trends for business to surf the big data wave

2. Reduction of human costs through automation

Machine learning enables the automation of repetitive, often time-consuming activities, freeing up the teams that had been doing them to take up more profitable tasks. We produced a program for the international research company Nielsen that could find, read and save in a database the composition of the a product’s contents using only a photo of its packaging. This shortened the working time from several minutes dedicated to manually rewriting the composition from the label, to the few seconds required to take a picture of the packaging.
If you need more convincing, consider these figures: If a company employs 46,000 people, helping even half of them save five minutes a day translates into 314 full-time positions each day.
Machine learning business examples

3. Predictive maintenance 4.0 – optimizing machine maintenance costs

Because any hardware failure involves both repair costs and production downtime, what company wouldn’t look for tools that can predict failures and prevent them? Another solution deepsense.ai has prepared, this time for a manufacturer, used data from sensors mounted on machines.
By reviewing and analyzing the signals, the solution can predict upcoming failures up to two weeks before they occur. Another example of predictive maintenance comes thanks to the OneWatt company, which tests the sounds issued by industrial machines. AI steps in where the human ear would be helpless: It detect changes in the sounds the machines produce to predict potential failures.

Related:  Three reasons why data analysts make the perfect data scientists

4. Quality control – fewer mistakes with machine learning

In many industries, quality control comes with huge costs. For semiconductor manufacturers, huge means up to 30 percent of costs. Automating quality control with image recognition tools increases the percentage of defects detected by up to 90 percent.
Unlike automated systems, machine learning-based vision systems can continuously evolve and adapt to new product specifications. Fujitsu implemented a system that both catches defective products and prepares each one for automated assembly at the next production stage. Applying machine learning, the system not only automatically recognizes the parts of the machine but also assesses their compliance with standards in more than 97 percent of cases.
Machine learning business examples

5. The power of data in sales, marketing and customer service

Machine learning is able to process data sets faster and more efficiently than even the most expert analysts. This makes it possible to constantly analyze what is happening, for example, in the company’s sales or transaction system, and also to regularly monitor customer activity. To understand just how beneficial machine learning can be here, consider the customer loyalty survey.
Only one in every 26 clients expresses their dissatisfaction before looking to the competition for what they need. Data science can help you capture the behavior patterns of a dissatisfied customer and react in advance.
Machine learning business examples
Using data more effectively benefits not only business, but the whole of society. A solution developed by deepsense.ai for the city of Portland, Oregon enabled the police to predict in which parts of the city crime would take place.

Machine learning in practice

Machine learning is giving enterprise more opportunities to look for savings and generate additional revenue. AI helps people accomplish complex tasks that under normal conditions would overwhelm them, so great is their complexity. Machine learning also makes it possible to automate activities that, though repetitive and schematic, require maximum focus, so employee productivity tends to fall quickly. AI helps people do their work more effectively and devote more energy to those activities that bring the most value.

Share this entry
  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on LinkedIn
  • Share on Reddit
  • Share by Mail
https://deepsense.ai/wp-content/uploads/2019/02/How-machine-learning-improves-business-efficiency-–-five-practical-examples.jpg 337 1140 Konrad Budek https://deepsense.ai/wp-content/uploads/2019/04/DS_logo_color.svg Konrad Budek2018-08-30 13:42:072022-09-07 13:52:59How machine learning improves business efficiency – five practical examples

Start your search here

Build your AI solution
with us!

Contact us!

NEWSLETTER SUBSCRIPTION

    You can modify your privacy settings and unsubscribe from our lists at any time (see our privacy policy).

    This site is protected by reCAPTCHA and the Google privacy policy and terms of service apply.

    CATEGORIES

    • Generative models
    • Elasticsearch
    • Computer vision
    • Artificial Intelligence
    • AIOps
    • Big data & Spark
    • Data science
    • Deep learning
    • Machine learning
    • Neptune
    • Reinforcement learning
    • Seahorse
    • Job offer
    • Popular posts
    • AI Monthly Digest
    • Press release

    POPULAR POSTS

    • Diffusion models in practice. Part 1 - The tools of the tradeDiffusion models in practice. Part 1: The tools of the tradeMarch 29, 2023
    • Solution guide - The diverse landscape of large language models. From the original Transformer to GPT-4 and beyondGuide: The diverse landscape of large language models. From the original Transformer to GPT-4 and beyondMarch 22, 2023
    • ChatGPT – what is the buzz all about?ChatGPT – what is the buzz all about?March 10, 2023

    Would you like
    to learn more?

    Contact us!
    • deepsense.ai logo white
    • Services
    • AI software
    • Team augmentation
    • AI discovery workshops
    • GPT and other LLMs discovery workshops
    • Generative models
    • Train your team
    • Knowledge base
    • deeptalks
    • Blog
    • R&D hub
    • deepsense.ai
    • Careers
    • Summer internship
    • Our story
    • Management
    • Advisory board
    • Press center
    • Support
    • Terms of service
    • Privacy policy
    • Code of ethics
    • Contact us
    • Join our community
    • facebook logo linkedin logo twitter logo
    • © deepsense.ai 2014-
    Scroll to top

    This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

    OKLearn more

    Cookie and Privacy Settings



    How we use cookies

    We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

    Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

    Essential Website Cookies

    These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

    Because these cookies are strictly necessary to deliver the website, refuseing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

    We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

    We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

    Other external services

    We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

    Google Webfont Settings:

    Google Map Settings:

    Google reCaptcha Settings:

    Vimeo and Youtube video embeds:

    Privacy Policy

    You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

    Accept settingsHide notification only