deepsense.aideepsense.ai logo
  • Clients’ stories
  • Industries
    • Retail
    • Manufacturing
    • Financial Services
    • IT Operations
    • TMT and Other
  • Train your team
  • R&D Hub
  • Blog
  • About us
    • Our story
    • Management
    • Advisory Board
    • Press center
    • Careers
    • Internship program
  • Contact
  • Menu Menu
Logo detection and brand visibility analytics - example

Logo detection and brand visibility analytics – example

August 29, 2019/in Data science, Deep learning, Machine learning, Neptune /by Michal Romaniuk and Konrad Budek

Companies pay astonishing amounts of money to sponsor events  and raise brand visibility. Calculating the ROI from such sponsorship can be augmented with machine learning-powered tools to deliver more accurate results. 

Event sponsoring is a well-established marketing strategy to build brand awareness. Despite being one of the most recognizable brands in the automotive industry, Chevrolet pays $71.4 million dollars each year to put its brand on Manchester United shirts.

How many people does your brand reach?

According to Eventmarketer’s study, 72% of consumers positively view brands that provide them with positive experiences, be it a great sports game or another cultural event, such as a music festival. Such events attract large numbers of viewers both directly and via media reports, allowing brands to get favorable positioning and work on their word-of-mouth recognition. 

Sponsorship contracts often come at a steep price, so brand owners are naturally more than a little interested in finding out how effectively their outlays are working for them. However, it’s difficult to assess quantitatively just how great the brand exposure is in a given campaign. The information on brand exposure can further support demand forecasting efforts, as the company gains information on expected demand peaks that result from greater brand exposure in media coverage. 

The current approach to computing such statistics has involved manually annotating broadcast material, which is tedious and expensive. To address these problems, we have developed an automated tool for logo detection and visibility analysis that provides both raw detection and a rich set of statistics.

Related:  Deep learning for satellite imagery via image segmentation

Solution overview

We decided to break the problem down into two steps: logo detection with convolutional neural networks and an analytics for computing summary statistics.
Logo detection system overview

The main advantage of this approach is that swapping the analytics module for a different one is straightforward. This is essential when different types of statistics are called for, or even if the neural net is to be trained for a completely different task (we had plenty of fun modifying this system to spot and count coins – stay tuned for a future blog post on that).

Logo detection with deep learning

There are two principal approaches to object detection with convolutional neural networks: region-based methods and fully convolutional methods.

Region-based methods, such as R-CNN and its descendants, first identify image regions which are likely to contain objects (region proposals). They then extract these regions and process them individually with an image classifier. This process tends to be quite slow, but can be sped up to some extent with Fast R-CNN, where the image is processed by the convolutional network as a whole and then region representations are extracted from high-level feature maps. Faster R-CNN is a further improvement where region proposals are also computed from high-level CNN features, which accelerates the region proposal step.

Fully convolutional methods, such as SSD, do away with processing individual region proposals and instead aim to output class labels where the region proposal step would be. This approach can be much faster, since there is no need to extract and process region proposals individually. In order to make this work for objects with very different sizes, the SSD network has several detection layers attached to feature maps of different resolutions.

Logo detection convolutional net

Since real-time video processing is one of the requirements of our system, we decided to go with the SSD method rather than Fast R-CNN. Our network also uses ResNet-50 as its convnet backbone, rather than the default VGG-16. This made it much less memory-hungry, while also helping to stabilize the training process.

Related:  What is the best method of efficiently training machine learning for teams?

Model training

In the process of refining the SSD architecture for our requirements, we ran dozens of experiments. This was an iterative process with a large delay between the start and finish of an experiment (typically 1-2 days). In order to run numerous experiments in parallel, we used Neptune, our machine learning experiment manager. Neptune captures the values of the loss function and other statistics while an experiment is running, displaying them in a friendly web UI. Additionally, it can capture images via image channels and display them, which really helped us troubleshoot the different variations of the data augmentation we tested.
Logo detection - Neptune screenshot

Logo detection analytics

The model we produced generates detections very well. However, when even a short video is analyzed, the raw description can span thousands of lines. To help humans analyze the results, we created software that translates these descriptions into a series of statistics, charts, rankings and visualizations that can be assembled into a concise report.

The statistics are calculated globally and per brand. Some of them, like brand display time, are meant to be displayed, but many are there to fuel the visual representation. Speaking of which, the charts are really expressive in this task. Some features include brand exposure size in time, heatmaps of a logo’s position on the screen and bar charts to allow you to easily compare various statistics across the brands. Last but not least, we have a module for creating highlights – visualizations of the bounding boxes detected by the model. This module serves a double purpose: in addition to making the analysis easy to track, such visualizations are also a source of valuable information for data scientists tweaking the model.

Related:  Five hottest big data trends 2018 for the techies

Results

We processed a short video featuring a competition between rivals Coca-Cola and Pepsi to see which brand received more exposure in quantitative terms. You can watch it on YouTube by following this link. Which logo has better visibility?

Below, you can compare your guesses with what our model reported:Logo detection report

Possible extensions

There are many business problems where object detection can be helpful. Here at deepsense.ai, we have worked on a number of them. 

We developed a solution for Nielsen that extracts information about ingredients from photographs of FMCG products, using object detection networks to locate the list of ingredients in photographs of products. This made Nielsen’s data collection more efficient and automatic. In its bid to save the gravely endangered North Atlantic Right Whale,The NOAA used a related technique to spot whales in aerial photographs. Similar techniques are used when the reinforcement learning-based models behind autonomous vehicles learn to recognize road signs. 

With logo detection technology, companies can evaluate a campaign’s ROI by analyzing any media coverage of a sponsored event. With the information on brand positioning in hand, it is easy to calculate the advertising equivalent value or determine the most impactful events to sponsor. 

With further extrapolation, companies can monitor the context of media coverage and track whether their brand is shown with positive or negative information, providing even more knowledge for the marketing team.

Share this entry
  • Share on Facebook
  • Share on Twitter
  • Share on WhatsApp
  • Share on LinkedIn
  • Share on Reddit
  • Share by Mail
https://deepsense.ai/wp-content/uploads/2019/02/logo-detection-and-brand-visibility-analytics.jpg 337 1140 Michal Romaniuk https://deepsense.ai/wp-content/uploads/2019/04/DS_logo_color.svg Michal Romaniuk2019-08-29 10:03:572021-01-05 16:49:08Logo detection and brand visibility analytics – example

Start your search here

NEWSLETTER SUBSCRIPTION

    You can modify your privacy settings and unsubscribe from our lists at any time (see our privacy policy).

    This site is protected by reCAPTCHA and the Google privacy policy and terms of service apply.

    THE NEWEST AI MONTHLY DIGEST

    • AI Monthly Digest 20 - TL;DRAI Monthly Digest 20 – TL;DRMay 12, 2020

    CATEGORIES

    • Artificial Intelligence
    • AIOps
    • Big data & Spark
    • Data science
    • Deep learning
    • Machine learning
    • Neptune
    • Reinforcement learning
    • Seahorse
    • Job offer
    • Popular posts
    • AI Monthly Digest
    • Press release

    POPULAR POSTS

    • AI trends for 2021AI trends for 2021January 7, 2021
    • A comprehensive guide to demand forecastingA comprehensive guide to demand forecastingMay 28, 2019
    • What is reinforcement learning? The complete guideWhat is reinforcement learning? The complete guideJuly 5, 2018

    Would you like
    to learn more?

    Contact us!
    • deepsense.ai logo white
    • Industries
    • Retail
    • Manufacturing
    • Financial Services
    • IT Operations
    • TMT and Other
    • Knowledge base
    • Blog
    • Press center
    • deepsense.ai
    • Our story
    • Management
    • Scientific Advisory Board
    • Careers
    • Support
    • Terms of service
    • Privacy policy
    • Contact us
    • Join our community
    • facebook logo linkedin logo twitter logo
    • © deepsense.ai 2014-
    Scroll to top

    This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.

    OKLearn more

    Cookie and Privacy Settings



    How we use cookies

    We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.

    Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.

    Essential Website Cookies

    These cookies are strictly necessary to provide you with services available through our website and to use some of its features.

    Because these cookies are strictly necessary to deliver the website, refuseing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.

    We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.

    We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.

    Other external services

    We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.

    Google Webfont Settings:

    Google Map Settings:

    Google reCaptcha Settings:

    Vimeo and Youtube video embeds:

    Privacy Policy

    You can read about our cookies and privacy settings in detail on our Privacy Policy Page.

    Accept settingsHide notification only